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CONVERGENCE OF THE LAGRANGE-NEWTON METHOD
FOR OPTIMAL CONTROL PROBLEMS
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Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown
how the methods can be applied to a class of optimal control problems for nonlinear ODEs, subject to mixed control-state
constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal
solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In
each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly
discussed.
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1. Introduction

In theoretical and numerical research, optimal control
problems have been either treated as cone constrained op-
timization problems in functional spaces, or studied using
some specialized tools. In the first approach, problems of
optimal control are placed in a broader framework of op-
timization problems, and general techniques can be used
to solve them, whereas the second approach allows us to
take maximal advantage of the specific structure of the
problems. Such a situation takes place also in applications
of the Lagrange-Newton method for solving numerically
optimal control problems.

The classical Lagrange-Newton method (see, e.g.,
Stoer and Bulirsch, 1980), one of the most efficient nu-
merical methods of solving optimization problems, was
developed for problems with equality-type constraints. In
this method, the Newton procedure is applied to the first-
order optimality system, which has the form of a system
of equations. In the case of inequality-type constraints,
the first-order optimality system cannot be expressed as
an equation. However, it can be expressed as an inclusion,
or the so-calledgeneralized equation(Robinson, 1980).
It was shown by S.M. Robinson (1980) that a Newton-
type procedure applied to this general equation is locally
quadratically convergent to the solution, provided that a
property calledstrong regularity is satisfied. This ap-
proach has been successfully applied to a class of non-
linear cone-constrained optimization problems in infinite-
dimensional spaces (Alt, 1990a; 1990b; 1990c) and opti-
mal control problems subject to control and/or state con-
straints (see, e.g., Alt and Malanowski, 1993; 1995).

On the other hand, as early as at the beginning of
the 1970s the so-calledshooting methodwas proposed by
R. Bulirsch (1971) (see Stoer and Bulirsch, 1980). This is
a highly specialized method of numerically solving opti-
mal control problems governed by ODEs. In the shooot-
ing method for problems with inequality-type constraints,
information on thestructureof the optimal solution is cru-
cial. Using this kind of information, the original optimiza-
tion problem is reformulated as a problem with equality
constraints. For the latter problem, the optimality system
is expressed as a two- or multi-point boundary-value prob-
lem. This boundary-value problem is solved numerically,
using the Newton method.

The literature devoted to Lagrange-Newton meth-
ods is enormous and this paper by no means pretends to
give any survey of it. We just present, in a unified man-
ner, the known covergence results for both of the above-
mentioned approaches. The organization of the paper is
the following: In Section 2 we briefly recall the Lagrange-
Newton method for abstract optimization problems in Ba-
nach spaces, subject to equality and cone constraints, re-
spectively. In Section 3 we introduce our model problem,
which is an optimal control problem for nonlinear ODEs,
subject to mixed control-state constraints. We present the
application of the abstract approach to this problem and
formulate assumptions under which the Lagrange-Newton
method is locally quadratically convergent. In Section 4
we show how the additional information on the structure
of the optimal control can be used to reformulate the prob-
lem as a problem withequality-type constraints. It is
shown how the Lagrange-Newton procedure, applied to
the latter problem, leads to the shooting method.
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In the conclusion we give some comments on the
scope of the applicability of each of the two presented
methods.

We use the following notations: Capital letters
X,Y, Z,Λ, . . . , sometimes with superscripts, denote Ba-
nach or Hilbert spaces. The norms are denoted by‖ · ‖
with a subscript referring to the space.OX

ρ (x0) := {x ∈
X | ‖x − x0‖X < ρ} is the open ball inX of radius
ρ, centred atx0. Asterisks denote dual spaces, as well as
dual operators. Here(y, x), with x ∈ X and y ∈ X∗, is
a duality pairing betweenX andX∗.

For f : X × Y → Z, let Dxf(x, y), Dyf(x, y),
D2

xyf(x, y), . . . denote the respective Fréchet derivatives
in the corresponding arguments.Rn is then-dimensional
Euclidean space with the inner product denoted by〈x, y〉
and the norm|x| = 〈x, x〉 1

2 . Transposition is denoted
by ∗.

Ls(0, 1; Rn), s ∈ [1,∞] are Banach spaces of mea-
surable functionsf : [0, 1] → Rn, supplied with the stan-
dard norms‖·‖s. W 1,s(0, 1; Rn) denotes Sobolev spaces
of functionsf which are absolutely continuous on[0, 1]
with the norms

‖f‖1,s =


[
|f(0)|s + ‖ḟ‖s

s

]1/s
for s ∈ [1,∞),

max
{
|f(0)|, ‖ḟ‖∞

}
for s = ∞,

and c, l and ` denote generic constants, not necessarily
the same in different places.

2. Lagrange–Newton Method for Abstract
Optimization Problems in Banach Spaces

In this section we recall convergence results of the
Lagrange-Newton method for abstract optimization prob-
lems subject to cone constraints, presented by Alt (1990c).

Let Z and Λ be Banach spaces of arguments and
constraints, respectively. In the spaceΛ there is a closed
convex coneK, which induces a partial order in that
space. Further, letF : Z → R and φ : Z → Λ.
We consider the following optimization problem:

(P) minF (z) subject toφ(z) ∈ K.

We make the following assumptions:

(A1) The mappingsF and φ are twice Fréchet differ-
entiable, with Lipschitz continuous second deriva-
tives.

(A2) There exists a (local) solutioñz of (P).

Our purpose is to analyse the convergence of the
Lagrange-Newton method, applied to (P), in a neighbour-
hood of z̃. To formulate the Lagrange-Newton method,

let us start with the problem subject to equality-type con-
straints, i.e., with the particular situation whereK = {0},
and (P) reduces to

(Pe) minF (z) subject toφ(z) = 0.

Let us introduce the following normal Lagrangian as-
sociated with (Pe):

Le : N := Z × Λ∗ → R,

Le(z, λ) = F (z) +
(
λ, φ(z)

)
,

(1)

and consider the first-order optimality system for (Pe):

DzLe(z, λ) := DzF (z) +Dzφ(z)∗λ = 0,

φ(z) = 0.
(2)

We assume that there exists a Lagrange multiplierλ̃ ∈ Λ∗

such that (1) holds at(z̃, λ̃). Write η := (z, λ) ∈ Z×Λ∗

and define

F : Z × Λ∗ → Z∗ × Λ,

F(η) =

(
DzF (z) +Dzφ(z)∗λ

φ(z)

)
.

(3)

In the Lagrange-Newton method, the Newton proce-
dure is applied to the equation

F(η) = 0, (4)

i.e., starting with some initial elementη1 := (z1, λ1), we
construct the sequence{ηα}, setting

DηF(ηα)(η(α+1) − ηα) + F(ηα) = 0. (5)

Using the definition (3), we find that (5) amounts to

D2
zzLe(zα, λα)(z(α+1) − zα) +Dzφ(zα)∗λ(α+1)

+DzF (zα) = 0,

Dzφ(zα)(z(α+1) − zα) + φ(zα) = 0.

(6)

Equations (6) can be interpreted as the optimality system
for the following linear-quadratic optimization problem:

(LPe)α

min Iα(z) :=
1
2
(
(z − zα), D2

zzLe(zα, λα)(z − zα)
)

+
(
DzF (zα), z

)
,

subject toDzφ(zα)(z − zα) + φ(zα) = 0.

Clearly, the Lagrange-Newton procedure is well de-
fined in a neighbourhoodON

ρ (η̃) ⊂ N of the point
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η̃ := (x̃, λ̃) if the JacobianDηF(η̃) is regular or, equiv-
alently, if for any η := (w, ν) ∈ ON

ρ (η̃) the problem

(QPe)η

min Iη(z) :=
1
2
(
(z − w), D2

zzLe(w, ν)(z − w)
)

+
(
DzF (w), z

)
,

subject toDzφ(w)(z − w) + φ(w) = 0

has a unique stationary point. Explicit conditions of regu-
larity can be found, e.g., in Section 4.9.1 of (Bonnans and
Shapiro, 2000).

Let us now pass to the cone-constrained problem (P).
In the same way as in (1), we define the Lagrangian for
(P):

L : N → R, L(z, λ) = F (z) +
(
λ, φ(z)

)
. (7)

The KKT (Karush-Kuhn-Tucker) optimality system for
(P) has the form

DzF (z) +Dzφ(z)∗λ = 0,(
λ, φ(z)

)
= 0, φ(z) ∈ K, λ ∈ K∗.

(8)

Define the following multivalued map, called the normal
cone operator forK:

N : Λ∗ → 2Λ,

N (ν) =


{
y ∈ Λ | (µ− ν, y) ≤ 0 ∀µ ∈ K∗}

if ν ∈ K∗,

∅ if ν 6∈ K∗.

(9)

In terms ofN , the three conditions in the second line
of (8) can be written in the equivalent formφ(z) ∈ N (λ).
If we define the multivalued map

T : N → 2∆, (10)

where

∆ := Z∗ × Λ, T (η) =

(
0

N (λ)

)
,

then, using (3), we can rewrite (8) in the form

F(η) ∈ T (η). (11)

By analogy with (5) and (6), we define the Lagrange-
Newton procedure for (11) by constructing the sequence
{ηα}, where

DηF(ηα)(η(α+1) − ηα) + F(ηα) ∈ T (η(α+1)), (12)

or, equivalently,

D2
zzL(zα, λα)(z(α+1) − zα)

+Dzφ(zα)∗λ(α+1) +DzF (zα) = 0,

Dzφ(zα)(z(α+1) − zα) + φ(zα) ∈ N (λ).

(13)

Just as in (6), we interpret (13) as the KKT optimality
system for the following linear-quadratic optimal control
problem:

(LP)α min Iα(z)

subject to Dzφ(zα)(z − zα) + φ(zα) ∈ K,

where

Iα(z) =
1
2
(
(z − zα), D2

zzLe(zα, λα)(z − zα)
)

+
(
DzF (zα), z

)
.

Thus, the Lagrange-Newton method reduces to an SQP-
method (Alt, 1990a; 1990b; 1990c).

To analyse the convergence of the above Lagrange-
Newton method, Robinson’s implicit function theorem for
strongly regular generalized equations is used (see, e.g.,
Alt, 1990a). We make the following assumption:

(A3) There exists̃λ ∈ K∗ such that(z̃, λ̃) satisfies (8).

For anyδ := (δ1, δ2) ∈ ∆, define the following accessory
linear-quadratic problem:

(QP)δ min Iη̃(y) + (δ1, y),

subject to Dzφ(z̃)(y − z̃) + φ(z̃) + δ2 ∈ K,

where

Iη̃(y) :=
1
2

(
(y − z̃), D2

zzL(z̃, λ̃)(y − z̃)
)

+ (DzF (z̃), y).

In addition to (A1)–(A3), we assume that

(A4) (Strong regularity) There exist constantsρ1 >
0, ρ2 > 0 and l > 0 such that, for each
δ ∈ O∆

ρ1
(0), there is a unique stationary point

(yδ, λδ) ∈ ON
ρ2

(η̃) of (QP)δ, and

‖yδ′ − yδ′′‖Z , ‖λδ′ − λδ′′‖Λ ≤ l‖δ′ − δ′′‖∆,

∀δ′, δ′′ ∈ O∆
ρ1

(0).



K. Malanowski534

The following local convergence theorem for the
Lagrange-Newton method holds (see Theorem 3.3 in (Alt,
1990a) or Lemma 7.2.3 in (Alt, 1990c)):

Theorem 1. If Assumptions (A1)–(A4) are satisfied, then
there exist constants% > 0, c > 0 and h < 1 such
that, for each initial pointη1 := (x1, λ1) ∈ ON

% (η̃), the
Lagrange-Newton sequence{ηα} is well defined and

‖η̃ − ηα||N ≤ ch2α−1 for α ≥ 2.

Conditions of strong regularity for abstract cone con-
strained optimization problems can be found, e.g., in Sec-
tion 5.1 of (Bonnans and Shapiro, 2000). Rather than to
quote them, in the next section we proceed to a specific
situation for optimal control problems.

3. SQP Method for Optimal Control
Problems

In this section we introduce our model optimal control
problem and apply to it the Lagrange-Newton procedure
described in Section 2. We formulate conditions under
which the assumptions of Theorem 1 are satisfied.

Consider the following optimal control problem:

(O)

min
(x,u)∈X∞

F (x, u)

:=
∫ 1

0

ϕ
(
x(t), u(t)

)
dt+ ψ

(
x(0), x(1)

)
subject to

ẋ(t)− f
(
x(t), u(t)

)
= 0 for a.a.t ∈ [0, 1],

ξ(x(0), x(1)) = 0,

θ
(
x(t), u(t)

)
≤ 0 for a.a.t ∈ [0, 1],

where

X∞ = W 1,∞(0, 1; Rn)× L∞(0, 1; Rm),

ϕ : Rn × Rm → R, ψ : Rn × Rn → R,

f : Rn × Rm → Rn, ξ : Rn × Rn → Rd,

θ : Rn × Rm → Rk.

We assume the following:

(B1) (Data regularity) The functionsϕ,ψ, f, ξ and θ
are twice Fréchet differentiable in all their argu-
ments and the derivatives are Lipschitz continuous.

(B2) (Existence) There exists a (local) solution(x̃, ũ)
of (O).

By (B1) and (B2), conditions (A1) and (A2) are sat-
isfied. To verify (A3), we need some constraint qualifica-
tions. To simplify notation, we set

A(t) = Dxf
(
x̃(t), ũ(t)

)
, B(t) = Duf

(
x̃(t), ũ(t)

)
,

Ξ0 = Dx(0)ξ
(
x̃(0), x̃(1)

)
, Ξ1 = Dx(1)ξ

(
x̃(0), x̃(1)

)
,

Υ(t) = Dxθ
(
x̃(t), ũ(t)

)
, Θ(t) = Duθ

(
x̃(t), ũ(t)

)
,

I = {1, . . . , k}. (14)

For ε ≥ 0, we introduce the sets ofε-active con-
straints

Iε(t) =
{
i ∈ I | θi

(
x̃(t), ũ(t)

)
≥ −ε

}
, (15)

and write

Υε(t) =
[
Dxθ

i
(
x̃(t), ũ(t)

)]
i∈Iε(t)

,

Θε(t) =
[
Duθ

i
(
x̃(t), ũ(t)

)]
i∈Iε(t)

.
(16)

In addition to (B1) and (B2), we assume the following:

(B3) (Linear independence) There exist constantsε, β >
0 such that

|Θε(t)∗η| ≥ β|η| for all η of the appropriate

dimensions and a.a.t ∈ [0, 1].

(B4) (Controllability) There is aε > 0 such that, for
each e ∈ Rd, there exists(y, v) ∈ X∞, which
satisfies the following equations:

ẏ(t)−A(t)y(t)−B(t)v(t) = 0,

Ξ0y(0) + Ξ1y(1) = e,

Υε(t)y(t) + Θε(t)v(t) = 0.

Introduce the space

Y∞ := W 1,∞(0, 1; Rn)× Rd × L∞(0, 1; Rk),

and define the following Lagrangian and Hamiltonians:

L : X∞ × Y∞ → R, H : Rn × Rm × Rn → R,

Ĥ : Rn × Rm × Rn × Rk → R,

L(x, u, p, ρ, µ) = F (x, u)−
(
p, ẋ− f(x, u)

)
+ 〈ρ, ξ(x(0), x(1)〉+

(
µ, θ(x, u)

)
,

H(x, u, p) = ϕ(x, u) + 〈p, f(x, u)〉,

Ĥ(x, u, p, µ) = H(x, u, p) + 〈µ, θ(x, u)〉. (17)
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It can be shown (see, e.g., Lemma 3.1 in (Malanowski,
2001)) that the following result holds:

Lemma 1. If (B3) and (B4) hold, then there exists a
unique Lagrange multiplier(p̃, ρ̃, µ̃) ∈ Y∞ such that the
following KKT conditions are satisfied:

˙̃p(t) +DxĤ
(
x̃(t), ũ(t), p̃(t), µ̃(t)

)
= 0,

p̃(0) + Ξ∗0ρ̃+Dx(0)ψ
(
x̃(0), x̃(1)

)
= 0,

−p̃(1) + Ξ∗1ρ̃+Dx(1)ψ
(
x̃(0), x̃(1)

)
= 0,

 (18)

DuĤ
(
x̃(t), ũ(t), p̃(t), µ̃(t)

)
= 0,〈

µ̃(t), θ
(
x̃(t), ũ(t)

)〉
= 0, µ̃(t) ≥ 0.

}
(19)

The above lemma shows that constraint qualifica-
tions ensure the existence of a normal Lagrange multiplier
for (O), i.e., the abstract condition (A3) is satisfied. More-
over, the Lagrange multiplier is unique and more regu-
lar. In terms of the notation of Section 2, it belongs toΛ,
rather than toΛ∗.

We define the following Lagrange-Newton procedure
(LN1) for (O):

(1) Take ηα := (yα, vα, qα, %α, κα) ∈ X∞ × Y∞.

(2) Find the stationary point

η(α+1) := (y(α+1), v(α+1), q(α+1), %(α+1), κ(α+1))

∈ X∞ × Y∞

of the following linear-quadratic optimal control
problem:

(LO)α min
(y,v)∈X∞

Iα(y, v)

subject to

ẏ −Aα(y − yα)−Bα(v − vα)− f(yα, vα) = 0,

Ξ0α

(
y(0)− yα(0)

)
+ Ξ1α

(
y(1)− yα(1)

)
+ξ
(
yα(0), yα(1)

)
= 0,

Υα(y − yα) + Θα(v − vα) + θ(yα, vα) ≤ 0,

where Aα, Bα,Ξ0α,Ξ1α,Υα,Θα are defined as
in (14), but evaluated at(yα, vα), while

Iα :=
1
2
(
(y − yα, v − vα)

×D2L(yα, vα, pα, ρα, µα)(y − yα, v − vα)
)

+ (Dxϕ(yα, vα), y) + (Duϕ(yα, vα), v)

+ 〈Dx(0)ψ
(
yα(0), yα(1)

)
, y(0)〉

+ 〈Dx(1)ψ
(
yα(0), yα(1)

)
, y(1)〉,

with(
(y, v), D2L(x, u, p, ρ, µ)(y, v)

)
:=
∫ 1

0

[y∗, v∗]

×

[
D2

xxĤ(x, u, p, µ) D2
xuĤ(x, u, p, µ)

D2
uxĤ(x, u, p, µ) D2

uuĤ(x, u, p, µ)

]

×

[
y

v

]
dt+ [y(0)∗, y(1)∗]

×

[
R00(x(0), x(1), ρ) R01(x(0), x(1), ρ)

R10(x(0), x(1), ρ) R11(x(0), x(1), ρ)

]

×

[
y(0)

y(1)

]
, (20)

where

Rrs = D2
x(r)x(s)

(
ξ(x̃(0), ξ̃(1)

)∗
ρ̃+ ψ

(
x̃(0), x̃(1)

)
r = 0, 1, s = 0, 1.

(3) Incrementα by 1 and go to (2).

In order for the Lagrange-Newton procedure to be
well defined, problems (LO)α must have unique station-
ary points. As in Section 2, to show the well-posedness
and local convergence of the Lagrange-Newton proce-
dure, we have to verify the strong regularity condition
(A4).

Define the space of perturbations

∆ := L∞(0, 1; Rn)× L∞(0, 1; Rm)× Rn × Rn

×L∞(0, 1; Rn)× Rd × L∞(0, 1; Rk). (21)

For (O), the accessory problem analogous to (QP)δ takes
the form

(QO)δ min
(y,v)∈X∞

Iδ(y, v)

subject to

ẏ −A(y − x̃)−B(v − ũ)− f(x̃, ũ) + δ5 = 0,

Ξ0

(
y(0)− x̃(0)

)
+ Ξ1

(
y(1)− x̃(1)

)
+ δ6 = 0,

Υ(y − x̃) + Θ(v − ũ)− θ(x̃, ũ) + δ7 ≤ 0,

where δ := (δ1, δ2, δ3, δ4, δ5, δ6, δ7) and

Iδ(y, v) :=
1
2
(
(y − x̃, v − ũ), D2L(x̃, ũ, p̃, ρ̃, µ̃)

×(y − x̃, v − ũ)
)

+ (Dxϕ(x̃, ũ) + δ1, y) + (Duϕ(x̃, ũ) + δ2, v)

+ 〈Dx(0)ψ
(
x̃(0), x̃(1)

)
+ δ3, y(0)〉

+ 〈Dx(1)ψ
(
x̃(0), x̃(1)

)
+ δ4, y(1)〉. (22)



K. Malanowski536

Just as in (15) and (16), forε ≥ 0 define

Iε
+(t) = {i ∈ I0(t) | µ̃i(t) > ε},

Υε
+(t) =

[
Dxθ

i(x̃(t), ũ(t)
]
i∈Iε

+(t)
, (23)

Θε
+(t) =

[
Duθ

i(x̃(t), ũ(t)
]
i∈Iε

+(t)
.

In addition to (B1)–(B4), we assume the following:

(B5) (Coercivity) There existε, γ > 0 such that

(
(y, v), D2L

(
x̃, ũ, p̃, ρ̃, µ̃)

)
(y, v)

)
≥ γ(‖y‖2

1,2 + ‖v‖2
2)

for all (y, v) ∈ X2 such that

ẏ(t)−A(t)y(t)−B(t)v(t) = 0 for a.a.t ∈ [0, 1],

Ξ0y(0) + Ξ1y(1) = 0,

Υε
+(t)y(t) + Θε

+(t)v(t) = 0 for a.a.t ∈ [0, 1].

Remark 1. In the case wheñu(·) and µ̃(·) are contin-
uous functions and the conditions (B3)–(B5) are satisfied
for ε = 0, they are also satisfied forε > 0. Hence, in that
case we can relax Assumptions (B3)–(B5) toε = 0.

The following result can be found, e.g., in
(Malanowski, 2001) (Proposition 5.4):

Lemma 2. If Assumptions (B1)–(B5) are satisfied, then
there exist constantsς1, ς2, ` > 0 such that, for each
δ ∈ O∆

ς1(0), there exists a unique stationary point
(yδ, vδ, qδ, %δ, κδ) ∈ OX∞×Y ∞

ς2 (η̃) of (QO)δ and

‖yδ′ − yδ′′‖1,∞, ‖vδ′ − vδ′′‖∞, ‖qδ′ − qδ′′‖1,∞,

|%δ′ − %δ′′ |, ‖κδ′ − κδ′′‖∞ ≤ `‖δ′ − δ′′‖∆

for all δ′, δ′′ ∈ OX∞×Y ∞

ς2 (η̃).

Lemma 2 implies that Assumption (A4) is satisfied,
and by Theorem 1 we obtain the following result:

Theorem 2. If Assumptions (B1)–(B5) hold, then there
exist constantsσ > 0, c > 0 and h < 1 such
that, for each initial pointη1 := (y1, v1, q1, %1, κ1) ∈
OX∞×Y ∞

σ (η̃), the Lagrange-Newton procedure (LN1) is
well defined and

‖η̃ − ηα||X∞×Y ∞ ≤ ch2α−1 for α ≥ 2.

4. Shooting Method

Theorem 2 was derived without any information on the
form of the optimal solution. We were only assuming
that some optimal control exists in the class of essentially
bounded functions. Now, we will consider the situation
where the optimal control is a continuous function of time
and the number and order of active and nonactive con-
straints are known. This kind of information allows us to
formulate our original optimal control problem as a prob-
lem withequalityconstraints. The Lagrange-Newton pro-
cedure for such problems leads to the well-knownshoot-
ing method(see, e.g., (Bulirsch, 1971; Stoer and Bulirsch,
1980)).

Let us introduce the sets

Ω̃i =
{
t ∈ [0, 1] | θi

(
x̃(t), ũ(t)

)
= 0
}
, i ∈ I, (24)

of those points at which the constraints are active for the
optimal solution. Assume the following:

(C1) (Solution structure) The optimal control̃u is a con-
tinuous function. Each of the sets̃Ωi, i ∈ I con-
sists of a finite numberJ i of disjoint subintervals:

Ω̃i = ∪j∈Ji [ω̃i′

j , ω̃
i′′

j ] ∈ (0, 1).

There are no isolated touch points and none of
the junction pointsω̃i′

j or ω̃i′′

j coincide with each
other for anyi ∈ I.

Set  = 2
∑

i∈I J
i and define the ( + 2)-

dimensional vector̃ω := [0, ω̃1, . . . , ω̃, 1], where theω̃js
are junction points for all constraints, arranged in an in-
creasing order. Clearly, for each subinterval(ω̃j , ω̃j+1) a
fixed set of constraints is active along(x̃, ũ). Write

ıj =
{
i ∈ I | θi

(
x̃(t), ũ(t)

)
= 0 for t ∈ (ω̃j , ω̃j+1)

}
.

We can interpret(x̃, ũ) as a solution of the follow-
ing optimal control problem (̂O) subject toequalitycon-
straints, active at a given number of subintervals, where
the locations of these subintervals, i.e., of the correspond-
ing entry and exit points become additional arguments of
optimization. Namely,

(Ô) min
(x,u,ω)

F (x, u)

subject to

ẋ(t)− f
(
x(t), u(t)

)
= 0 for a.a.t ∈ [0, 1],

ξ
(
x(0), x(1)

)
= 0,

θi
(
x(t), u(t)

)
= 0

for all t ∈ (ωj , ωj+1), i ∈ ıj , j = 1, . . . , + 1,
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where the minimization is performed over the class of
control functions which are piecewiseC1, with possible
jumps at all junction points.

Settingµi(t) = 0 for t 6∈ (ωi′

j , ω
i′′

j ), we find that the

Lagrangian and Hamiltonians for (Ô) are given by (17).
The constraints, together with the stationarity conditions
of the Lagrangian, with respect tou and x, constitute the
following system of equations:

ẋ(t)− f
(
x(t), u(t)

)
= 0, (25)

ξ
(
x(0), x(1)

)
= 0, (26)

θi
(
x(t), u(t)

)
= 0 for t ∈ (ωj , ωj+1),

i ∈ ıj , j = 1, . . . , + 1, (27)

ṗ(t) +DxĤ
(
x(t), u(t), p(t), µ(t)

)
= 0, (28)

p(0) +Dx(0)

[
ξ∗0ρ+ ψ

(
x(0), x(1)

)]
= 0, (29)

−p(1) +Dx(1)

[
ξ∗1ρ+ ψ

(
x(0), x(1)

)]
= 0, (30)

DuĤ
(
x(t), u(t), p(t), µ(t)

)
= 0. (31)

Since in Problem (̂O) optimization is performed also with
respect to the vectorω of the junction points, we have to
find stationarity conditions of the Lagrangian with respect
to ω. These conditions yield

ϕ
(
x(t), u(t−)

)
= ϕ

(
x(t), u(t+)

)
for all t = ωj , j = 1, . . . , + 1.

Clearly, the above conditions are satisfied ifu(·) is a
continuous function. In turn, the continuity ofu implies,
in particular,

θi
(
x(ωi′

j ), u(ωi′

j −)
)

= 0

θi
(
x(ωi′′

j ), u(ωi′′

j +)
)

= 0

}
∀j ∈ J i, i ∈ I. (32)

On the other hand, it can be shown (see Section 2 in
(Malanowski and Maurer, 1996a)) that the conditions
(B1)–(B3) and (B5), suplemented with (31), imply the
continuity of u. Hence, we will treat (32) as stationarity
conditions ofL with respect toω.

It will be convenient to eliminateu and µ
from (25)–(32). To this end, note that, on each subin-
terval (ωj , ωj+1), the condition (31), together with (27),
can be interpreted as stationarity conditions for the follow-
ing parametric mathematical program, subject toequality
constraints:

(MP)j

(
x(t), p(t)

)
min

u∈Rm
H
(
x(t), u, p(t)

)
subject toθi(x(t), u) = 0 for i ∈ ıj .

This program depends on the vector parameter
(x(t), p(t)) ∈ R2n. In view of (B1)–(B3) and (B5),
there exist twice continuously differentiable functions

ηj : Rn × Rn → Rm, χj : Rn × Rn → Rk

such that, for any(x(t), p(t)) in a neighbourhood of
(x̃(t), p̃(t)),

u(t) = ηj

(
x(t), p(t)

)
andµ(t) = χj

(
x(t), p(t)

)
is a locally unique solution and a Lagrange

multiplier of (MP)j

(
x(t), p(t)

)
, i.e.,

ũ(t) = ηj

(
x̃(t), p̃(t)

)
, µ̃(t) = χj

(
x̃(t), p̃(t)

)
for t ∈ (ω̃j , ω̃j+1).

(33)

Using ηj and χj , we can rewrite the stationarity
conditions (25)–(32) in the form of the followingmulti-
point boundary-value problemfor (x, p):

ẋ(t)− f
(
x(t), ηj

(
x(t), p(t)

))
= 0,

ṗ(t)−DxĤ
(
x(t), ηj

(
x(t), p(t)

)
, p(t),

χj

(
x(t), p(t)

))
= 0

for t ∈ (ωj , ωj+1) andj = 0, . . . , + 1.


(34)

ξ
(
x(0), x(1)

)
= 0,

p(0) +Dx(0)

[
ξ
(
x(0), x(1)

)∗
ρ

+ψ
(
x(0), x(1)

)]
= 0,

−p(1) +Dx(1)

[
ξ
(
x(0), x(1)

)∗
ρ

+ψ
(
x(0), x(1)

)]
= 0,


(35)

θi(x(ωi′

j ), ηj−1

(
x(ωi′

j ), p(ωi′

j )
)

= 0,

θi(x(ωi′′

j ), ηj+1

(
x(ωi′′

j ), p(ωi′′

j )
)

= 0,

j ∈ J i, i ∈ I.

 (36)

Note that the solution to (34) is uniquely defined by the
2n-dimensional vectora = (x(0), p(0)) of the initial
conditions. Hence the system (34)–(36) can be expressed
as the following equation inR2n+d+:

F(a, ρ, ω) = 0, (37)

where

F(a, ρ, ω) =

(
F1(a, ρ, ω)

F2(a, ω)

)
,

with F1 and F2 given by the left-hand sides of (35)
and (36), respectively. Clearly,F(ã, ρ̃, ω̃) = 0, where
ã = (x̃(0), p̃(0)).



K. Malanowski538

In the shooting method(LN2) the classical New-
ton procedure is applied to (37). This method is well de-
fined and locally quadratically convergent if the Jacobian
DF(ã, ρ̃, ω̃) is regular, i.e., if the equation[

DaF1(ã, ρ̃, ω̃) DρF1(ã, ρ̃, ω̃) DωF1(ã, ρ̃, ω̃)

DaF2(ã, ρ̃, ω̃) 0 DωF2(ã, ρ̃, ω̃)

]

×


b

%

$

 =

[
r

s

]
(38)

has a unique solution for anyr := (r1, r2, r3) ∈ Rn+n+d

and s ∈ R. Note that

DωF1(ã, ρ̃, ω̃) = 0. (39)

This follows from the fact that, by the well-known prop-
erties of the solutions to ODEs and by the continuity of
ũ(·), we have (see Maurer and Pesch, 1994):

∂x̃

∂ω
(t) = 0 and

∂p̃

∂ω
(t) = 0. (40)

Thus (38) reduces to[
DaF1(ã, ρ̃, ω̃) DρF1(ã, ρ̃, ω̃)

] [ b

%

]
= r, (41)

[
DaF2(ã, ω̃) DωF2(ã, ω̃)

] [ b

$

]
= s. (42)

In view of (33) and (40),DωF(ã, ρ̃, ω̃) is a diagonal
matrix, with the diagonal elements given by

d
dt
θi(x̃(ω̃i′

j ), ηj−1(x(ω̃i′

j ), p(ω̃i′

j )

=
d
dt
θi
(
x̃(t), ũ(t)

)
|t=ωi′

j −

= Dxθ
i(x̃
(
ω̃i′

j ), ũ(ω̃i′

j )
) ˙̃x(ω̃i′

j )

+Duθ
i(x̃
(
ω̃i′

j ), ũ(ω̃i′

j )
) ˙̃u(ω̃i′

j −),

d
dt
θi(x̃(ω̃i′′

j ), ηj+1(x(ω̃i′′

j ), p(ω̃i′′

j )

=
d
dt
θi
(
x̃(t), ũ(t)

)
|t=ωi′′

j +

= Dxθ
i(x̃
(
ω̃i′′

j ), ũ(ω̃i′′

j )
) ˙̃x(ω̃i′′

j )

+Duθ
i(x̃
(
ω̃i′′

j ), ũ(ω̃i′′

j )
) ˙̃u(ω̃i′′

j +).

This shows that, for anyb ∈ R2n and s ∈ R, (42) has a
unique solution, if the following condition holds:

(C2) (Nontangential junction) At all junction points
along the optimal trajectory, the following condi-
tions are satisfied:

d
dt
θi
(
x̃(t), ũ(t)

)∣∣
t=ω̃i′

j −
6= 0,

d
dt
θi
(
x̃(t), ũ(t)

)∣∣
t=ω̃i′′

j +
6= 0

 j ∈ J i, i ∈ I.

Thus, if (C2) holds, the JacobianDF(ã, ρ̃, ω̃) is
regular provided that (41) has a unique solution for any
r := (r1, r2, r3) ∈ Rn+n+d. Some calculations, similar
to those in Section 2 of (Malanowski and Maurer, 1996a)
and Section 5 in (Malanowski and Maurer, 1996b), show
that any solution of (41) is equivalent to a stationary point
of the following linear-quadratic accessory problem anal-
ogous to (QO)δ:

(Q̂O)r min
(y,v)∈X∞

Îη̃(y, v, r)

subject to

ẏ(t)−A(t)y(t)−B(t)v(t) = 0,

Ξ0y(0) + Ξ1y(1) + r3 = 0,

〈Υi(t), y(t)〉+ 〈Θi(t), v(t)〉 = 0

for all t ∈ (ωj , ωj+1), i ∈ ıj , j = 1, . . . , + 1,

where Υi(t) and Θi(t) are the i-th rows of Υ(t) and
Θ(t), respectively, while

Îη̃(y, v, r) :=
1
2
(y,D2L(x̃, ũ, p̃, ρ̃, µ̃)y)

+ 〈r1, y(0)〉+ 〈r2, y(1)〉.

In the same way as in the case of the accessory prob-
lem (QO)δ, we find that the conditions (B3)–(B5) imply
that, for anyr ∈ R2n+d, Problem (Q̂O)r has a unique
stationary point. Thus, we have arrived at the following
results:

Lemma 3. If Assumptions (B1)–(B5) and (C1)–(C2) hold,
then the JacobianDF(a, ρ, ω) is regular at (ã, ρ̃, ω̃).

By Lemma 3 the shooting method (LN2) is locally
quadratically convergent to the stationary point(ã, ρ̃, ω̃),
i.e., for any (b1, %1, $1) ∈ R2n+d+ the generated se-
quence{(bα, %α, $α)} satisfies∣∣(ã− b(α+1), ρ̃− %(α+1), ω̃ −$(α+1))

∣∣
≤ c |(ã− bα, ρ̃− %α, ω̃ −$α)|2 .

Clearly, in a neighbourhood of(ã, ω̃), there is a one-to-
one correspondence between any vector(b,$) ∈ R2n+

of the initial state and the junction points, and the solu-
tion (x, p) ∈ W 1,∞(0, 1; Rn) ×W 1,∞(0, 1; Rn) of the
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state and adjoint equations (34). On the other hand, by
(33), the corresponding controlu ∈ L∞(0, 1; Rm) and
the Lagrange multiplierµ ∈ L∞(0, 1; Rm) depend con-
tinuously on (x, p) and $. Hence we finally obtain the
following convergence result analogous to Theorem 2:

Theorem 3. If the assumptions (B1)–(B5) and (C1)–(C2)
hold, then there exist constantsσ > 0, c > 0 and
h < 1 such that, for each initial point(a1, ρ1, ω1) ∈
OR2n+d+

σ (ã, ρ̃, ω̃), the shooting method (LN2) is well de-
fined. The sequence{ηα = (xα, uα, pα, ρα, µα)}, cor-
responding to{(bα, %α, $α)}, converges quadratically to
η̃:

‖η̃ − ηα||X∞×Y ∞ ≤ ch2α−1 for α ≥ 2.

In addition to that, the sequence of the junction points
{$α} converges quadratically tõω.

5. Concluding Remarks

The results presented in Sections 3 and 4 show that the
assumptions required for the well-posedness and local
quadratic convergence of the SQP algorithm (LP1) are
substentially weaker than those that ensure the same prop-
erties for the shooting method (LP2). The latter method
requires additional assumptions: (C1) – on the structure
of the optimal control, and (C2), which ensure that this
structure is preserved in a neighbourhood of the refer-
ence solution. On the other hand, Algorithm (LP2) is
more convenient from the numerical point of view, since
it reduces to the Newton procedure for equations, while
in (LP1) a linear-quadratic optimal control problem, sub-
ject to inequality-type constraints, has to be solved in each
step.

Convergence results, similar to those presented here,
occur for both algorithms applied to optimal control
problems, where, in addition to mixed constraints, also
pure state space constraints oforder one are present
(Alt and Malanowski, 1995; Malanowski and Maurer,
1996b). However, in this case the convergence analy-
sis for the SQP method is much more complicated than
that reported here, due to the presence of the so called
two norm discrepancy(see e.g., Dontchev and Hager,
1998; Malanowski, 1994; 1995). To overcome this dif-
ficulty, some additional information on the regularity of
the optimal solution is exploited (see Alt and Malanowski,
1995).

The scope of the applicability of the shooting method
seems to be broader than that of (LP1). The point is that
the latter is a general iterative algorithm for constrained
optimization problems in functional spaces, whereas the
shooting method is a technique specialized for optimal
control problems governed by ODEs. In particular, it

seems that forhigher-orderstate constrained problems,
one cannot avoid information on the structure of the op-
timal control. It is connected with the fact that higher-
order state constraints can be viewed as cone constraints in
spacesW p,∞(0, 1; Rk), with p > 1. The analysis of pro-
jection onto such cones is difficult and requires more in-
formation on the projected element. At least in some cases
of higher-order state constraints the shooting method was
used and the local quadratic convergence ensured (see,
e.g., Malanowski and Maurer, 2001).

Similarly, the shooting method can be extended to
problems with free final time (Maurer and Oberle, 2002),
whereas the algorithm (LP1) can be hardly applied there.

Throughout this paper we have assumed the coer-
civity of the Hessian of the Lagrangian. This assump-
tion excludes an important class of optimal control, where
the solution is of the bang-bang type. Clearly, for prob-
lems with the bang-bang solutions the local stability of
the structure of the optimal solution is crucial for the con-
vergence of Newton-type methods. Recent results con-
cerning second-order optimality conditions and sensitiv-
ity analysis for this class of problems (Agrachevet al.,
2002; Felgenhauer, 2002; Kim and Maurer, 2003; Mau-
rer and Osmolovskii, 2004) suggest that the local conver-
gence results of the shooting method can be extended to
some problems with bang-bang solutions.
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