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In this paper, we consider a regulation problem of an urban transportation network. From a given timetable, we aim to find a
new schedule of multiple vehicles after the detection of a disturbance at a given time. The main objective is to find a solution
maximizing the level of service for all passengers. This problem was intensively studied with evolutionary approaches and
multi-agent techniques, but without identifying its type before. In this paper, we formulate the problem as a classical one in
the case of an unlimited vehicle capacity. In the case of a limited capacity and an integrity constraint, the problem becomes
difficult to solve. Then, a new coding and well-adapted operators are proposed for such a problem and integrated in a new
evolutionary approach.
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1. Problem Formulation

1.1. Description

Let us consider an urban transportation network which
consists of several lines. Each line is represented by a set
of successive stations. On each line, a set of vehicles pass
by stations according to schedules fixed in the timetable.
At every time, passengers arrive at the different stations to
board these vehicles. The arrival statistical distributions
of passengers at a given station are known.

1.2. Problem

At a given moment, a disturbance occurs in the network
and affects a vehicle at its arrival at a station of a certain
line. The problem is to correct the timetable (the schedule
of the vehicles) so that the quality of service for passen-
gers boarding vehicles is maximized. The service quality
can in this case be reduced to the aggregation of several
criteria, e.g., the minimization of the waiting time of the
passengers caused by the delays, the minimization of the
increase in the total travel time and the minimization of the
total transit time spent in the connecting nodes (Aloulou,
1999; Fayech, 2000; Fayechet al., 2001).

2. Mathematical Formulation

In this section, we consider the regulation problem as it
was treated in (Aloulou, 1999; Fayech, 2000; Fayechet

al., 2001). We present the different characteristics of such
a problem, its constraints as well as the different criteria.

2.1. Initial Data

◦ The transportation network consists ofN lines.
Each line l (1 ≤ l ≤ N) containsnl stationsSl

k

(1 ≤ k ≤ nl).

◦ For each linel (1 ≤ l ≤ N), there areml vehicles
V l

i (1 ≤ i ≤ ml ). Each vehicle can simply repre-
sent a journey (V l

i = 1 journey fromSl
1 to Sl

nl
).

◦ ∀ 1 ≤ l ≤ N , ∀ 1 ≤ i ≤ ml ,∀ 1 ≤ k ≤ nl, the
departure time ofV l

i on Sl
k is d(V l

i , Sl
k) = dl

i,k.

◦ ∀ 1 ≤ l ≤ N , ∀ 1 ≤ i ≤ ml ,∀ 1 ≤ k ≤ nl, the
charge of a vehicle at a station isC(V l

i , Sl
k) = Cl

i,k.

◦ Such departure times were previously calculated by
taking account of several factors like the passenger’s
arrival statistical distributions in order to maximize
the service quality. These distributions are supposed
to be known and precisely evaluated. Thus, we de-
note by µl

k(t) the number of passengers per unit of
time which arrive at the stationSl

k at the timet. De-
parture times must satisfy two constraints: the mini-
mal duration constraint and the transit duration con-
straint.

◦ The minimal duration is the duration that a vehicle
puts to reachSl

k+1 from Sl
k: ∀ 1 ≤ l ≤ N , ∀ 1 ≤

i ≤ ml ,∀ 1 ≤ k ≤ nl − 1, dl
i,k+1 − dl

i,k ≥ dml
i,k.
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The datadml
i,k are calculated according to the dis-

tance betweenSl
k and Sl

k+1 and to the traffic state
in the periods corresponding to the departure of the
i-th vehicle.

◦ As for the transit duration, we suppose that the lines
l1 and l2 are crossed in a node which corresponds
to the stationSl1

k1
= Sl2

k2
. For each vehicleV l1

i

of the line l1, there is a vehicleV l2
σ(i) which ar-

rives afterV l1
i and takes a proportion of passengers

equal toτ l1,l2
i,σ(i), who change fromV l1

i to V l2
σ(i) with

σ(i) ∈ {1, . . . ,ml2}. In fact, σ is a mapping de-
pending on the node(l1, l2, k1, k2). The different
nodes are represented in a list= and each node is
represented by the quadruple(l1, l2, k1, k2).1

2.2. Perturbation Information

◦ At a given timed0, a disturbance occurs in the net-
work and affects the vehicleV l0

i0
which will arrive at

the stationSl0
k0

with a delay of a durationδ. Thus,

we can writed′l0i0,k0
= dl0

i0,k0
+ δ.

◦ The problem is to find new departure timesd′li,k of the
vehicles at the different stations such thatd′li,k > d0.

◦ Two possibilities can be considered. In the first one,
we do nothing. In this case, the delay of the dis-
turbed vehicle will be propagated through the sta-
tions according to the equationd′l0i0,k = dl0

i0,k + δ,
∀ k ≥ k0. Clearly, this solution is naive because it
does not guarantee the performance. The second so-
lution consists in updating all departure times of the
vehicles by following a regulation strategy.

2.3. Constraints

◦ The constraints of the minimum duration necessary
to go from a station to the next one must be obeyed,
i.e., ∀ 1 ≤ l ≤ N , ∀ 1 ≤ i ≤ ml , ∀ 1 ≤ k ≤ nl−1,
we haved′li,k+1 − d′li,k ≥ dml

i,k.

◦ The constraint of the transit duration is given as
∀ (l1, l2, k1, k2) ∈ =, d′l2σ(i),k2

−d′l1i,k1
≥ trl1,l2

k1,k2
. This

constraint is taken into account in order to ensure a
maximum number of transits realized.

◦ According to the adopted strategy, delaying or ad-
vancing the vehicles, we can have constraints like
d′li,k − dl

i,k ≤ πl
i,k (the maximum delay constraint)

and d′li,k ≥ νl
i,k (in the case of regulation only by

delay, we havedl
i,k = νl

i,k).

1 Note that(l1, l2, k1, k2) 6= (l2, l1, k2, k1).

◦ As for other constraints, it is obvious thatd′li,k =
dl

i,k for all dl
i,k ≤ d0.

2.4. Criteria

In this section, we also consider the same criteria as those
considered in (Aloulou, 1999; Fayech, 2000; Fayechet al.,
2001). The service quality can be reduced to an aggrega-
tion of the following criteria:

The minimization of the sum of waiting times of the
passengers caused by the vehicles’ delays.Figure 1 de-
scribes an example of arrival distributionµl

k(t) at a sta-
tion Sl

k between two successive departure momentsdl
i,k

and dl
i+1,k of two vehicles from the same line. The wait-

ing time A of passengers for the different stations and for
all vehicles can be described by

A =
l=N∑
l=1

k=nl∑
k=1

i=ml−1∑
i=1

dl
i+1,k−dl

i,k∫
0

µl
k(t)(dl

i+1,k − dl
i,k − t) dt.

(1)

Fig. 1. Arrival distribution between two successive departures.

We suppose that the arrival rate of passengers at a
stop is constant and equal toµl

k. Hence we obtain

A =
l=N∑
l=1

k=nl∑
k=1

i=ml−1∑
i=1

µl
k

2
(dl

i+1,k − dl
i,k)2

=
l=N∑
l=1

k=nl∑
k=1

i=ml−1∑
i=1

µl
k

2
I2
i,k,l. (2)

In (Aloulou, 1999; Fayech, 2000; Fayechet al.,
2001), the authors defined the gain in the total waiting
time of passengers at stations, denoted byE(∆A). If the
arrival rate of passengers at stops is constant, we have

E(∆A) =
l=N∑
l=1

k=nl∑
k=1

i=ml−1∑
i=1

µl
k

2
(I2

i,k,l − I ′2i,k,l), (3)
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whereIi,k,l and I ′i,k,l are respectively the intervals with-
out and with regulation(Ii,k,l = dl

i+1,k − dl
i,k).

The minimization of the increase in the expected total
travel time. For the passengers aboard the vehicles, the
increase in the expected total travel time induced by the
regulation is calculated according to the charges of the ve-
hicles at the different stations:

E(∆T ) =
l=N∑
l=1

k=nl∑
k=2

i=ml∑
k=1

rl
i,kC ′l

i,k−1, (4)

where rl
i,k is the delay imposed by the regulation of the

vehicle V l
i at the stationSl

k (in fact, rl
i,k = d′li,k − dl

i,k

and C ′l
i,k = Cl

i,k +µl
k(d′li,k−dl

i,k)−µl
k(d′li−1,k−dl

i−1,k)).

The minimization of the transit time. To minimize
the transit duration of passengers in a node from the
line l1 to the line l2 or the opposite, a quality indica-
tor which measures the gain induced by the regulation on
the total duration of the transit was proposed in (Aloulou,
1999; Fayech, 2000; Fayechet al., 2002a). It is sup-
posed that the number of passengers carrying out the cor-
respondence fromV l1

i to V l2
σ(i) is proportional to the

charge of V l1
i at its arrival at the node(l1, l2, k1, k2)

with a rate equal toτ l1l2
i,σ(i). We calculate the number of

passengers in transit in each node in the following way:
np(V l1

i → V l2
σ(i)) = τ l1l2

i,σ(i)C
′l1
i,k1−1 with C ′l1

i,k1−1, the

charge of V l1
i on its arrival at the node, i.e., at its de-

parture from the stationSl1
k1−1. We assume that the rates

τ l1l2
i,σ(i) can be considered constant for all vehicles (Fayech

et al., 2002b). The total waiting time of passengers in
transit can be given by

Atransit =
∑

(l1,l2,k1,k2)∈=

∑
i

τ l1l2
k1,k2

C ′(V l1
i , Sl1

k1−1)

×(d′l2σ(i),k2
− d′l1i,k1

). (5)

Thus, the quality indicator can be deduced by com-
paring the values of the transit durations without and with
regulation. The gain in the total transfer time is then
equal to E(∆Atransit) = Atransit (without regulation)
−Atransit (with regulation). We aim, therefore, to max-
imize this gain to reduce the durations of transit at the
nodes.

2.5. Global Evaluation Function

In order to aggregate the three quality indicators previ-
ously presented,E(∆A), E(∆Atransit) and E(∆T ),
in a one global function, the authors of (Fayech, 2000;
Fayechet al., 2001; 2002a) defined weights for the differ-
ent criteria. In fact, an importance degree could be fixed to

each criterion, according to the different constraints which
are present. The cost function to be maximized can be re-
duced to the following one:

f = αE(∆A) + βE(∆Atransit)− γE(∆T ),

where α, β and γ are positive parameters fixed by the
regulator. Such parameters assign a weight to each crite-
rion.

3. Transportation Systems with Unlimited
Capacity

As we can notice, the problem can be reduced to an opti-
mization problem with several variables. If we assimilate
the set ofd′li,k to a vectorz = (z1, z2, . . . , zq, . . . , zr)
from (R+)r with r =

∑l=N
l=1 nlml, the regulation prob-

lem is reduced to the following problem:

(II) :


Maximizef(z)
such thatgh(z) ≤ 0
with h ∈ {1, 2, . . . , p},

where f(·) is a second-degree polynomial function inz,
p is the total number of constraints ond

′l
i,k and gh(·)

are linear forms inz. The problem(II) is then a clas-
sical optimization problem. Note that the problemis not
combinatorial as was proposed by Fayech (2000). In the
literature, we can find many solvers able to solve effi-
ciently such a problem. As an example, we can cite the
Lancelotc© software based on analytical approaches like
the Karush-Kuhn-Tucker method.

3.1. Illustrative Example

Consider a vehicle network composed ofN = 3 lines
(Fig. 2). These three lines are crossed in a node. Each line
l contains nl = 5 stops andml = 3 vehicles. Let us
study a disturbance that affects the second vehicleV 1

2 of
the first line. This disturbance is detected at 10h:23 and it

Fig. 2. Structure of the network studied.
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is caused by a technical problem which obliges the vehi-
cle V 1

2 to have a standstill of3 minutes at the stopS1
2 .

All lines have a passage frequency of20 minutes. The
maximal delay isπl

i,k = 5 minutes, the minimal duration
between two stops isdml

i,k = 3 minutes and the tran-

sit minimal duration istrl1,l2
k1,k2

= 1 minute. Theoretical
time-tables of three lines are given in Table 1.

Table 1. Timetables of the three lines.

V 1
1 V 1

2 V 1
3

S1
1 10h:00 10h:20 10h:40

N = S1
2 10h:05 10h:25 10h:45

S1
3 10h:10 10h:30 10h:50

S1
4 10h:05 10h:35 10h:55

S1
5 10h:20 10h:40 11h:00

V 2
1 V 2

2 V 2
3

S2
1 09h:56 10h:16 10h:36

S2
2 10h:01 10h:21 10h:41

N = S2
3 10h:06 10h:26 10h:46

S2
4 10h:11 10h:31 10h:51

S2
5 10h:16 10h:36 10h:56

V 3
1 V 3

2 V 3
3

S3
1 09h:52 10h:12 10h:32

S3
2 09h:57 10h:17 10h:37

S3
3 10h:02 10h:22 10h:42

N = S3
4 10h:07 10h:27 10h:47

S3
5 10h:12 10h:32 10h:52

We assume that the investigated horizon is included
in a homogenous period of the day. Then the arrival dis-
tributions of passengers at stops are constant and equal
to µl

k = 1 passenger per minute. We also suppose that
the number of passengers in a vehicle from a line arriv-
ing at a node and willing to take a vehicle of another line
is proportional to the charge of the vehicle with a rate of
10%. These rates between the concerned three lines are
supposed to be constant. Hence the nonlinear optimiza-
tion problem is as follows: Minimize

f(z)=αE(∆A)(z)+βE(∆Atransit)(z)−γE(∆T )(z),

where

z = (d′
1

1,1, d
′1
2,1, . . . , d

′N
mN−1,nN

, d′
N

mN ,nN
)T ,

E(∆A)(z) =
l=N∑
l=1

k=nl∑
k=1

i=ml−1∑
i=1

µl
k

2

[
(dl

i+1,k − dl
i,k)2

− (d′li+1,k − d′li,k)2
]
,

E(∆T )(z) =
l=N∑
l=1

k=nl∑
k=2

i=ml∑
i=1

(d′li,k − dl
i,k)

[
Cl

i,k−1

+ µl
k−1(d

′l
i,k−1 − dl

i,k−1)

− µl
k−1(d

′l
i−1,k−1 − dl

i−1,k−1)
]
,

E(∆Atransit)(z) =
∑

(l1,l2,k1,k2)∈=

∑
i

τ l1,l2
k1,k2

[
Cl1

i,k1−1

+ µl1
k1−1(d

′l1
i,k1−1 − dl1

i,k1−1)

− µl1
k1−1(d

′l1
i−1,k1−1 − dl1

i−1,k1−1)
]

× (d′l2σ(i),k2
− d′l1i,k1

),

subject to
∀ 1 ≤ l ≤ N, ∀ 1 ≤ i ≤ ml, ∀ 1 ≤ k ≤ nl − 1,

d
′l
i,k+1 − d

′l
i,k ≥ dml

i,k,

∀ (l1, l2, k1, k2) ∈ =, d
′l2
σ(i),k2

− d
′l1
i,k1

≥ trl1,l2
k1,k2

,

∀ 1 ≤ l ≤ N, ∀ 1 ≤ i ≤ ml, ∀ 1 ≤ k ≤ nl − 1,

d
′l
i,k − dl

i,k ≤ πl
i,k,

∀ dl
i,k ≤ d0, d′li,k = dl

i,k.

A comparison between the solution which uses a ge-
netic algorithm (as was studied in (Fayechet al., 2001))
and analytical methods (AM) is given in Table 2.

Table 2. Comparison between the AM and the GA.

AM Genetic algorithms

f Time(s) f Time(s)

Ins1 327.9 0 260.6 10

Ins2 167.2 0 120.3 11

Ins3 247.5 0 190.2 9

Ins4 407.0 0 330.1 10

Ins5 487.9 0 400.98 9

We notice that solving the problem with genetic algo-
rithms is not suitable since they require a lot of time to ob-
tain an approximate solution as shown in Table 2 and the



A hybrid approach for scheduling transportation networks 401

value of the objective function is always smaller than the
value given by the analytic method. In the next section,
we consider other constraints in order to integrate some
real practical conditions. The problem becomes difficult
to solve and heuristic methods will be studied to solve it.

4. Introducing Practical Constraints

In this section, we deal with practical constraints which
should be taken into account to obtain feasible schedules.
Such constraints concern the capacities of the vehicles
which are limited (which corresponds to reality) and the
integrity of the numbers of passengers. In fact, when dis-
turbances occur, the number of passengers who wait at a
station can exceed the vehicle capacity (Cmax). We write
nal

i,k and na′li,k for the numbers of passengers who can-
not board the vehicleV l

i at the stationSl
k (before and af-

ter regulation, respectively) because of the capacity con-
straint. We denote byndl

i,k the number of passengers
who get off the vehicleV l

i at the stationSl
k before reg-

ulation, andnd′li,k is the number of passengers after reg-
ulation. For the calculation of the charge, there are two
cases:

• The vehicleV l
i cannot take all passengers who wait

at the stationSl
k and then its charge on its departure

from Sl
k is C ′l

i,k = Cmax.

• The vehicle can take all passengers who wait at the
stationSl

k, and their number isµl
k(d′li,k − d′li−1,k) +

na′li−1,k. We deduce that the charge of the vehicle
V l

i on its departure from the stationSl
k is given by

C ′l
i,k = min

{
C ′l

i,k−1 + µl
k(d′li,k − d′li−1,k)− nd′li,k

+ na′li−1,k, Cmax

}
.

As the capacity of vehicles is an integer, the quantity
µl

k(d′li,k − d′li−1,k) must be approximated by an integer

zd
′l
i,k such thatµl

k(d′li,k − d′li−1,k) ≤ zd
′l
i,k ≤ µl

k(d′li,k −
d′li−1,k) + 1. Hence the charge of the vehicleV l

i on its
departure from the stationSl

k is given by

C ′l
i,k = min

{
C ′l

i,k−1 + zd
′l
i,k − nd′li,k + na′li−1,k, Cmax

}
.

For the calculation ofna′li,k, there are also two cases:

• All passengers who wait for the vehicleV l
i at the

stationSl
k can board the vehicleV l

i , na′li,k = 0 (no
one is waiting forV l

i+1).

• Only a part of the passengers who wait for the vehi-
cle V l

i at the stationSl
k can board the vehicleV l

i ,
the number of passengers who cannot boardV l

i and

wait for V l
i+1 beingna′li,k = C ′l

i,k−1+zd
′l
i,k−nd′li,k+

na′li−1,k − Cmax. Consequently, the number of pas-
sengers who cannot board the vehicleV l

i at the sta-
tion Sl

k is then given by

na′li,k

= max
{
0, C ′l

i,k−1+zd
′l
i,k−nd′li,k+na′li−1,k−Cmax

}
.

In order to simplify the problem, we can suppose that
the number of passengersndl

i,k who get off the vehicle
V l

i at the stationSl
k is proportional to the chargeC ′l

i,k−1

of the vehicle V l
i at the stationSl

k−1 with nd′li,k =
αl

i,k−1C
′l
i,k−1. Also, here the quantitynd′li,k must be an

integer, and so we takend′li,k such thatαl
i,k−1C

′l
i,k−1 ≤

nd′li,k ≤ αl
i,k−1C

′l
i,k−1 + 1. In this case, we obtain

C ′l
i,k = min

{
(1−αl

i,k−1)C
′l
i,k−1+zd

′l
i,k+na′li−1,k, Cmax

}
,

na′li,k = max
{
0, (1− αl

i,k−1)C
′l
i,k−1

+ zd
′l
i,k + na′li−1,k − Cmax

}
,

Cmax − C ′l
i,k = max

{
0, Cmax − (1− αl

i,k−1)C
′l
i,k−1

− zd
′l
i,k − na′li−1,k

}
.

The new constraints induce an additional difficulty.
The preceding analytical formulation will not be able to
solve it because of the ‘min-max’ and the integrity con-
straints. The problem becomes nonlinear and difficult to
solve. In such a case, we have to update the formulation
of the different criteria:

(a) E(∆A) =
l=N∑
l=1

k=nl∑
k=1

i=ml−1∑
i=1

[µl
k

2
(I2

i,k,l − I ′2i,k,l)

+ (H l
i,k −H ′l

i,k)
]

with
H l

i,k = nal
i,k(dl

i+1,k − dl
i,k)

and
H ′l

i,k = na′li,k(d′li+1,k − d′li,k),

(b) E(∆T ) =
l=N∑
l=1

k=nl∑
k=2

i=ml∑
i=1

rl
i,kC ′l

i,k−1

so thatC ′l
i,k is calculated according to the preceding for-

mula,

(c) E(Atransit) = Atransit(without regulation)

−Atransit(with regulation).

That is why we choose genetic algorithms to solve it.
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4.1. Genetic Algorithms

Genetic algorithms enable us to make an initial set of solu-
tions evolve into a final set of solutions bringing a global
improvement according to a criterion fixed at the begin-
ning (Banzhafet al., 1998; Burke and Smith, 2000). These
algorithms function with the same usual genetic mecha-
nisms (crossover, mutation, selection). In this section, we
present the different elements of our genetic algorithm and
we illustrate them with some examples.

4.2. Coding for the Constrained Problem

The selection of a representational scheme of the solution
is a basic and essential prerequisite step for a successful
application of genetic algorithms. Aloulou (1999) devel-
oped a coding which is presented in Table 3. When a per-
turbation is detected for a vehicleV l0

i0
at Sl0

k0
, we should

determine a set of variables corresponding todl
i,k >

dl0
i0,k0

. In Table 3, the grey cells correspond to the vari-

ables such thatdl
i,k ≤ dl0

i0,k0
and the white cells corre-

spond to the variables such thatdl
i,k > dl0

i0,k0
.

Table 3. Aloulou’s encoding.

Each cell (Sl
k, V l

i ) contains the decision to be taken
when the vehicleV l

i reaches the stationSl
k or when it

is on the way toward the station. For example, aD1

decision can consist in delaying the vehicle by a unit of
time when it arrives atSl

k. Another decisionD2 encour-
ages the driver to accelerate untilSl

k is reached. The cell

which containsD0 implies that nothing will be done. The
decisions which can be made are:

D0: do nothing,

D1: stop a vehicle for some time at the station,

D2: accelerate, i.e., pass from the initial speed to a higher
speed, if possible.

This type of coding has the inconvenience of a re-
duced exploration of the search space in terms of ex-
change possibilities. We present a new coding which en-
hances the exploration of the search space. The solution is
a multi-dimensional vectorz = (z1, z2, . . . , zq, . . . , zr)T

with r =
∑l=N

l=1 nlml. The advantage of such a coding
is the capability of exploring more the search space and
enhancing the genetic exchange possibilities by apply-
ing some fine crossover operators. Figure 3(a) describes
the important elements of this coding. As an example,
Fig. 3(b) describes the encoding for the example treated
in Section 3.1.

d′
1
1,1

d′
1
2,1

· · ·

· · ·

· · ·

· · ·

d′
N
mN−1,nN

d′
N
mNNN ,nNNN

10h:00

10h:05

· · ·
11h:00

9h:54

9h:59

· · ·
10h:54

9h:50

9h:55

· · ·
10h:50

(a) (b)

Fig. 3. (a) Chromosome encoding; (b) Exam-
ple of chromosome encoding.

4.3. Crossover Operator

Crossover is a basic operator of GAs, and the perfor-
mance of GAs depends on it considerably. Crossover is
the process of creating two children by the combination
of two parents. The crossover allows us to explore the
search space. It will be carried out depending on the
crossover probabilitypcross (Goldberg, 1989; Dasgupta
and Michalewicz, 1997).

The procedure consists in choosing randomly two
feasible parents (individuals)P1 and P2. Then, we
choose from the two individuals a common portion
[ki, kf ] between the stationsSl1

ki
and Sl1

kf
. This portion

must not contain a connecting zone (in order to avoid per-
turbations of the transit operation).
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Fig. 4. Crossover.

Fig. 5. Transmission of genes from the
parentP1 to the childE1.

The child E1 keeps the same schedules as the par-
ent P1 for the ‘even’ stationssl1

ki
, sl1

ki+2, sl1
ki+4, . . . , sl1

kf

(Fig. 4). For the ‘odd’ stations, it keeps the schedules as

Fig. 6. Crossover: Example 1.

the parentP2, only if these schedules assure a feasible
individual. So, for each ‘odd’ station of the individual
P1, we determine the admissible intervalIj for kj lo-
cated betweenkj − 1 and kj + 1 as shown in Fig. 5.
Ij = da, be with a = d′l1i1,kj−1(P1) + dml1

i1,kj−1(P1)

and b = d′l1i1,kj+1(P1)−dml1
i1,kj

(P1). The objective is to
replace the schedule ofP2 (which leads to a nonfeasible
individual by a limit of the interval (a or b). The rule we
have to apply is as follows:

• If d′l1i1,kj
(P2) ∈ Ij then d′l1i1,kj

(E1) = d′l1i1,kj
(P2),

• If d′l1i1,kj
(P2) /∈ Ij then

– If d′l1i1,kj
(P2) < a then d′l1i1,kj

(E1) = a,

– If d′l1i1,kj
(P2) > b then d′l1i1,kj

(E2) = b.

In this way, we are sure that the obtained childE1
contains feasible schedules. For the construction of the
child E2, we proceed in the same way with replacingP1
by P2.

Example 1. Consider a portion which contains 3 stations.
We suppose that∀ i, k, l dml

i,k = 3 (Fig. 6). The admis-
sible intervals for the two individuals are:

Ij(P1) = [10h:00+ 00h:03, 10h:11− 00h:03]

= [10h:03, 10h:08],

Ij(P2) = [10h:01+ 00h:03, 10h:10− 00h:03]

= [10h:04, 10h:07],

d′l1i1,kj
(P2) = 10h:05∈ Ij(P1) ⇒ d′l1i1,kj

(E1)

= 10h:05,

d′l1i1,kj
(P1) = 10h:06∈ Ij(P2) ⇒ d′l1i1,kj

(E2)

= 10h:06. �



M. Dridi and I. Kacem404

Fig. 7. Crossover: Example 2.

Fig. 8. Crossover: Example 3.

Example 2. Here also we have a portion which contains
3 stations. We suppose that∀ i, k, l dml

i,k = 3 (Fig. 7).
It follows that

Ij(P1) = [10h:02+ 00h:03, 10h:11− 00h:03]

= [10h:05, 10h:08],

Ij(P2) = [10h:00+ 00h:03, 10h:10− 00h:03]

= [10h:03, 10h:07],

d′l1i1,kj
(P2) = 10h:03/∈ Ij(P1) ⇒ d′l1i1,kj

(E1)

= 10h:05,

d′l1i1,kj
(P1) = 10h:07∈ Ij(P2) ⇒ d′l1i1,kj

(E2)

= 10h:07. �

Example 3. Here also we have a portion which
contains 3 stations. We suppose that∀ i, k, l

dml
i,k = 3 (Fig. 8). It follows that

Ij(P1) = [10h:00+ 00h:03, 10h:11− 00h:03]

= [10h:03, 10h:08],

Ij(P2) = [10h:01+ 00h:03, 10h:14− 00h:03]

= [10h:04, 10h:11],

d′l1i1,kj
(P2) = 10h:09/∈ Ij(P1) ⇒ d′l1i1,kj

(E1)

= 10h:08,

d′l1i1,kj
(P1) = 10h:03/∈ Ij(P2) ⇒ d′l1i1,kj

(E2)

= 10h:04. �

4.4. Mutation

The mutation operator represents a random exchange on
a gene. It will be carried out depending on the muta-
tion probability pmut. An illustration of the proposed
method is given in Fig. 9. We choose a stationSl1

i1,k1
of
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Fig. 9. Proposed mutation.

a line l1 and a vehicleV l1
i1

such that the previous and the
next station are not concerned by any transit (so as not to
perturb the transit operation). Hered′l1i1,k1

, d′l1i1,k1−1 and

d′l1i1,k1+1 are the passage times of the vehicleV l1
i1

at the

stations Sl1
i1,k1

, Sl1
i1,k1−1 and Sl1

i1,k1+1. The procedure

consists in changing the value ofd′l1i1,k1
by a random value

in the feasible intervalI1(P1) =[d′l1i1,k1−1 + dml1
i1,k1−1,

d′l1i1,k1+1 − dml1
i1,k1

].

Example 4. Here also we have a portion which contains 3
stations. We suppose that∀ i, k, l dml

i,k = 3 (Fig. 10).
It follows that

I1(I) = [10h:00+ 00h:03, 10h:10− 00h:03]

= [10h:03, 10h:07]

10h:07∈ [10h:03, 10h:07].

So, we can take

d′l1i1,k1
(I) = 10h:07. �

Fig. 10. Example of mutation.

4.5. Initial Population

The initial population is generated by using a constructive
heuristic which allows us to build a starting solution. Such

a solution will be randomly mutated to obtain a set of in-
dividuals (Fig. 11). The different steps of such a method
must satisfy different temporal constraints of the studied
problem. In addition to that, the different genetic oper-
ators are conceived such that the different temporal con-
straints will be integrated in the generated offspring. The
algorithm parameters are fixed in a classical way. In fact,
the mutation probability is equal toPmut = 0.05 and the
crossover probability is equal toPcross = 0.95.

Fig. 11. Creating initial population.

4.5.1. Starting solution

Taking account of the temporal constraints, the starting
solution must ensure the maximum of transit operations
in nodes. For that, the first step for the construction of
the solution would be to allow the delayed vehiclevl1

i0
of

the line l1 to correspond at each time to the same vehicle
vl2

σ(i0)
of the line with which it is envisaged to make the

correspondence. It is thus a question of delaying the vehi-
cle vl2

σ(i0)
by a duration equal to the delay undergone by

vl1
i0

. In Table 4, we illustrate the starting solution for the
example of Section 3, with a delay equal to 3 minutes.

4.6. Estimation of the Maximum Value
for Each Criterion

In multiobjective optimization, we are often to estimate
limits for each criterion studied. The aim is to be able
to compare the solution given by the approach with the
value of these limits and thus to conclude on the effective-
ness of the developed approach (Fonseca, 1998). Here,
we also propose to estimate such values for the three cri-
teria (the gain in the total waiting time at the stations, the
gain in the waiting time in transit nodes and the increase in
the expected total travel time). The determination of these
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Table 4. Illustration of the starting solution.

V 1
1 V 1

2 V 1
3

S1
1 10h:00 10h:20 10h:20 10h:40

N = S1
2 10h:05 10h:25 10h:28 10h:45

S1
3 10h:10 10h:30 10h:33 10h:50

S1
4 10h:15 10h:35 10h:38 10h:55

S1
5 10h:20 10h:40 10h:33 11h:00

V 2
1 V 2

2 V 2
3

S2
1 09h:56 10h:16 10h:36

S2
2 10h:01 10h:21 10h:41

N = S2
3 10h:06 10h:29 10h:46

S2
4 10h:11 10h:34 10h:51

S2
5 10h:16 10h:39 10h:56

V 3
1 V 3

2 V 3
3

S3
1 09h:52 10h:12 10h:32

S3
2 09h:57 10h:17 10h:37

S3
3 10h:02 10h:22 10h:42

N = S3
4 10h:07 10h:30 10h:47

S3
5 10h:12 10h:35 10h:52

limits enables us to define thereafter a method of evalua-
tion based on the principle of evolutionary algorithms.

In Section 3, we proved that the solution of the
problem considered with unlimited vehicle capacity (de-
noted by z∗f = (z1∗

f , z2∗
f , . . . , zq∗

f , . . . , zr∗
f )T ) can be

well estimated using well-adapted solvers (according to a
fixed precision). This solution is calculated by optimiz-
ing the aggregation of the three criteria under the func-
tion f(z) = αf1(z) + βf2(z) − γf3(z) with f1(z) =
E(∆A)(z), f2(z) = E(∆Atransit)(z) and we write
f3(z) = E(∆T )(z).

By considering the hypothesis that all the passen-
gers waiting at stations can all board the vehicle, i.e.,
the hypothesis that the capacity of the vehicles is unlim-
ited (without integrity constraint), the problem will be re-
ducible to the initial one as explained above. To esti-
mate the maximum value for the criterionE(∆A), it is
enough to solve the same problem while assuming that
α = 1, β = 0 and γ = 0. Thus, we obtain the solution
z∗f1

= (z1∗
f1

, z2∗
f1

, . . . , zq∗
f1

, . . . , zr∗
f1

)T and f1(z∗f1
) = f∗1 .

In the same way, a maximum value estimated for the
criterion E(∆Atransit) is obtained by solving the prob-
lem with taking α = 0, β = 1 and γ = 0. The so-

lution is z∗f2
= (z1∗

f2
, z2∗

f2
, . . . , zq∗

f2
, . . . , zr∗

f2
)T and we set

f2(z∗f2
) = f∗2 .

For the criterion E(∆T ), an estimated minimum
value is obtained by solving the problem with taking
α = 0, β = 0 and γ = 1. The solution isz∗f3

=
(z1∗

f3
, z2∗

f3
, . . . , zq∗

f3
, . . . , zr∗

f3
)T and we setf3(z∗f3

) = f∗3 .

The objective of the estimation of the maximum cri-
terion value is to automatically find a direction of search
when running the algorithm as will be explained in the
next section.

4.7. Fuzzy Evolutionary Optimization

To solve multiobjective optimization problems, it is in-
teresting to find solutions in a correct computational time.
Kacemet al. (2003) propose the application of fuzzy logic
to compute different weights for each objective function
and measure the quality of each solution. In this section,
we use this work to overcome the problem of the direction
determination.

In order to make the evaluation more efficient, we
must avoid the demand that some objective function be al-
ways dominated by others. So we use a fuzzy logic appli-
cation based on the following steps as is done in (Kacem
et al., 2003): The fuzzy evaluation is started by the estima-
tion of a maximum value for the two objectives “waiting
time at stops and transit time in nodes” and the estimation
of a minimum value for the objective “total travel time”.
Each feasible solutionz will be characterized by its val-
ues for the three objectives(f1(z), f2(z) and f3(z)). For
each criterioni, we computefH

i : the best value given by
a heuristicH. The fuzzification of eachfi(z) is made by
comparing it withf∗i and fH

i . In (Kacemet al., 2003),
the authors considered two fuzzy subsetsNEAR and
FAR for each criterion. Indeed, a solution belongs to
NEAR(i) if its value according to criterioni is close
to f∗i and belongs toFAR(i) otherwise. Afterwards,

one definesf
k

i as the mean of thei-th objective function
value of the solutions at thek-th iteration of the genetic
algorithm. The membership function value is computed

using the same fizzification process (i.e., we comparef
k

i

with f∗i and fH
i , and we assign a membership value to

the subsetNEAR(i)). Thus, the different weightswk+1
i

are calculated dynamically according to the distance be-
tween the estimated limits and the average of the individ-

uals of each generation (i.e., iff
k

i is close tof∗i then, at
the next iteration, the weightwk+1

i must decrease, and in-
crease otherwise). For more details, the reader is referred
to (Kacemet al., 2003).

The aim is to assist regulators of traffic in their de-
cisions when they cannot clearly give preference to some
criteria. We can propose, as was studied in (Kacemet
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al., 2003), to find a set of Pareto-optimal solutions with-
out giving any priority to a criterion. In this way, the al-
gorithm finds automatically the search directions and the
vector of weights will be dynamically computed when we
pass from generationGk to the next oneGk+1 according
to the distance between the estimated maximum value and
the mean of the individuals of the generation (Fig. 12).

Fig. 12. Fuzzy dynamic control of search directions.

5. Computational Results

As an illustration, we consider the example of the net-
work treated in Section 3.1. After the perturbation, the
perturbed time table is shown in Table 5. The perturba-
tion was detected at 10h:23 and caused a delay of 3 min-
utes in the arrival of the vehicleV 1

2 at the stationS1
2 .

In this work, decisions which will be applied to vehicles
are both delay and advance decisions with the respect of
constraints explained in Section 2.3.

The application of one of the solutions given by
our evolutionary algorithm is illustrated by the curves
of Fig. 13. The bold line represents the disturbed ve-
hicles. The dashed lines are the theoretical schedules,
whereas the thin ones represent new schedules resulting
from the evolutionary rescheduling algorithm. The regu-
lated timetable is then illustrated in Table 6.

We note that this regulation acts on all vehicles by de-
laying or advancing in order to optimize the criteria given
above and so as to assure that arrival times of vehicles are
more regular. Finally, the application of such a regulation
scenario supports regulators of traffic in their decisions by
giving them a list of feasible solutions which can be ap-
plied in order to maximize the level of service.

6. Conclusion

In this paper, we deal with an important transportation
problem in two possible versions. In the first case, we

Table 5. Timetables after perturbation.

V 1
1 V 1

2 V 1
3

S1
1 10h:00 10h:20 10h:40

N = S1
2 10h:05 10h:28 10h:45

S1
3 10h:10 10h:33 10h:50

S1
4 10h:15 10h:38 10h:55

S1
5 10h:20 10h:33 11h:00

V 2
1 V 2

2 V 2
3

S2
1 09h:56 10h:16 10h:36

S2
2 10h:01 10h:21 10h:41

N = S2
3 10h:06 10h:26 10h:46

S2
4 10h:11 10h:31 10h:51

S2
5 10h:16 10h:36 10h:56

V 3
1 V 3

2 V 3
3

S3
1 09h:52 10h:12 10h:32

S3
2 09h:57 10h:17 10h:37

S3
3 10h:02 10h:22 10h:42

N = S3
4 10h:07 10h:27 10h:47

S3
5 10h:12 10h:32 10h:52

prove that the unconstrained capacity problem formula-
tion is a classical one and can be solved using many
solvers based on analytical methods. In the second case,
the integrity and capacity constraints induce an important
additional difficulty. The problem becomes a nonlinear
one. Therefore, we propose a genetic approach based on
a new coding. Such a coding allows us to extend the ex-
ploration possibilities and to improve the solution quality
thanks to some adapted operators. As perspectives of this
research work, the comparison with other methods seems
an interesting subject which can offer scientific benefis.
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