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MOLECULAR MODELLING OF STRESSES AND DEFORMATIONS
IN NANOSTRUCTURED MATERIALS
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A molecular dynamics approach to the deformation and stress analysis in structured materials is presented. A new de-
formation measure for a lumped mass system of points is proposed. In full consistency with the continuum mechanical
description, three kinds of stress tensors for the discrete system of atoms are defined. A computer simulation for a set of105

atoms forming a sheet undergoing tension (Case 1) and contraction (Case 2) is given. Characteristic microstress distributions
evoked by a crack propagation illustrate the mechanical problem considered.

Keywords: molecular modelling, deformation and stress analysis, nanostructured materials

1. Introduction

Nanotechnology, which is a new field of engineering, con-
stitutes a challenge for the modelling of deformations
and stresses in the range of nanoscale dimensions, i.e.,
in the range of 10−9 to 10−7 m. The design and manu-
facturing of new kinds of materials and devices like Na-
noElectroMechanicalSystems, intermetallics, nanotubes,
quantum dots, quantum wires, etc. (Cleland, 2003; Nalva,
2000) need new ideas for the analysis of mechanical pro-
cesses in nanosize domains.

The classical description based on continuum me-
chanics must be supplemented by molecular dynamics
and quantum mechanical approaches. This means that the
natural notions of stresses and deformations based on the
hypothesis of a material continuum must be extended to
the case of the discrete structure of atoms and molecules.

In the present paper a molecular dynamics approach
to the description of stresses and deformation in struc-
tured materials will be considered. Although the notion
of stresses was used in the papers (Egami and Srolovitz,
1982; Parrinello and Rahman, 1980) and especially in the
papers (Ribarsky and Landman, 1988; Singer and Pollock,
1992), we present here an independent approach to de-
rive the stress and strain tensors for a collection of atoms
(molecules) as a set of lumped material points. A compar-
ison with Parrinello and Rahman’s idea and Cauchy and
Born’s rule is made, too.

To illustrate the specific circumstances of the molec-
ular system from a numerical point of view as well, a com-
putational simulation problem will be demonstrated. The
paper is organized as follows: we start with the derivation

of stress tensors in Section 2. Then in Section 3 a plane
problem is considered with numerical analysis. We finish
with some conclusions in Section 4.

2. Modelling of Stresses at the Molecular
Level

Let us consider a system of dense discrete material points
A1, . . . , AN with massesmi. Its localization is described
by the position vectorsri, i = 1, . . . , N , in a fixed Carte-
sian frame{Oxα}, α = 1, 2, 3. The intermolecular re-
actions result from a potentialU(r1, . . . , rN ) = U(rij),
where the distance isrij = |rj − ri| = |rij |. Thus the
global force acting on pointAi has the form

f i =
∑

j

f ij =
∑

j

∂U

∂rij
=
∑

j

∂U

∂rij

∂rij

∂rij

=
∑

j

1
rij

∂U

∂rij
rij =

∑
j

Xijrij , (1)

where

Xij =
1
rij

∂U

∂rij
.

The governing system of motion equations takes the
classical Newtonian form

mir̈i =
∑

j

Xijrij , i = 1, 2, . . . , N. (2)

This system must be considered together with the initial
conditionsri(t0) = ri0, ṙi(t0) = vi0.
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Note that, in contrast to the formulation of an ini-
tial problem in the macro dimension range, the setting of
the initial quantitiesri0 and vi0 cannot be prescribed
arbitrarily. This results from the fact that a discrete place-
ment of the molecules violates the intrinsic interactions
of the system. Thus the assumption of initial values must
be physically admissible. Therefore, the equilibrium state
assumed at the beginning of the process needs an equili-
bration procedure. It will be described in the next section.

To introduce the notion of stresses, consider a map-
ping from the initial (reference) stateB0 onto the current
configurationBt at instantt. Denoting byRi = ri0 the
position vectors at the configurationB0 , we introduce the
following relations for any pair of pointsAi and Aj :

Rij = Rj −Ri, rij = rj − ri,

uij = uj − ui, rij = Rij + uij .

Here ui and uj denote the displacements of the points
Ai and Aj , respectively. The current distance vectorrij

can be constructed as a composition of the translation of
Rij , the elongation (shortening) byus

ij and next by the
rotation of us

ij (cf. Fig. 1). This operation is

rij = Rij + Qiju
s
ij ,

where Qij is an orthogonality tensor,QijQ
T
ij = 1 (1

stands for the identity matrix).

The elongation vectorus
ij can be expressed in the

form

usss
ij = us

ije0 = sign(uije0) |uij | e0

= sign(uije0)
|uij |
|Rij |

Rij = ws
ijRij .
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Fig. 1. Construction of the current distance vector.

Here e0 is the unit vector in the direction determined by
Rij , and the scalarws

ij is equal to

ws
ij = sign(uije0)

|uij |
|Rij |

=
us

ij

|Rij |
.

Thus

rij = Rij + Qijw
s
ijRij =

(
1 + ws

ijQij

)
Rij .

Introducing the tensor

∆ij = ws
ijQij

as a measure of deformation, we can finally write

rij = (1 + ∆ij)Rij = F ijRij . (3)

The tensorF ij = 1 + ∆ij plays a similar role as the de-
formation gradient in continuum mechanics. It maps the
initial placement setB0 of the points onto the deformed
configurationBt described by the positionsri = F ijRi.
It is easy to verify that the matrix

Cij = FTTT
ijF ij =

(
1 + ws

ijQij

)T (
1 + ws

ijQij

)
is symmetric and therefore constitutes an object analogous
to the known Cauchy right deformation tensor. One also
sees that the tensor

Eij =
1
2

(Cij − 1)

can be interpreted as the strain tensor since by calculating
the difference|rij |2 − |Rij |2 we obtain

rijrij −RijRij = F ijRijF ijRij −RijRij

=
(
FTTT

ijF ij

)
: Rij ⊗Rij −RijRij

= 2

(
FTTT

ijF ij − 1
2

)
: Rij ⊗Rij

= 2Eij : Rij ⊗Rij ,

which is fully consistent with the suitable formula known
in continuum mechanics.

Above, the symbol ‘:’ denotes the double contraction
of rank-two tensors, whereas the symbol ‘⊗’ denotes the
dyadic multiplication of vectors.

The potentialU(rij) is then equal toU(F ij) =
U(∆ij). Thus let us define the matrix

Tαβ =
1
V0

∑
j

∂U

∂∆ij
αβ

=
1
V0

∑
j

∂U

∂rij

∂rij

∂rijα

∂rijα

∂∆ij
αβ

=
1
V0

∑
j

XijrijαRijβ =
1
V0

∑
j

fijαRijβ ,

α, β = 1, 2, 3.
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In the absolute notation, it will be

TRRR = (Tαβ) =
1
V0

∑
j

f ij ⊗Rij =
1
V0

∑
j

T ij . (4)

This dyadic product is called the Piola-Kirchhoff mi-
crostress tensor for the set of molecules. Above,V0 is
the volume of a presumed calculational cell which, after
deformation, takes the valueV .

Analogously to the known formula in continuum me-
chanics, we obtain the Cauchy stress tensor

σ = J−1
∑

j

T ijF ij =
1
V

∑
j

f ij ⊗ (1 + ∆ij) Rij

=
1
V

∑
j

f ij ⊗ rij , (5)

whereJ = V/V0, and the second Piola-Kirchhoff tensor

S =
∑

j

F ijT ij =
1
V0

∑
j

(1 + ∆ij) f ij ⊗Rij

=
1
V0

∑
j

XijRij ⊗Rij . (6)

The tensors (5) and (6) are symmetric. All the tensors
coincide with suitable objects considered by Parrinello
and Rahman and those which are based on the Cauchy-
Born hypothesis known in crystal elasticity (Ortiz and
Phillips, 1999). For periodic structured materials, Ander-
sen (1980) and then a number of authors (Parrinello and
Rahman, 1980; Ray, 1983; Ribarsky and Landman, 1988)
introduced a calculational cellΩ constructed from three
vectorsH1, H2, H3 which span the edges ofΩ. Form-
ing a matrix H = (Hαβ) whose columns are vectors
Hα, α = 1, 2, 3 , we can express the position vectors
ri in terms of this matrix and scaled coordinates(siα)
riβ =

∑3
α=1 Hαβsiα. The volume of the cell is given by

V = detH. Regarding the components ofH as gener-
alized variables, we calculate the derivative

∂U

∂Hαβ
=
∑

j

∂U

∂rij

∂rij

∂rijα

∂rijα

∂Hαβ
=
∑

j

Xijrijαsijβ

=
∑

j

XijrijαrijγH−1
βγ

=
1
V

∑
j

XijrijαrijγAβγ ,

where Aβγ = V H−1
βγ are components of the area

tensor A = ∂V /∂HHH. Hence the tensorσ =
(1/V )

∑
j Xijrij⊗rij coincides with (5). The same for-

mula results from the Cauchy-Born hypothesis, which

states that for a homogenous deformation the particle mo-
tion follows the continuum displacement field through
the continuum deformation gradientF = ∇x =(
∂xi/∂XK

)
, where the vectorx = (xi) stands for the

spatial configurationBt and the gradient is calculated
with respect to the material coordinatesXK , K =
1, 2, 3. Thus rij = FRij and U = U(F ), from which

TRRR =
1
V0

∂U

∂FFF
=

1
V0

∑
j

Xijrij ⊗Rij ,

i.e., we get the formula (4).

Consequently, all the three different approaches to
molecular dynamics description of deformation (through
F ij , H and F ) lead to the same forms of stress tensors
(4)–(6).

Like in continuum mechanics, an extension of kine-
matics by using the so-called second gradient theory
(Sunyk and Steinmann, 2001) can be applied, too. Thus,
according to this idea, the mapping from the initial state
onto the current one follows not only through the defor-
mation gradientF but also through its gradient∇F =(
∂2xi/∂XK∂XL

)
. In that case, the arrangement of

molecules becomes

rij = FRij +
1
2
∇F :Rij ⊗Rij , (7)

by analogy to the continuum formulation

∆x = F · dX +
1
2
∇F : dX ⊗ dX.

Hence U = U(rij) = U(F ,∇F ), which leads to
the expressions

TRRR =
1
V0

∂U

∂F
=

1
V0

∑
j

f ij ⊗Rij ,

THHH
RRR =

1
V0

∂U

∂∇F
=

1
2V 0

∑
j

f ij ⊗Rij ⊗Rij .

(8)

The last quantity constitutes a third-order tensor of hyper-
stresses whose components describe the intrinsic reaction
of the particle system on the nonhomogenous deformation
field ∇F .

In the present paper we focus our attention on mi-
crostressesσ only. This will be done in the next section.

3. Numerical Analysis of Molecular
Microstresses

To investigate the behaviour of the material at the
nanoscale range, let us consider a typical problem dis-
cussed in damage mechanics, namely, the state of stresses
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Fig. 2. Sheet with a crack (bottom of the scale – tension,
top of the scale – compression).

in the neighbourhood of a crack. To simplify the calcula-
tions, let a collection of about 100,000 atoms be arranged
on a plane as shown in Fig. 2 (there are exactly 93,847
atoms, which results from the geometry of the sheet). The
sheet is stretched (Case 1) or compressed (Case 2) in the
x-direction by applying external displacements on the ver-
tical edges. Using the Lennard-Jones potential

U = −4ε

[(
r0

rij

)12

−
(

r0

rij

)6
]

and copper as an example, the data will be the following:
mi = 6.772 · 10−9 g, ε = 0.345 · 10−19 J, r0 = 2.1 Ao;
∆vext

x = 1.2 · 10−5 nm/∆t, ∆t = 7.41 ns. Since for
sufficiently large distances the interactions between points
vanish, we cut the interatomic actions outside a circle with
a radius ofrc = 4 neighbours. To solve Eqns. (2), Ver-
let’s method (Heermann, 1997) was used. It is based on
the difference scheme

r̈i =
rn+1
i − 2rn

i + rn−1
i

h2
=

fn
i

mi
,

rn+1
i = 2rn

i − rn−1
i + fn

i

h2

mi
,

vn
i =

1
2h

(
rn+1
i − rn−1

i

)
,

whereh stands for the integration step andfi is defined
by (1).

As has been mentioned earlier, the initial conditions
must be physically admissible. Thus the initial arrange-
ment of the atoms cannot be arbitrary. The interatomic
distances evoke forces and hence the motion of the system
whose kinetic energy determines the temperature. When
the temperature is assumed to be fixed, a proper localiza-
tion of atoms must be found. Assuming that the system
is in equilibrium at the beginning, e.g., at the tempera-
ture of 20o C, an equilibrium procedure must be applied
(Heermann, 1997). It consists in performing the follow-
ing steps: (a) start with a prescribed initial localization,
(b) randomly choose velocities, (c) perform simulation,
and (d) apply velocity scaling to control the temperature.
For this reason, we compute the kinetic energyEK . Then
we determine the temperatureTK = 2EK/3NkB , where
kB is the Boltzman constant andN stands for the num-
ber of particles, and the velocityvnew

i = βvold
i , where

β = Tdemand/T . This procedure should be repeated until
an equilibrium state is achieved.

Using the above procedures, the results presented in
Figs. 1–10 were obtined. For Case 1 (stretching), the
stress distributionsσxx, σyy and σxy are presented in
Figs. 3–6. Characteristic stress concentration zones and
a typical kink phenomenon are evidently observed. Tri-
angular concentration zones propagate from the tip of the
crack up to the edge until a failure takes place. The stress
evolution along the side lines of the triangle has a visible
undulate character (dark regions).

Another kind of behaviour is observed in Case 2
(compression). The crack tends to be closed as expected.
Compressive stress concentration zones occur but with
quite different shapes (see Figs. 7–10). A characteristic
diagonal effect is observed. The normal stressesσxx and
σyy concentrate in a diagonal strip perpendicular to the
initial crack , whereas visible triangular shapes with small
shear stressesσxy are created. The time instantst marked
in the figures mean the numbers of snapshots. One snap-
shot interval is1000∆t.

4. Conclusions

A molecular description of the states of stresses and
deformations in nanostructured materials was presented.
It complements the classical continuum mechanical ap-
proach. Three kinds of stress tensors corresponding to
those known in continuum mechanics were defined.

As a numerical example of the effectiveness of this
kind of analysis, a stress evaluation process in the neigh-
bourhood of a crack in a copper sheet was considered. It
should be emphasized that the stress distribution around
the crack in a discrete lattice differs from the elastic
continuum description, as there is no singularity at the
crack tip.
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1xx

1yy

1xy

Fig. 3. Crack state att = 10.

The calculations were limited to the Lennard-Jones
interatomic forces only. More realistic for solids are in-
trinsic forces induced by metallic, ionic, covalent and
van der Waals bonds. They will be considered during fur-
ther research.

The molecular dynamics combined with a continu-
ous description in the framework of the so-called multi-
scale modelling become an effective and promising field
of investigation in mechanics, materials science and engi-
neering.
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Fig. 7. Crack state att = 10.
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Fig. 8. Crack state att = 30.
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Fig. 9. Crack state att = 40.
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Fig. 10. Crack state att = 45.


