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In optimal control problems with quadratic terminal cost functionals and systems dynamics linear with respect to control,
the solution often has a bang-bang character. Our aim is to investigate structural solution stability when the problem data
are subject to perturbations. Throughout the paper, we assume that the problem has a (possibly local) optimum such that the
control is piecewise constant and almost everywhere takes extremal values. The points of discontinuity are the switching
points. In particular, we will exclude the so-called singular control arcs, see Assumptions 1 and 2, Section 2. It is known
from the results by Agrachevet al. (2002) stating that regularity assumptions, together with a certain strict second-order
condition for the optimization problem formulated in switching points, are sufficient for strong local optimality of a state-
control solution pair. This finite-dimensional problem is analyzed in Section 3 and optimality conditions are formulated
(Lemma 2). Using well-known results concerning solution sensitivity for mathematical programs inRn (Fiacco, 1983)
one may further conclude that, under parameter changes in the problem data, the switching points will change Lipschitz
continuously. The last section completes these qualitative statements by calculating sensitivity differentials (Theorem 2,
Lemma 6). The method requires a simultaneous solution of certain linearized multipoint boundary value problems.

Keywords: stability in optimal control, solution structure, bang-bang control, optimality conditions, strong local optima,
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1. Introduction

From mathematical programming theory it is well known
that the analysis of strong second-order optimality con-
ditions and stability properties of the solution with re-
spect to small data perturbations are closely related ques-
tions. Similar results have been obtained in the last decade
for a wide range of nonlinear constrained optimal control
problems (Malanowski, 2001; Dontchev and Malanowski,
2000; and the bibliographies therein) when control func-
tions are continuous.

The investigation of discontinuous and, in particular,
bang-bang optimal controls has recently found renewed
interest in the control community. Sufficient optimality
conditions for bang-bang controls in problems where the
control enters the state equation linearly are considered,
e.g., by Sarychev (1997), Agrachevet al. (2002), Maurer
and Osmolovskii (2005) and by the author (Felgenhauer,
2003a). General optimality conditions admitting control
discontinuities are derived, e.g., in the monograph by Mi-
lyutin and Osmolovskii (1998), see also (Osmolovskii,
2000; Osmolovskii and Lempio, 2002), and by Noble and
Schaettler (2002). A particular result using a duality based
Riccati approach was given in (Felgenhauer, 2003b).

Up to now, only few results have been known con-
cerning stability properties of optimal solutions in case the
control is of the bang-bang type (cf., e.g., Kim and Mau-
rer, 2003; Maurer and Osmolovskii, 2005). For linear sys-
tems, in (Felgenhauer, 2003a) optimality conditions are
formulated which ensure the switching structure stability
and differentiability of switching times with respect to pa-
rameters (see also Felgenhauer, 2003c).

The investigations were accelerated when the at-
tention was re-drawn to the properties of the finite-
dimensional subproblem formulated in terms of switching
times. This traditional heuristical idea was consequently
used in optimality analysis first in (Agrachevet al., 2002).
It is due to H. Maurer to recognize this approach as a suit-
able tool for sensitivity investigation, too (Kim and Mau-
rer, 2003). However, the method requires the assumption
that, for the auxiliary problem, the Strong Second-Order
Sufficiency Condition holds. Instead, in the present pa-
per a method is used which is based on a shooting-type
approach for solving canonical system equations (Felgen-
hauer, 2003a).

Section 2 summarizes the known regularity results
with the emphasis on the so-calledstrict bang-bangcon-
dition. This condition characterizes the points of discon-
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tinuity of the control vector as regular zeros of the related
switching function component (i.e., as zeros with a non-
vanishing derivative value). We briefly discuss the linear
case, where the given assumptions already ensure strict
local optimality of the solution. Section 3 is devoted to
optimization over the positions of switching points, for a
fixed structure of bang-bang control. In the linear case, the
Strong Second-Order Sufficiency Condition for this prob-
lem follows directly from the strict bang-bang property
(Felgenhauer, 2003d). We find new formulas for the Hesse
matrix of the objective functional with respect to switch-
ing points in the semilinear case, and conditions ensuring
its positive definiteness, see Lemma 2.

Part 4 of the paper uses the optimality condition for
analyzing the stability of the switching structure in a para-
metric version of the original semilinear control problem
(with a special terminal functional). The main result con-
sists in the calculation ofsensitivity differentialsof switch-
ing points (Theorem 2, Lemma 6). As auxiliary terms, one
has to determine certain derivatives of the optimal state
with respect to the parameterh and the shooting input
z by solving multipoint boundary value problems for the
linearized state equation. In principle, the procedure is
suitable for a numerical application.

2. Problem and Regularity Conditions

Consider the following optimal control problem where the
control vector enters the state equation linearly:

min J(x, u) =
1
2
‖x(T )− b‖2, (1)

subject to

ẋ(t) = f
(
t, x(t)

)
+ B(t)u(t), x(0) = a 6= b, (2)

|ui(t)| ≤ 1, i = 1, . . . ,m. (3)

The state and control variables are denoted byx and u,
respectively. They are considered in a generalized sense
(x ∈ W 1

∞(0, T ; Rn), u ∈ L∞(0, T ; Rm)). All data
functions in (2) are assumed to be sufficiently smooth. In-
troducing the Hamilton function,

H(t, x, u, p) = pT f(t, x) + pT B(t)u,

from Pontryagin’s maximum principle we obtain

ṗ(t) = −A(t)T p(t), p(T ) = x(T )− b (4)

(whereA = ∇xf ), and the optimal controlu0 satisfies

u0(t) = arg max
|vi|≤1

{
−H

(
t, x(t), v, p(t)

)}
.

In other words, using the so-called switching functionσ,
almost everywhere we have

σ = BT p, u0 = − sign(σ). (5)

If σ ≡ 0 on a certain interval, then this part of the control
trajectory is called a singular arc.

Assumption 1. (bang-bang regularity)
The pair (x0, u0) is a solution such thatu0 is piecewise
constant and has no singular arcs. For everyj, the set
Σj = { t ∈ [0, T ] : σj(t) = 0 } is finite, and0, T /∈ Σj .

The setΣ of points where one or more components
of σ vanish consists of the so-called switching points.
(Notice that we will speak of asimpleswitching point if
only oneσ-component is zero.) In general, we shall write

Σj =
{
tjs : s = 1, . . . , l(j)

}
,

Σ =
{
tjs : s = 1, . . . , l(j), j = 1, . . . ,m

}
.

It will be assumed that the points of eachΣj are mono-
tonically ordered. Further, we settj0 = 0, tj,l(j)+1 = T
for all j.

Assumption 2. (strict bang-bang property)
For every j, ts ∈

⋃
j Σj : σj(ts) = 0 ⇒ σ̇j(ts) 6= 0.

Under the given assumptions, thej-th control com-
ponent switches in accordance with[

u0
j

]s
= u0

j (ts + 0)− u0
j (ts − 0)

= −2 u0
j (ts − 0) = −2 sign

(
σ̇j(ts)

)
. (6)

Sufficient optimality conditions for problems of the
class (1)–(3) have been recently considered by several au-
thors. For thelinear case(i.e., f(t, x) = A(t)x), it was
shown, e.g., in (Felgenhauer, 2003a) that Assumptions 1
and 2 are sufficient for strict local optimality of the solu-
tion pair (x0, u0) in an L∞-neighborhood ofx0 (strong
local optimality). Besides the assumptions about the ex-
tremal being regular and strict bang-bang, the proof is
based on a primal-dual optimality condition which, in its
main part, consists of

min
x,u,S

∫ T

0

[H(t, x, u,∇xS) + St] dt = 0,

(see Felgenhauer, 2003a, Thm. 2.2; cf. also Maurer and
Pickenhain, 1995, Thm. 3.2). Notice that this condition
can be interpreted as an integrated form of the Hamilton-
Jacobi inequality, i.e., a generalization of this well-known
variational approach to constrained control problems.

Using the expansion

S = S0 + pT (x−x0) + 0.5(x−x0)TQ(x−x0)

+ o
(
|x−x0|2

)
,
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one has to show that, for a small positiveγ, the matrix
Riccati differential inequality

Q̇ + AT Q + QA � γ I a.e.,

I −Q(T ) � 0

(a) has an absolutely continuous solution on[0, T ], and
(b) this solution can be chosen such that‖Q‖∞ =O(γ)
(Felgenhauer, 2003a, Lem. 3.2). The result can be easily
adapted to the case of other convex terminal functionals
in (1).

For the semilinear situation, analogous optimality re-
sults are obtained, e.g., in (Agrachevet al., 2002; Noble
and Schaettler, 2002; Osmolovskii and Lempio, 2002),
but under certain additional second-order type assump-
tions. The generalization of the duality based approach
from (Felgenhauer, 2003a) under appropriate additional
convexity type conditions is also possible and will be a
subject of forthcoming research.

3. Optimization of Switching Points

The optimality and sensitivity properties of the control
problem given in (1)–(3) are connected with solution
properties of the followingauxiliary mathematical pro-
gram using switching points (i.e., the vectorΣ) as deci-
sion variables.

Let Σ = (Σ1, . . . ,Σm) denote a vector of the size
L = l(1) + · · · + l(m) composed ofΣj = (τjs : s =
1, . . . , l(j)). We will require that all components ofΣ
be inner points of the time interval, i.e.,0 < τjs < T .
Assuming further that, for eachΣj , the elements{τjs}
are strictly monotonically ordered, the feasible set may be
described by

S =
{

Σ = (τjs) ∈ RL : τjs < τj,s+1,

s = 1, . . . , l(j)− 1, j = 1, . . . ,m
}
.

Notice thatS is an open subset ofRL. Determine next
u = u(t, Σ), x = x(t, Σ) by

uj(t, Σ) ≡ u0
j (tjs + 0) for t ∈ (τjs, τj,s+1), (7)

ẋ(t) = f
(
t, x(t)

)
+ B(t) u(t,Σ), (8)

x(0) = a. (9)

Then Σ0 corresponding to(x0, u0) solves the finite-
dimensional problem

minφ(Σ) =
1
2
‖x(T,Σ)− b‖2 s.t. Σ ∈ S. (10)

This problem, where the number of switchings and
the principal structure information are temporarily fixed,

was considered, e.g., in (Agrachevet al., 2002), where it
was shown that aStrong Second-Order Optimality Condi-
tion for (10) together with thestrict bang-bangbehavior
(Assumptions 1 and 2) are sufficient for strict strong lo-
cal optimality of the solution given asx = x(·,Σ), u =
u(·,Σ) at Σ = Σ0. Moreover, for thelinear case with
f(t, x) = A(t)x the following result was obtained (Fel-
genhauer, 2003d):

Lemma 1. Let (x0, u0) and Σ0 be a solution and a
switching set such that the strict bang-bang conditions
given in Assumptions 1 and 2 are fulfilled. Then, at
Σ = Σ0, we have

∇Σφ(Σ0) = 0, ∇2
Σφ(Σ0) � 0.

As we will see, generalization to thesemilinearcase
requires certain additional convexity type assumptions
about the data which arise from additional integral terms
in the Hessian∇2

Σφ.

To begin with, consider the first-order derivative in-
formation ∇Σφ, which can be expressed by means of
ηs = (∂/∂τs)x(t, Σ). For simplicity, we will consider
here only the so-calledsimpleswitches where at most one
control component may jump at timeτs. Generalization
to multiple switching points remains to be true up to minor
technical changes (for details, see Felgenhauer, 2003d).

For t > τs, ηs solves

η̇s(t,Σ) = A(t, Σ)ηs(t,Σ) a.e., ηs(τs) = −bs(Σ), (11)

where in the semilinear case we have

A(t,Σ) = ∇xf
(
t, x(t,Σ)

)
,

bs(Σ) = B(τs)
[
u0
]s

,

with
[
u0
]s = u0(ts + 0)− u0(ts − 0), cf. (6).

In contrast to the linear case, the right-hand side ma-
trix A implicitly depends onΣ. Nevertheless, for the
solution representation we may use the so-called funda-
mental solutionsΦ = Φ(t,Σ), Ψ = Ψ(t,Σ) determined
by the matrix differential systems

Φ̇ + AT Φ = 0, Φ(0) = I,

Ψ̇−AΨ = 0, Ψ(0) = I.
(12)

Thus, with the notationθ for the Heaviside function, we
obtain

ηs(t,Σ) = −θ(t, τs)Ψ(t, Σ)Φ(τs,Σ)T bs(Σ). (13)
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As in the linear case, we use this formula to check the
gradient of∇Σφ(Σ0): by the chain rule,

∂

∂τs

(
1
2
‖x(T,Σ)− b‖2

)
= ηs(T,Σ)T (x(T,Σ)− b)

=
(
−B(τs)

[
u0
]s)T

Φ(τs,Σ)Ψ(T,Σ)T
(
x(T,Σ)−b

)
.

(14)

From the transversality condition,x(T,Σ0) − b =
p(T ), so that from (4) and (12) we conclude that
Φ(ts)Ψ(T )T p(T ) = p(ts). Using now the switching
points definition, we are finally able to confirm the first-
order stationarity condition for (10) atΣ = Σ0,

∂

∂τs
φ
(
x(T,Σ0)

)
= −

(
B(ts)

[
u0
]s)T

p(ts)

= −σ(ts)T
[
u0
]s

= 0. (15)

Consider next the structure of the Hesse matrix∇2
Σφ

at the reference solution. It was shown in (Felgenhauer,
2003d) that, for the linear case with the terminal cost
functional J(x, u) = k(x(T )), the principal parts of
∇2

Σφ(Σ0) (whereφ(Σ) = k(x(T,Σ))) are given by

∇2
Σk
(
x(T,Σ0)

)
= ηT∇2

xk
(
x0(T )

)
η + diags

{
Ds(H)

}
,

(16)
with

Ds(H) = −
[

d
dt

H

]s

= −σ̇(ts)
[
u0
]s

> 0 (17)

(see Assumption 2). Consequently, for every function
k = k(ξ) being convex nearξ = x0(T ), the matrix∇2

Σφ
is positive definite.

In the case of thesemilinear system (2), the
formula (16) does not apply for the Hessian ofφ.
The second-order derivatives have to be re-calculated
from (14), where the matricesΦ and Ψ via A also
depend onΣ, cf. (12). In order to find expressions for
∂Φ/∂τs and ∂Ψ/∂τs, we first consider

Fs(t,Σ) =
∂A

∂τs
(t,Σ).

It is easy to see thatFs has the row-wise representation

Fs,i(t, Σ) = ηs(t, Σ)T∇2
xfi

(
t, x(t,Σ)

)
, i = 1, . . . , n.

Therefore, the matrix functionsMs = ∂Φ/∂τs, Ns =
∂Ψ/∂τs satisfy

Ṁs + AT Ms = −FT
s Φ, Ms ≡ 0 for t < τs, (18)

Ṅs −A Ns = Fs Ψ, Ns ≡ 0 for t < τs. (19)

In other words, fort > τs we can write

Ms(t,Σ) = −Φ(t)
∫ t

τs

Ψ(τ)T Fs(τ)T Φ(τ) dτ

Ns(t, Σ) = Ψ(t)
∫ t

τs

Φ(τ)T Fs(τ)Ψ(τ) dτ

= −Ψ(t,Σ)Ms(t,Σ)T Ψ(t, Σ) (20)

(andMs = −ΦNT
s Φ, resp.).

Now, using (13) and (14), we can find the partial
derivatives∂2φ/∂τs∂τk:

∂2

∂τk∂τs
φ(Σ) = ηs(T,Σ)T ηk(T,Σ)

+
(
x(T,Σ)− b

)T ∂

∂τk
ηs(T,Σ), (21)

where fork 6= s,

∂

∂τk
ηs(T,Σ) = −

[
Nk(T,Σ)Φ(τs,Σ)T

+ Ψ(T,Σ)Mk(τs,Σ)T
]
bs

=: Psk(Σ), (22)

and for k = s we have

∂

∂τs
ηs(T,Σ) = Pss(Σ)−Ψ(T,Σ)

d
dt

(
ΦT B

)
t=τs

[
u0
]s

=: Pss(Σ) + qs(Σ). (23)

Taking into account (20), (18) and (13), the terms
Pks can be rewritten as

Pks = Ψ(T )
(
Mk(T )T Ψ(T )−Mk(τs)T Ψ(τs)

)
Φ(τs)T bs

= Ψ(T )
∫ T

τsk

Φ(τ)T Fk(τ)Ψ(τ) dτ Φ(T )T ηs(T ),

where τsk = max{τs, τk}. For the corresponding parts
in (21) at Σ = Σ0 we obtain(
x(T,Σ0)−b

)T
Pks(Σ0)

=
∫ T

τsk

[
p(T )T Ψ(T )Φ(τ)T Fk(τ)Ψ(τ)Φ(T )T ηs(T )

]
dτ

=
∫ T

τsk

p(τ)T Fk(τ)ηs(τ) dτ.

The integrand in the last expression is symmetric since

pT Fkηs =
∑
i,j,l

pi

(
∇2

xfi

)
jl

(ηk)l (ηs)j

= ηT
k

(∑
i

pi∇2
xfi

)
ηs = ηT

k ∇2
xH ηs.
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Thus,

(
x(T,Σ0)−b

)T
Pks(Σ0) =

∫ T

τsk

ηk(τ)T ∇2
xH[τ ] ηs(τ) dτ.

(24)

In casek = s, we further need the terms(x(T,Σ)−
b)T qs(Σ) which, at Σ = Σ0, give(

x(T,Σ0)− b
)T

qs(Σ0)

= − p(T )T Ψ(T )
d
dt

(
ΦT B

)
t=ts

[
u0
]s

= − d
dt

(
p(T )T Ψ(T )ΦT B

)
t=ts

[
u0
]s

= − σ̇(ts)T
[
u0
]s

= Ds(H) > 0 (25)

due to Assumption 2.

Inserting the information from (24) and (25)
into (21), the final representation for∇2

Σφ consists of the
following parts:

∇2
Σφ(Σ0) = η(T,Σ0)T η(T,Σ0) + diags {Ds(H)}

+
∫ T

0

η(τ,Σ0)T ∇2
xH[τ ] η(τ,Σ0) dτ. (26)

The last result allows us to formulate a generalization of
Lemma 1 to the semilinear problem case (1)–(3).

Lemma 2. Let (x0, u0) and Σ0 be a solution and a
switching set, respectively, such that thestrict bang-bang
conditions given in Assumptions 1 and 2 are fulfilled. Sup-
pose further that almost everywhere in[0, T ] the Hessian
∇2

xH evaluated along the solution trajectories is positive
semi-definite. Then, atΣ = Σ0,

∇Σφ(Σ0) = 0, ∇2
Σφ(Σ0) � 0. (27)

4. Sensitivity Result

In this section we consider a parametric version of the
problem (1) with data functions depending onh ∈ H ⊂
R:

min J(x, u;h) =
1
2

∥∥x(T )− b(h)
∥∥2

(28)

subject to

ẋ(t) = f
(
t, x(t), h

)
+B(t, h)u(t), x(0) = a(h), (29)

|ui(t)| ≤ 1, i = 1, . . . ,m.

The setH stands for a neighborhood of the reference pa-
rameterh0 = 0, which is assumed to correspond to the
reference data in (1)–(3). The above functions as well as

the derivatives∇xf and Ḃ are assumed to be sufficiently
smooth functions with respect toh on H.

Suppose that, forh = h0, the reference problem (1)
has a solution(x0, u0) with the switching setΣ0 and
the related adjointp and the switching functionσ such
that Assumptions 1 and 2 are fulfilled. Further assume
that ∇2

xH is positive semi-definite so that Lemma 2 ap-
plies. Then, from a well-known sensitivity result of math-
ematical programming theory it is known that, forh suf-
ficiently close toh0, the parametric problem (28) has a
locally unique solutionΣ = Σ(h) smoothly depending
on the parameter:

Theorem 1. Let for the problem (1) corresponding to
h = h0 the strict bang-bang conditions of Assumptions 1
and 2 hold true. Suppose further that the related vector
Σ0 of switching times satisfies the necessary and second-
order sufficient optimality conditions (27). Then, for the
parametric problem (28) with data smoothly depending on
h, with eachh sufficiently close toh0, we can associate
a switching vectorΣ(h) such that the following holds:

(a) the mappingh → Σ(h) is continuously differen-
tiable,

(b) the control defined by (7) and the corresponding tra-
jectory from (8) provide a strict strong minimum to
the perturbed control problem (28) ath.

This sensitivity result was formulated for a wider
problem class including general boundary constraints, as
well as possibly free final time in (Kim and Maurer, 2003),
cf. Theorem 4.3 therein. In the case of the problem (1)
where the final time is fixed, and for the state trajectory
for which an IVP is given, the idea of the proof consists in
the following:

Locally, the constraints definingS are inactive so
that no constraint qualification is needed for sensitivity
analysis. Every stationary point of the parametric version
of the problem (10) related to (28) solves

∇Σφ(Σ, h) = 0. (30)

The left-hand side mapping is differentiable in both argu-
ments. Moreover, by (27), the matrix∇2

Σφ is regular at
Σ = Σ0, so that the Implicit Function Theorem yields
the existence of a stationary solutionΣ = Σ(h) for h
sufficiently close toh0. From the positive definiteness of
∇2

Σφ at Σ0, we conclude by the standard continuity argu-
ments that the second-order optimality condition (27) is
fulfilled for Σ = Σ(h) in a neighborhood ofΣ0. Thus,
the stationary solutionΣ(h) provides a strict local mini-
mum for (10).

For the corresponding state-control pairxh =
x(t,Σ(h)), uh = u(t,Σ(h)) from (7), (8), an adjoint
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function p = p(t, Σ(h)) can be constructed by anal-
ogy to (4). According to (30) and the parametric ver-
sion of (15), the solution satisfies the maximum principle.
Further, by continuity, the strict bang-bang property re-
mains to be valid for a sufficiently smallh. Consequently,
(xh, uh) is a strict strong local minimizer of (28), see
(Agrachevet al., 2002).

The above theorem consists mainly in a qualitative
statement since, for many practical problems, the exact
Hesse matrix (26) will not be available. In (Kim and Mau-
rer, 2003), some general remarks are made about a possi-
ble numerical calculation of the so-calledsensitivity dif-
ferentials dtjs/dh. In the sequel, we will use an alterna-
tive approach which has been first proposed for thelinear
case(Felgenhauer, 2003a). The main idea consists in the
analysis of the followingshooting typeprocedure:

For a given guess of the adjoint initial valuep(0) =
z, construct the functionsp = p(t, z, h) and x =
x(t, z, h) by

ṗ(t) = −A(t, h)T p(t), p(0) = z,

σ(t, z, h) = B(t, h)T p(t, z, h),

u(t, z, h) = − sign
(
σ(t, z, h)

)
ẋ(t) = f(t, x, h) + B(t, h)u(t, z, h),

with x(0) = a(h).

Notice that, in general,A = A(t, x, h), where x =
x(t, z, h), so that in the nonlinear situation the above sys-
tem cannot be decoupled.

The above process yields an extremal to the paramet-
ric control problem ath if the following transversality
condition is fulfilled:

F (z, h) = 0, (31)

where

F (z, h) = b(h) + p(T, z, h)− x(T, z, h). (32)

In the following, we will take the derivatives with respect
to h or z of the functionsx = x(t, z, h), p = p(t, z, h)
and F = F (z, h). The partial derivatives will be indi-
cated by the related subscript, e.g.,xh for ∂x/∂h, etc.
Further, we use the fundamental solutionsΦ and Ψ de-
fined as in (12).

Lemma 3. Under Assumptions 1 and 2, ath = h0, z0 =
p(0), the derivativesxh = xh(t, z0, h0) and ph =
ph(t, z0, h0) solve the following linear ODE system with

coupled multiple boundary conditions:

ṗh = −AT ph − Cxh − w, (33)

ph(0) = 0,

ẋh = A xh + y, piecewise, (34)

xh(0) = ah, [xh]s = −Ψ(ts)ds,

σh = BT
h p + BT ph, (35)

ds =
∑

j∈I(s)

rjsΓj(ts)T σj,h(ts) (36)

(for rjs = 2|σ̇j(ts)|−1, Γ = BT Φ, C = pT∇2
xf , w =

AT
h p, y = fh + Bhu).

It should be noticed that the above system can be par-
tially decoupled by solving the ODE piecewise on every
[ts, ts+1]: Indeed, starting witht0 = 0, we find xh, ph

for t < t1 from (34), (33) and calculateσh by (35). Af-
ter utilizing the jump condition, we findxh(t1 + 0) and
can repeat the procedure for the next time intervals until
we end up withxh(T ) and ph(T ).

Sketch of the proof: Formally, the differentiation of the
state and adjoint equations with respect toh leads to

ṗh = −AT ph − Cxh −AT
h p,

ẋh = A xh + B uh + fh + Bhu.

The termuh herein is a sum of Dirac measures, see (Fel-
genhauer, 2003a, Section 4) for details. The solutions can
be written as

xh(t) = Ψ(t)ah + Ψ(t)
∫ t

0

Φ(s)T y(s) ds

+ Ψ(t)
∫ t

0

Φ(s)T B(s) uh(s) ds,

where, by analogy to (Felgenhauer, 2003a; or 2003c,
Lem. 2), we have∫ t

0

Φ(s)T B(s) uh(s) ds

= −
∑

(j,s): ts<t

rjsΦ(ts)T Bj(ts)σj,h(ts)

or, consequently, (36).

In essentially the same way, the derivative matrix
functions with respect toz are determined as solutions
of the following system:
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Lemma 4. Under Assumptions 1 and 2, ath = h0, z0 =
p(0) the derivativesxz = xz(t, z0, h0) and pz =
pz(t, z0, h0) solve

ṗz = −AT pz − Cxz, (37)

pz(0) = I,

ẋz = Axz, piecewise, (38)

xz(0) = 0, [xz]
s = −Ψ(ts)es,

σz = BT pz, (39)

es =
∑

j∈I(s)

rjsΓj(ts)T BT
j (ts)pz(ts) (40)

(for rjs = 2|σ̇j(ts)|−1, Γ = BT Φ, C = pT∇2
xf ).

The last lemmas show that, in principle, all partial
derivatives of the terms in (32) are available after solving
some coupled linear systems. Now, we can formulate the
following result:

Theorem 2. Let (x0, u0) be a solution of the problem (1)
related to h = h0, and suppose that the adjoint and
switching functionsp, σ are such that Assumptions 1
and 2 hold. Then, the vectorz0 = p(0) solves (31) at
h = h0. If, in addition, the Jacobi matrix

∇zF = pz(T )− xz(T ) (41)

with pz, xz from (37)–(40) is regular, then, for allh ∈ H
sufficiently close toh0, Eqn. (31) has a locally unique
solution z = z(h) near z0. As a function ofh, z = z(h)
is differentiable ath0, and

∂z

∂h
= −

(
∇zF (z0, h0)

)−1 ∂F

∂h
(z0, h0)

can be calculated by (41) together with

∂F

∂h
= bh + ph(T )− xh(T ).

The theorem is a consequence of the Implicit Func-
tion Theorem. For thelinear case, the requirement about
the Jacobi matrix∇zF is always fulfilled, cf. (Felgen-
hauer, 2003a, Theorem 4.1). Although Theorem 1 gives
a reason to expect this result to be valid in general under
the Second-Order Optimality Conditions (27), too, the di-
rect proof of this property is an open question. To give
an impression of the (technical) difficulties, consider for
simplicity the case of a single switching point (simple or
not simple), i.e., the case| ∪ Σj | = 1:

Lemma 5. Let (x0, u0) be a solution of (28) forh = h0

such that u0 has exactly one switching point,ts, such

that I = {j : σj(ts) = 0} 6= Ø. Further, let As-
sumptions 1 and 2 hold true together with the condition
C(t) = ∇2

xH[t] � 0 (a.e. on [0, T ]). Then the Jacobi
matrix (41) from Theorem 2 is regular.

Proof. Consider the system (37)–(40). Starting witht in
the time interval[0, ts), we obtain

xz(t) ≡ 0, pz(t) = Φ(t),

[xz]s = −Ψ(ts)Gs, σz(t) = Γ(t),

Gs =
∑
j∈I

rjsΓj(ts)T Γj(ts) � 0.

Continuing the solution process fort ∈ [ts, T ), we arrive
at

xz(t) = −Ψ(t)Gs,

pz(t) = Φ(t) + Φ(t)
∫ t

ts

ΨT CΨdsGs.

Therefore,

∇zF = pz(T )− xz(T )

= Φ(T ) [I + MsG
s] + Ψ(T )Gs

= Φ(T )
[
I +

(
Ms + Ψ(T )T Ψ(T )

)
Gs
]
,

where Ms abbreviates to
∫

ΨT CΨds. Under the as-
sumption about∇2

xH, the matrix M = Ms + ΨT Ψ is
positive definite. Thus, we can write

∇zF = Φ(T ) M
[
M−1 + Gs

]
.

Since M−1 is positive definite andGs is positive
semidefinite, the term in the brackets is a positive definite
matrix. Then the Jacobian∇zF as a product of regular
matrices is regular.

We will conclude the sensitivity analysis with the fol-
lowing result ondtjs/dh:

Lemma 6. Let for the solution of the problem (28) cor-
responding toh = h0 the strict bang-bang conditions of
Assumptions 1 and 2 hold together with the Second-Order
Sufficiency Condition in terms of the switching points (27).
Further assume that, forh sufficiently close toh0, the
system (31) has a unique solutionz = z(h), which is a
differentiable function ofh, and zh = (dz/dh) at h0.
Then, forΓ = Γ(t, h) = B(t, h)T Φ(t, h), we have

d tjs

dh
= −

(
σ̇j(tjs)

)−1(Γj,h(tjs)z + Γj(tjs)zh

)
. (42)
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Proof. Remembering the general smoothness assumptions
about f from (29) we can see thatB and Ḃ, as well as
Φ and Φ̇, are differentiable functions with respect to the
parameterh. This remains to be valid also for

σ(t, h) = Γ(t, h)z(h),

σ̇(t, h) = Γ̇(t, h)z(h).

Consider the equations

σj(t, h) = 0, j = 1, . . . ,m. (43)

In view of Assumptions 1 and 2, forh = h0, the j-th
equation hasl(j) isolated zerostjs on (0, T ). The strict
bang-bang property together with the differentiability of
σ̇ yields

σ̇j(t, h) 6= 0

for (t, h) sufficiently close to(h0, tjs).
Thus, for fixed (j, s) we may apply the Implicit

Function Theorem to (43) and conclude that, in a neigh-
borhood of t = tjs, the j-th equation has a unique solu-
tion tjs(h), which is a differentiable function ofh. The
derivative can be obtained from

σ̇j(tjs)
d tjs

dh
(h0) +

∂σj

∂h
(tjs, h

0) = 0,

where σj,h = Γj,hz + Γjzh. Since by our assump-
tions all derivative terms are well-defined and, moreover,
σ̇j(tjs) 6= 0 for all switching points, the last equation
yields (42).
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