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CONVERGENCE OF THE LAGRANGE-NEWTON METHOD
FOR OPTIMAL CONTROL PROBLEMS
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Convergence results for two Lagrange-Newton-type methods of solving optimal control problems are presented. It is shown
how the methods can be applied to a class of optimal control problems for nonlinear ODES, subject to mixed control-state
constraints. The first method reduces to an SQP algorithm. It does not require any information on the structure of the optimal
solution. The other one is the shooting method, where information on the structure of the optimal solution is exploited. In
each case, conditions for well-posedness and local quadratic convergence are given. The scope of applicability is briefly
discussed.
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1. Introduction On the other hand, as early as at the beginning of
] ] . the 1970s the so-calleshooting metho#vas proposed by
In theoretical and nu_mencal research, optimal c_ontrol R. Bulirsch (1971) (see Stoer and Bulirsch, 1980). This is
problems have been either treated as cone constrained opy highly specialized method of numerically solving opti-
timization problems in functional spaces, or studied using 31 control problems governed by ODEs. In the shooot-
some specialized tools. In j[he first approach, problems Ofing method for problems with inequality-type constraints,
optimal control are placed in a broader framework of 0p- information on thestructureof the optimal solution is cru-
timization problems, and general techniques can be used;;jg|, Using this kind of information, the original optimiza-
to solve them, whereas the second approach allows Us Qi problem is reformulated as a problem with equality
take maximal advantage of the specific structure of the consiraints. For the latter problem, the optimality system
problems. Such a situation takes place also in applicationsig expressed as a two- or multi-point boundary-value prob-
of the Lagrange-Newton method for solving numerically |em This boundary-value problem is solved numerically,
optimal control problems. using the Newton method.

The classical Lagrange-Newton method (see, e.g.,  The literature devoted to Lagrange-Newton meth-
Stoer and Bulirsch, 1980), one of the most efficient nu- ods is enormous and this paper by no means pretends to
merical methods of solving optimization problems, was give any survey of it. We just present, in a unified man-
developed for problems with equality-type constraints. In ner, the known covergence results for both of the above-
this method, the Newton procedure is applied to the first- mentioned approaches. The organization of the paper is
order optimality system, which has the form of a system the following: In Section 2 we briefly recall the Lagrange-
of equations. In the case of inequality-type constraints, Newton method for abstract optimization problems in Ba-
the first-order optimality system cannot be expressed asnach spaces, subject to equality and cone constraints, re-
an equation. However, it can be expressed as an inclusiongpectively. In Section 3 we introduce our model problem,
or the so-calledyeneralized equatiofRobinson, 1980).  which is an optimal control problem for nonlinear ODEs,
It was shown by S.M. Robinson (1980) that a Newton- sybject to mixed control-state constraints. We present the
type procedure applied to this general equation is locally gpplication of the abstract approach to this problem and
quadratically convergent to the solution, provided that a formulate assumptions under which the Lagrange-Newton
property calledstrong regularityis satisfied. This ap-  method is locally quadratically convergent. In Section 4
proach has been successfully applied to a class of nonwe show how the additional information on the structure
linear cone-constrained optimization problems in infinite- of the optimal control can be used to reformulate the prob-
dimensional spaces (Alt, 1990a; 1990b; 1990c) and opti-|em as a problem wittequalitytype constraints. It is
mal control problems subject to control and/or state con- shown how the Lagrange-Newton procedure, applied to
straints (see, e.g., Alt and Malanowski, 1993; 1995). the latter problem, leads to the shooting method.
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In the conclusion we give some comments on the let us start with the problem subject to equality-type con-
scope of the applicability of each of the two presented straints, i.e., with the particular situation wheke= {0},
methods. and (P) reduces to

We use the following notations: Capital letters
X, Y, Z A, ..., sometimes with superscripts, denote Ba-
nach or Hilbert spaces. The norms are denoted| by
with a subscript referring to the spac€. (z) := {z €
X | lz — zollx < p} is the open ball inX of radius

(P.) minF(z) subjecttog(z)=0.

Let us introduce the following normal Lagrangian as-
sociated with (B):

p, centred atr,. Asterisks denote dual spaces, as well as Lo:N:= ZxA —R
dual operators. Heréy, z), with x € X andy € X*,is ’ 1)
a duality pairing betweerX and X*. Le(z,N) = F(z)+ (N ¢(2)),

For f: X xY — Z, let D,f(z,y), Dyf(z,y),
Dﬁyf(x, y), ... denote the respective Fréchet derivatives
in the corresponding argumeni®” is the n-dimensional

and consider the first-order optimality system for){P

D.Lo(2,N) = D.F(2) + D.¢(z)*A = 0,

Euclidean space with the inner product denoted byy) 2)
and the norm|z| = (z,z)z. Transposition is denoted ¢(z) =0.
by x.

L*(0,1;R™), s € [1, 00] are Banach spaces of mea- We assume that there exists a Lagrange multiplier A*
surable functionsf : [0, 1] — R", supplied with the stan- ~ Such that (1) holds atz, A). Write 7 := (2, A) € Z x A*
dard norms||-||,. W14(0,1;R") denotes Sobolev spaces and define
of functions f which are absolutely continuous g6, 1] ) . .
with the norms FrZx A" = Z"x A,

s — { (£ + I1F15]"* for s € [1,00), o ( DF(2) + Do)\ ) 3)
’ max{|f<0)‘> HfHoc} for s = o0, gb(z)

. . In the Lagrange-Newton method, the Newton proce-
and ¢, [ and ¢ denote generic constants, not necessarily §,re is applied to the equation

the same in different places.
F(n) =0, 4

2. Lagrange-Newton Method for Abstract i.e., starting with some initial element, := (21, A1), we
Optimization Problems in Banach Spaces  construct the sequendg), }, setting

In this section we recall convergence results of the Dy F(Ma)Mat1) — Ma) + F(na) = 0. (5)
Lagrange-Newton method for abstract optimization prob-
lems subject to cone constraints, presented by Alt (1990c). Using the definition (3), we find that (5) amounts to

Let Z and A be Banach spaces of arguments and .
constraints, respectively. In the spagethere is a closed DZLe(Zas Aa)(2(at1) = Za) + Dzd(2a) " Mat)

convex cone K, which induces a partial order in that +D.F(z4) =0, (6)
space. Further,lef’ : Z — Rand¢ : Z — A.
We consider the following optimization problem: D:(20)(2(a+1) — 2a) + $(2a) = 0.

(P) minF(z) subjecttop(z) € K. Equations (6) can be interpreted as the optimality system

for the following linear-quadratic optimization problem:

We make the following assumptions:
(LP.),,
(A1) The mappingsF' and ¢ are twice Fréchet differ-

entiable, with Lipschitz continuous second deriva-  min I, (z) :=
tives.

((Z - Za), DngE(ZOm Aa)(z — Za))

N

Jr(DZF(za),z),
subjectto D.¢(z4)(z — z4) + ¢(24) = 0.

(A2) There exists a (local) solutioa of (P).

Our purpose is to analyse the convergence of the
Lagrange-Newton method, applied to (P), in a neighbour- Clearly, the Lagrange-Newton procedure is well de-
hood of z. To formulate the Lagrange-Newton method, fined in a neighbourhood?lﬂv(ﬁ) C N of the point
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7= (T, X) if the JacobianD, () is regular or, equiv-  or, equivalently,
alently, if for any  := (w,v) € O)'(7) the problem
Dgzﬁ(zm /\a)(z(a-'rl) — Z2a)
Pe *
(Q )77 +Dz¢(za) /\(aJrl) + DZF(’ZOt) =0, (13)

5 (= w). DLl )z — w)

+(D.F(w), z),

min I, (z) :=

D.¢(2a)(Z(a+1) — Za) + ¢(2a) € N(N).

Justasin (6), we interpret (13) as the KKT optimality
subjecttoD.¢(w)(z — w) + ¢(w) =0 system for the following linear-quadratic optimal control

problem:
has a unigque stationary point. Explicit conditions of regu-

larity can be found, e.g., in Section 4.9.1 of (Bonnans and (LP),, min I, (z)
Shapiro, 2000).

Let us now pass to the cone-constrained problem (P).
In the same way as in (1), we define the Lagrangian for

(P):

subjectto D.¢(24)(z — 2a) + ¢(2a) € K,

where

1
L:N—R, E(z7)\) = F(Z) + ()\7¢(Z)) (7) Ia(z) = 5((2 - Za)aDgz'Ce(ZomAa)(Z - Za))

The KKT (Karush-Kuhn-Tucker) optimality system for + (DZF(Za)aZ)~

(P) has the form
Thus, the Lagrange-Newton method reduces to an SQP-

D.F(2) + D.¢(2)*\ =0 method (Alt, 1990a; 1990b; 1990c).

z z 9’ . (8)
(M o(2) =0, o(z)eK, IeK* To analyse the convergence of the above Lagrange-
Newton method, Robinson’s implicit function theorem for
strongly regular generalized equations is used (see, e.g.,
Alt, 1990a). We make the following assumption:

Define the following multivalued map, called the normal
cone operator fork:

N A — 20, ~ -
(A3) There existsh € K* such that(z, \) satisfies (8).
{yeA|(u—ry) <0 Yue K"} ()
N(y) = if ve K,
0 if v g K*.

Foranyd := (61, 6%) € A, define the following accessory
linear-quadratic problem:

(QP)(S min Iﬁ(y) + (61ay)7
In terms of \V, the three conditions in the second line . 9
of (8) can be written in the equivalent forgn(z) € N ()). subjectto D:¢(2)(y — 2) + ¢(2) + 0% € K,

If we define the multivalued map

where
T: N— 25, (10) 1 o~
i) = 5 (w2, DLLEN - 9))
where
+(D.F(2),y)
0
A=2"x A, Tn) = ( N ) : In addition to (A1)—(A3), we assume that
then, using (3), we can rewrite (8) in the form (A4) (Strong regularity There exist constantg; >
0,p2 > 0 and [ > 0 such that, for each
F(n) € T(n). (11) § € 02(0), there is a unique stationary point

N
By analogy with (5) and (6), we define the Lagrange- (5, As) € Op, (7) 0F (QP);, and

Newton procedure for (11) by constructing the sequence
{Na}, where

Dy F(na)(Mas+1) — Ma) + F(Ma) € T (N(at1)), (12)

lys: = yorllz: A5 = Asrlla < 16" = 6"l
Vo', 8" € 02 (0).
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The following local convergence theorem for the By (B1) and (B2), conditions (A1) and (A2) are sat-
Lagrange-Newton method holds (see Theorem 3.3 in (Alt, isfied. To verify (A3), we need some constraint qualifica-
1990a) or Lemma 7.2.3 in (Alt, 1990c)): tions. To simplify notation, we set

Theorem 1. If Assumptions (A1)—(A4) are satisfied, then A(t) = Do f(2(t),u(t)), B(t) = Duf(Z(t), u(t)),
there exist constantp > 0, ¢ > 0 and h < 1 such _ e _ oy~
Zo = Do0)&(%(0),2(1)), E1 = Dy1y&(2(0), 2(1)),

that, for each initial pointn, := (z1, A1) € O (), the
Lagrange-Newton sequende,, } is well defined and T(t) = DO(E®),A(E),  O(t) = DuO(E(t), a(t))
I={1,...,k} (14)

177 = nally < ch® =1 for a>2.

Conditions of strong regularity for abstract cone con- For ¢ > 0, we introduce the sets of-active con-
strained optimization problems can be found, e.g., in Sec-gtraints

tion 5.1 of (Bonnans and Shapiro, 2000). Rather than to
guote them, in the next section we proceed to a specific
situation for optimal control problems.

I°(t) = {i e I0'(@(t),ut)) = —¢},  (15)

and write
Te(t) = [Do0(Z(1), ﬂ(t))}ielf(t) ’
O% (1) = [Dub (#(1),0(1)] 1o oy -
1 U, o L S s 1) 5, s e

described in Section 2. We formulate conditions under (B3) (Linear independengd here exist constants 5 >
which the assumptions of Theorem 1 are satisfied. 0 such that

Consider the following optimal control problem:

3. SQP Method for Optimal Control

Problems (16)

|©=(t)*n| > SB|n| for all n of the appropriate
(0) dimensions and a.a.c [0, 1].

min  F(z,u)

(zu)eX > (B4) (Controllability) There is ac > 0 such that, for
1 eache € RY, there exists(y,v) € X°°, which
::/O p(@(t), u(t)) dt + ¢ (2(0), 2(1)) satisfies the following equations:
subject to

i(t) — f(z(t),u(t)) =0 fora.a.te[0,1],
§(2(0),z(1)) = 0,
6(x(t),u(t)) <0 foraa.te[0,1],
where
X% = Wh(0,1;R") x L=(0,1;R™),
p:R"xR™ >R,  ¢:R"xR" >R,
fiR"XR™ - R",  £:R*xR" —R?
6:R" x R™ — RF,

We assume the following:

y(t) — A(t)y(t) — B(t)v(t)
Eoy(0) + Z1y(1) =ce,
Te(b)y(t) + O (£)u(t) = 0.

0,

Introduce the space
Yo = W0, 1;R") x R? x L°°(0,1; R¥),
and define the following Lagrangian and Hamiltonians:
L:X®xY® SR, H:R"xR™xR" - R,
H:R” x R™ x R" x R — R,

L(z,u,p, p, ) = F(z,u) — (p7,j;' - f(:c,u))

(B1) (Data regularity) The functionse, ), f,& and 6
are twice Fréchet differentiable in all their argu-
ments and the derivatives are Lipschitz continuous.

+(p, &(2(0), (1)) + (1. 0z, w)),
'H(x,u,p) = @(xau) + (p,f(x,u)),

~

(B2) (Existencg There exists a (local) solutiotiz, ) H(z,u,p, ) = H(z,u,p) + (i, 0(x,u)). a7

of (0).
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It can be shown (see, e.g., Lemma 3.1 in (Malanowski,
2001)) that the following result holds:

Lemma 1. If (B3) and (B4) hold, then there exists a
unique Lagrange multipliep, g, t) € Y°° such that the
following KKT conditions are satisfied:

pt) + DLH(E (), u(t), B(t), i(t)) =0,

p(0) + Z5p + Do0yv(2(0),2(1)) =0, (18)
—p(1) + Eip + Dyy(2(0),2(1)) =0,
DuH(%(t)vﬂ(t)aﬁ(t%ﬁ(t)) =0, } (19)
(a(t), 0(x(t), a(t))) =0, p(t) >0.

The above lemma shows that constraint qualifica-

tions ensure the existence of a normal Lagrange multiplier

for (O), i.e., the abstract condition (A3) is satisfied. More-
over, the Lagrange multiplier is uniqgue and more regu-
lar. In terms of the notation of Section 2, it belongsAo
rather than toA*.

We define the following Lagrange-Newton procedure
(LN1) for (O):

(1) Take 14 := (Yas Vas Gos Qs Ka) € X X Y0

(2) Find the stationary point

Na+1) = (Y(at+1)> V(a+1)s Aat1)s Qa+1)s F(a+1))

€ X® XY™
of the following linear-quadratic optimal control
problem:
LO min  Z,(y,v
(LO), o min (Y, v)
subject to

U — Aoy = Ya) — Ba(v — va) = f(Ya,va) =0,
Z0a (4(0) = ¥a(0)) + E1a (y(1) — ya(1))
+§(ya<0)aya(1)> =0,
Ta(y - ya) + @a(v - Ua) + 9(ya, Ua) <0,
where A, B.,E0q; 210, Yo, O are defined as
in (14), but evaluated afy., v, ), while

Tao :

N |

(¥ = Yar v = va)

X D*L(Yar, Varr P Pers o) (Y = Yaur U — V) )
+ (Dap(Yar va), ¥) + (Dup(Ya: va), v)

+ (D2(0)¥ (¥a(0), ¥ (1)), 4(0))

+ <Dz(1)¢(yo¢(0)ﬂ ya(l)) s y(1)>a

Is(y,v) =

@ amcs
/01 [y",v"]

with

(<y’ U)’ DQ,C(CC, u, p, P, M)(y, U)) :

y [ D2, H(w,u,p,p) D2, H(z,u,p, p) ]
I D2 H(x,u,p,p1) D2, H(z,u,p,pn)

x dt + [y(0)*,y(1)*]

[ Roo(e(©).2(1).0) Ror(2(0).2(1). ) ]
L Rw(x(()),x(l),p) R11($(0)7$(1),p)

y y(O)] 20
Ly |

where

Ris = D (1ya(e) (§@(0),€(1)) 7 +0(7(0), 7(1))
r=20,1, s=0,1.
(3) Incrementa by 1 and go to (2).

In order for the Lagrange-Newton procedure to be
well defined, problems (LQ) must have unique station-
ary points. As in Section 2, to show the well-posedness
and local convergence of the Lagrange-Newton proce-
dure, we have to verify the strong regularity condition
(A4).

Define the space of perturbations

A= L*(0,1;R") x L*=(0,1;R™) x R™ x R"
x L>(0,1;R™) x RY x L>=(0,1;R*).  (21)

For (O), the accessory problem analogous to (Qikes
the form

(QO); (yﬂr}r)lér)l(wfé(y,v)

subject to

y—Aly—7) — Bv—1) — f(3,0) +6° =0,
Z0(y(0) — #(0)) + Z1 (y(1) — #(1)) + 6% =0,

Y(y—7)+0O(v—1u)—0(z,u)+46 <0,
where d := (61,62, 63,6%,6°,0%,67) and

N | =

x(y —T,v— 17))
+ (Dpo(F, ) + 6%, y) + (Dup(T, 1) + 62, v)

+ (Do) 9 (2(0), 2(1)) + 0%, y(1)). (22)
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Just as in (15) and (16), far > 0 define

I5(t) = {i € Io(t) | i'(t) > e},

T (t) = [Do 0" (Z(t), u(t)] (23)

€IS (t)

6% (1) = [Dub' @0 00)] e -

In addition to (B1)—(B4), we assume the following:

(B5) (Coercivity) There exists,v > 0 such that

forall (y,v) € X2 such that
G(t) — A(t)y(t) — B(tyu(t) = 0 fora.a.t € [0, 1],
Eoy(0) + E1y(1) = 0,
T (t)y(t) + ©5 (t)v(t) =0 fora.a.t € [0, 1].

Remark 1. In the case wheru(-) and pi(-) are contin-
uous functions and the conditions (B3)—(B5) are satisfied
for e = 0, they are also satisfied far > 0. Hence, in that
case we can relax Assumptions (B3)—(B5)te- 0.

The following result can be found, in
(Malanowski, 2001) (Proposition 5.4):

e.g.,

Lemma 2. If Assumptions (B1)—(B5) are satisfied, then
there exist constants;, <>,/ > 0 such that, for each
§ € 02(0), there exists a unique stationary point

(s, Vs, s, 05, ki5) € O Y™ (i) of (QO)s and

lys: = yorr 1,005 lver — vorrlloos llasr — a5 [l1,00

los: — 50|, |67 — Ko lloo < £][6" = 0"|| A
forall §',6"” € OX™>Y™ (7).

Lemma 2 implies that Assumption (A4) is satisfied,
and by Theorem 1 we obtain the following result:

Theorem 2. If Assumptions (B1)—(B5) hold, then there
exist constantsc > 0, ¢ > 0 and h < 1 such
that, for each initial pointn, (y1,v1,q1,01,K1) €
OX™xY™(7), the Lagrange-Newton procedure (LN1) is
well defined and

17 = Na]|x o xye <ch* ™1 fora >2.

4. Shooting Method

Theorem 2 was derived without any information on the
form of the optimal solution. We were only assuming
that some optimal control exists in the class of essentially
bounded functions. Now, we will consider the situation
where the optimal control is a continuous function of time
and the number and order of active and nonactive con-
straints are known. This kind of information allows us to
formulate our original optimal control problem as a prob-
lem with equalityconstraints. The Lagrange-Newton pro-
cedure for such problems leads to the well-knstioot-

ing methodsee, e.g., (Bulirsch, 1971; Stoer and Bulirsch,
1980)).

Let us introduce the sets

Q= {te0,1]]6°(F(t),u(t)) =0},
of those points at which the constraints are active for the
optimal solution. Assume the following:

icI, (24)

(C1) (Solution structurgThe optimal controku is a con-
tinuous function. Each of the sef$’, i € I con-
sists of a finite number*® of disjoint subintervals:

There are no isolated touch points and none of

the junction points! or @} coincide with each

other for anyi € I.

Set g = 2% ,.,J" and define the(; + 2)-
dimensional vectow := [0,ws, . .. ,,, 1], where thew;s
are junction points for all constraints, arranged in an in-
creasing order. Clearly, for each subinter(al;, w; 1) a
fixed set of constraints is active alori@, u). Write

o = {i € 1|6°(&(t),u(t)) = 0fort € (&;,@j41)}-

We can interpret(z, u) as a solution of the follow-
ing optimal control problem@) subject toequality con-
straints, active at a given number of subintervals, where
the locations of these subintervals, i.e., of the correspond-
ing entry and exit points become additional arguments of
optimization. Namely,

%) () Fle,w)

subject to

i(t) — f(z(t),u(t)) = 0fora.a.t € [0,1],
£(2(0),2(1))
0" (x(t), u(t))

forallt € (wj,wjt1), i€, j=1,...

207
=0

1+ 1,
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where the minimization is performed over the class of This program depends on the vector parameter
control functions which are piecewis@!, with possible (x(t),p(t)) € R?". In view of (B1)—(B3) and (B5),
jumps at all junction points. there exist twice continuously differentiable functions

Setting . (t) = 0 for t ¢ (w!,w!"), we find that the

Lagrangian and Hamiltonians fo(A)Q are given by (17).
The constraints, together with the stationarity conditions sych that, for any(z(t),p(t)) in a neighbourhood of
of the Lagrangian, with respect to and z, constitute the  (Z(¢), (t)),

following system of equations:

i(t) — f(x(t),u(t)) =0, (25)

n; : R" x R" — R™, Xj:R"XR"—ﬂRk

u(t) = n;(x(t), p(t)) andpu(t) = x; (z(t), p(t))

is a locally unique solution and a Lagrange
¢(x(0),2(1)) =0, (26) multiplier of (MP); (x(t), p(t)), i.e., (33)
a(t) = n; (1), p(1)), f(t) = x;(2(t), p(1))

0" (2(t),u(t)) =0 fort e (wj,wji1), fort € (@;,&j41)
orit ¢ (wj,wj+1)-

1€, jJ=1,...,7+1, (27)
Using n; and x;, we can rewrite the stationarity

B(t) + D H(2(t), u(t), p(t), u(t)) = 0, (28) conditions (25)—(32) in the form of the followinguulti-
point boundary-value problefor (x, p):

#() = f (a(8),ms (2, p(1))) =0,
(1) + Dy [E1p+((0),2(1)] =0, B0)  (t) — DuH(w(t),m (a(0),p(). (1),

P(0) + Daoy [&5p + 9 (2(0),2(1))] =0,  (29)

( ) (34)
-~ X (z(t),p(t)) ) =0
Dy H(x(t), ult), p(t), p(t)) = 0. (31) ’
R for t € (wj,wj41) andj =0,...,7+ 1.
Since in Problem(@) optimization is performed also with
respect to the vectap of the junction points, we have to g(x(()) x(l)) —0
find stationarity conditions of the Lagrangian with respect ’ ’
to w. These conditions yield p(0) + Dy o) {5 (2(0),2(1))"p
o (w(t), ult=)) = p(w(t), u(t+)) +0(2(0),2(1))] =0,  (35)
forall t =w;, j=1,...,7+1. —p(1) 4+ Dy [g(x(o),x(l))*,o
Clearly, the above conditions are satisfiedf) is a +4)((0) x(l))} —0
continuous function. In turn, the continuity ef implies, ’ ’
in particular, _ y ) )
o 0 ((wi),nj (2(w]), p(wi)) =0,
9‘(m(w; ),u(w} —)) =0 _ . ; o P N
) 0 0 vielJ,iel. (32) 0 (x(wj )s Mj+1 (x(wj )7?(%‘ )) =0, (36)
Hl(x(w;- )s u(w) +)) =0 ) .
jedJiel

On the other hand, it can be shown (see Section 2 in

(Malanowski and Maurer, 1996a)) that the conditions Note that the solution to (34) is uniquely defined by the
(B1)-(B3) and (B5), suplemented with (31), imply the 2n-dimensional vectora = (x(0), p(0)) of the initial
continuity of u. Hence, we will treat (32) as stationarity conditions. Hence the system (34)—-(36) can be expressed
conditions of £ with respect tow. as the following equation ifR>"++7:

It will be conve_nient to elimnatew and g _ Fla, p,w) =0, 37)
from (25)—(32). To this end, note that, on each subin-
terval (wj,w;+1), the condition (31), together with (27), where
can be interpreted as stationarity conditions for the follow-
ing parametric mathematical program, subjectdoality Fla,p,w) = <

constraints:
. . with F; and F, given by the left-hand sides of (35)
(MP)J(x<t)’p(t)) u%lﬁgtH(x(t)’u’p(t)) and (36), respectively. ClearlyF(a,p,o) = 0, where
subject tod? (x(t),u) = 0 fori € 1;. a = (2(0),p(0)).

Fi(a, p,w) )
Fola,w) ’
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In the shooting method (LN2) the classical New-
ton procedure is applied to (37). This method is well de-
fined and locally quadratically convergent if the Jacobian
DF(a,p,w) is regular, i.e., if the equation

Da]_-l(av 57&) Dp]:l(aa ﬁa (7)) ij:l(av ﬁ,&})
Duf?(aviza) 0 Dwf2(57ﬁ7&)
b
r
X|eo | = (38)
S
w

has a unique solution for any:= (r!,r? r3) ¢ Rr+n+d
and s € R’. Note that

DuFi(@,p,®) = 0.

This follows from the fact that, by the well-known prop-
erties of the solutions to ODEs and by the continuity of
u(+), we have (see Maurer and Pesch, 1994):

T dp

(39)

%()—0 and 8w() 0. (40)
Thus (38) reduces to
.
|: Dafl(av ﬁ,&) Dpfl(aa ﬁva) ] [ =T, (41)
0 |
-
| DF2(@3) D.F2(@3) | l =5 (42)
w -

In view of (33) and (40),D,, F (a, p,w) is a diagonal
matrix, with the diagonal elements given by

-/ -/

—9’( @), mj-1 (@@ ), p(@})

dt
d ~
= 3 (B0, 7)oy -
= Dt (3(@)), 0(@))) ()
D0 (@), 5@l ),
d i i’ ~i ~i!

SO E@ ), my (@@ ), p(@E)

d iy ~
= 59 (x(t)ﬂu(t))|t:w;//+

" . -1/

= D, 0" (@(@) ), u(@! ))z(@:")
+D, 04 (@), a@! ) u(@ +).

This shows that, for any € R?" and s € R?, (42) has a
unique solution, if the following condition holds:

(C2) (Nontangential junctiop At all junction points
along the optimal trajectory, the following condi-
tions are satisfied:

d
a9 (z(t),u (t))|t:w;’_ # 0, _

d jeJiel
SO0, 50)] e, #0

Thus, if (C2) holds, the Jacobia®F(a, p,w) is
regular provided that (41) has a unique solution for any
r = (r',r2,r3) € R**"+d Some calculations, similar
to those in Section 2 of (Malanowski and Maurer, 1996a)
and Section 5 in (Malanowski and Maurer, 1996b), show
that any solution of (41) is equivalent to a stationary point
of the following linear-quadratic accessory problem anal-
ogous to (QOy:

(QO), (y’glgmfﬁ(y,v,r)
subject to
y(t) — A(t)y(t) — B(t)v(t) = 0,
Zoy(0) + E1y(1) +r* =0,
(Y:(t),y(t) + (©°(t),v(t)) =0

forallt e (Wj,Wj+1), xS 25, 7=1...,74+1,
where Y%(¢t) and ©(t) are thei-th rows of T(t) and
©(t), respectively, while

~

T (y,v,7) =

3
Ly(0) + (r% (1))

In the same way as in the case of the accessory prob-
lem (QOY), we find that the conditions (B3)—(B5) imply
that, for anyr € R?"t¢, Problem(@)r has a unique
stationary point. Thus, we have arrived at the following
results:

+(r

Lemma 3. If Assumptions (B1)—(B5) and (C1)—(C2) hold,
then the JacobiarDF (a, p,w) is regular at (a, p, ).

By Lemma 3 the shooting method (LN2) is locally
quadratically convergent to the stationary pofnt p, &),
i.e., for any (b1, 01,;) € R?"*+4+J the generated se-
quence{(by, 0o, W)} Satisfies

’(5 - b(a+1)7 p— Q(a+1)7¢~d - w(a+1))|

S c|(afba>ﬁf Qc!cv&*wa)ﬁ'

Clearly, in a neighbourhood ofa, @), there is a one-to-
one correspondence between any ve¢toro) € R2"+

of the initial state and the junction points, and the solu-
tion (z,p) € W1>(0,1;R") x Wh>=(0,1;R") of the
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state and adjoint equations (34). On the other hand, byseems that fohigher-orderstate constrained problems,
(33), the corresponding contral € L*>°(0,1;R™) and one cannot avoid information on the structure of the op-
the Lagrange multipliens € L>°(0,1;R™) depend con-  timal control. It is connected with the fact that higher-
tinuously on (z,p) and . Hence we finally obtain the order state constraints can be viewed as cone constraints in
following convergence result analogous to Theorem 2:  spacesiW?:>°(0, 1; R¥), with p > 1. The analysis of pro-
jection onto such cones is difficult and requires more in-
Theorem 3. If the assumptions (B1)—(B5) and (C1)—(C2) formation on the projected element. At least in some cases
hold, then there exist constants > 0, ¢ > 0 and of higher-order state constraints the shooting method was

h < 1 such that, for each initial point(a, p1,w1) € used and the local quadratic convergence ensured (see,
OF*"(G, 5,®), the shooting method (LN2) is well de- €.9., Malanowski and Maurer, 2001).

fined. The sequencén. = (za,ta;sPa; Pa; Ha)}, COT- Similarly, the shooting method can be extended to
responding to{ (ba, ¢a; @a) }, CONVerges quadratically o problems with free final time (Maurer and Oberle, 2002),
- whereas the algorithm (LP1) can be hardly applied there.

~ 24—-1
177 = 11al| xoe x v < ch fora > 2. Throughout this paper we have assumed the coer-

In addition to that, the sequence of the junction points Civity of the Hessian of the Lagrangian. This assump-
{wa} converges quadratically ta. tion excludes an important class of optimal control, where
the solution is of the bang-bang type. Clearly, for prob-

lems with the bang-bang solutions the local stability of

) the structure of the optimal solution is crucial for the con-
5. Concluding Remarks vergence of Newton-type methods. Recent results con-
) _ cerning second-order optimality conditions and sensitiv-

The results presented in Sections 3 and 4 show that thqty analysis for this class of problems (Agrachewal,

assumptions required for the well-posedness and Iocalzooz. Felgenhauer, 2002; Kim and Maurer, 2003; Mau-
quadratic convergence of the SQP algorithm (LP1) are .o 5ng Osmolovskii, 2004) suggest that the local conver-

substentially weaker than those that ensure the same pmpgence results of the shooting method can be extended to
erties for the shooting method (LP2). The latter method some problems with bang-bang solutions.

requires additional assumptions: (C1) — on the structure

of the optimal control, and (C2), which ensure that this
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