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The paper presents several solutions to the discrete-time generalized predictive (GPC) controller problem, including an
anticipative filtration mechanism, which are suitable for plants with nonzero transportation delays. Necessary modifications
of the GPC design procedure required for controlling plants based on their non-minimal models are discussed in detail.
Although inevitably invoking the troublesome pole-zero cancellation problem, such models can be used in adaptive systems
as a remedy for the uncertainty or variability of the model order. The purpose of this paper is to present a complete GPC
controller design for delay plants that is robust to the overparameterization of the plant model. Refined conditions for
the existence and stability of GPC control solutions in terms of pertinent design parameters are given, and explicit forms of
closed-loop characteristic polynomials are provided. The issue of identifying the model cancellation order is also considered,
and practical solutions are proposed. The presented ideas are illustrated numerically.
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1. Introduction

Control system design, in both adaptive and non-adaptive
variants, can be effectively based on a long-range model-
based predictive control (MBPC) approach. The con-
trol strategies applied generally rely on an ‘emulator’
paradigm that consists in emulating the operations of sig-
nal prediction, which are physically unrealizable, with the
aid of non-parametric or parametric models (Gawthrop,
1987; Gawthropet al., 1996). The original MBPC strate-
gies are principally founded on the input-output mod-
els of controlled plants. Among them, the GPC algo-
rithm developed in (Clarke and Mohtadi, 1989; Clarke
et al., 1987) is one of the most highly approved MBPC
techniques (Clarke, 1988; Grimble, 1992; Landauet al.,
1998). This algorithm (in its simplest form) also appears
to be a promising substitute for the ubiquitous PID con-
troller. This is mainly due to its ability to deal with var-
ious types of difficult objects, such as unstable and non-
minimum phase systems, dynamic plants of unknown or-
ders, and either unknown or variable transportation de-
lays (Clarke, 1988; Grimble, 1992). What is more, the
GPC strategy is easy to implement and has great flexibil-
ity, which results form several tuning knobs tailoring the
algorithm to specific application needs.

Some generic guidelines for selecting the design
tuning knobs/parameters of the basic GPC algorithm
(namely, discrete-time horizon parameters:N1, N2 and

Nu) are given in (Clarke, 1988; Clarke and Mohtadi,
1989; Clarkeet al., 1987; Mohtadi and Clarke, 1986). A
comprehensive presentation of the results on tuning GPC
controllers can be found in Appendix A, where the stabil-
ity issue is also reviewed.

Common factors may appear in plant-model poly-
nomials for several reasons connected with fundamen-
tal parameterization and identification issues (Söderström,
1974; Söderström and Stoica, 1989). Such cancella-
tions may, for instance, occur in adaptive systems using
an overestimated plant-model order while attempting to
model the dynamic behavior of an unknown plant (Arent
et al., 1998). It is a known fact that many standard pole-
assignment techniques for designing digital controllers
(Landauet al., 1998; Wellstead and Zarrop, 1991; Ogata,
1995) have the disadvantage consisting in the fact that if
there is a (near or exact) pole-zero cancellation in the plant
model, the system of algebraic equations solved within a
control synthesis procedure becomes singular. This may
result in large-valued controller coefficients and/or in a de-
graded closed-loop performance. A method of designing
pole-placement controllers with an improved noise perfor-
mance (over the standard designs), in cases when the plant
model includes such an exact or near pole-zero cancella-
tion, is presented in (Halpern, 1988). As demonstrated by
(Lozano-Leal and Goodwin, 1985; Kreisselmeier, 1986;
Ossman and Kamen, 1987; Lozano-Leal, 1989; Lozano-
Leal and Zhao, 1994), even for simple cases ‘safe’ regions
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in the parameter space which exclude pole-zero cancella-
tions have very irregular geometry. A simplified method-
ology for avoiding such non-minimal models in adap-
tive control was considered by (van der Kooji and Pol-
derman, 1993; Arentet al., 1995; Arentet al., 1998),
where truncated (approximate) all-pole representations of
the plant are employed to overcome the pole-zero cancel-
lation problem.

The question of how such overparameterized plant
models with common factors affect predictive control al-
gorithms was considered by Rossiteret al. (1997). It was
shown that, in general, in the presence of common factors
it is not possible to satisfy finite-horizon stable-predictive-
control terminal constraints. This work concentrated on
two predictive algorithms guaranteeing stability (see also
Appendix A): SIORHC (Mosca and Zhang, 1992) and
SGPC (Kouvaritakiset al., 1992). They showed that any
common factor makes the matrices of the respective lin-
ear design equations rank deficient. In order to preserve
design solvability, two approaches based on the concept
of pseudoinverse were proposed with the assumption that
the common factor is either known or unknown.

This paper concerns the standard GPC design strat-
egy equipped with a simple mechanism of the so-called
anticipative filtering (AF) of the control error (Kowalczuk
et al., 1996; Kowalczuk and Suchomski, 2002), which al-
lows abating the command signal fictitiously. With such
an easy-to-implement mechanism we can minimize the
control effort associated with the GPC and facilitateλ-
tuning procedure. As was shown in (Kowalczuket al.,
1996; Kowalczuk and Suchomski, 2002), with AF-GPC
designed for non-delay systems, under certain conditions,
the solution of the GPC design always exists and the de-
sign yields stable control systems. It was also confirmed
there that some bounds on preliminary GPC design pa-
rameters have to be taken into account. The effectiveness
of this generic approach is related to the possibility of us-
ing a design procedure for determining the control hori-
zons, the order of plant cancellation, and the controller
gain of the GPC algorithm.

The principal aim of this paper is to present a
discrete-time GPC controller design suitable for plants
with a non-zero transportation delay. Some prior results
on the conditions of solvability of the GPC synthesis prob-
lem and on the corresponding closed-loop transfer func-
tion descriptions were shown in (Kowalczuk and Suchom-
ski, 1997). A consequent idea is to propose a necessary
modification of the GPC control design procedure that is
required for controlling plants based on their non-minimal
models.

As was mentioned above, overparameterization,
which can be utilized in adaptive systems as a remedy
for the uncertainty or variability of the model order, in-
evitably results in pole-zero cancellations, which are trou-

blesome in control system designing. Moreover, there is a
modeling-and-identification reality of the existing approx-
imate systemic and/or numerical cancellations, which can
be easily portrayed numerically by ‘almost’ non-minimal
plant models, which are also difficult for GPC control
design procedures. Furthermore, the elaborated rules of
tuning design parameters can be used as a starting point
for adaptive versions of the analyzed unconstrained GPC
methodology. Thus the ultimate purpose of this paper is to
present the AF-GPC controller for plants with a non-zero
transportation delay that is robust to the overparameteri-
zation of the plant model.

In particular, new refined conditions for the existence
and stability of the solution of the GPC design problem in
terms of pertinent design parameters will be given, and ex-
plicit forms of closed-loop characteristic polynomials will
be supplied. The examination of the space of principal
GPC design parameters (i.e., theobservation, or predic-
tion horizonsand thecontrol horizon) from the GPC solv-
ability viewpoint will allow us to distinguish four regions
admittedfor GPC solutions and onedeniedregion. Sim-
ple analytical rules will then be offered that, for a given
model of the plant, result in a set of controllers, which are
conveniently parameterized with respect to these design
‘knobs’ and lead to the characteristic polynomials of a re-
quired low degree. The polynomials of the zero, first, and
second degrees are of a practical interest to the designer
due to the ease of assessing stable GPC systems.

With uncertainty or a lack of knowledge about the
cancellation order, it is generally impossible to obtain the
characteristic polynomial of a desired degree. This brings
about fundamental difficulties in guaranteeing the stabil-
ity of GPC closed-loop systems. It is also clear that our
parameterization can be effectively utilized provided that
the cancellation order is known.

Therefore, two approaches to the detecting of the de-
tection order will be considered. One method can be re-
garded as a variant of the standard SVD-based algorithm
for estimating the numerical rank of an appropriately de-
fined matrix. The effectiveness of this method (and oth-
ers of this type) highly depends on a ‘decision threshold’
that can scarcely be chosen effortlessly. Therefore, in the
present paper we offer a new numerically robust algorithm
for the estimation of the cancellation order based on a
measure of the distance between subsequent solutions of a
properly defined set of Diophantine equations. With this,
it is important that the obtained knowledge about the true
system order not only facilitates the ‘principal’ GPC de-
sign but also duly conditions the procedure ofλ-tuning.

In brief, the content of this paper is the follow-
ing: The AF-GPC principles are presented in Section 2
in the form of a short lecture on fundamentals neces-
sary for understanding the principal material of the pa-
per. Several design aspects are thoroughly considered
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in Section 3, where we present some refined and pre-
cisely proved fundamental statements concerning the is-
sue of solvability (in terms of GPC parameter solvabil-
ity regions), only partially discussed in our previous re-
ports (Kowalczuk and Suchomski, 2002; Suchomski and
Kowalczuk, 2002a), and propose certain new conditions
for characteristic closed-loop polynomials of a definite
low degree. Another novelty of this paper is the treatment
of the overparameterization issue given in Section 4. We
propose there a calculus of the cancellation order and next,
having identified this model parameter, we concentrate on
the design of GPC control systems for non-minimal mod-
els. This allows us to present a modification of GPC tun-
ing rules suitable for the case of overparameterization and
pole-zero cancellation. The presented analytical delibera-
tions are illustrated with two numerical examples in Sec-
tion 5.

2. AF-GPC Fundamentals

Let a discrete-time plant be represented by a polynomial
model of the CARIMA type:

A(q−1)y(t) = B(q−1)u(t) + ∆−1C(q−1)v(t), (1)

where {u(t)}, {y(t)}, and {v(t)} are the input, output,
and zero-mean white-noise signals, respectively, while
q−1 is the backward shift operator and∆ = 1 − q−1

portrays the (non-scaled) two-point difference. The poly-
nomials are defined as

A(q−1) =
NA∑
i=0

aiq
−i, a0 = 1, (2)

B(q−1) =
NB∑

i=nB

biq
−i = q−nBB0(q−1),

1 ≤ nB ≤ NB , (3)

C(q−1) =
NC∑
i=0

ciq
−i, c0 = 1,

0 ≤ NC ≤ NA + 1, (4)

where nb = nB − 1 denotes the transportation de-
lay of the system considered. In the plant model (1)
an incremental-control channel and a disturbance channel
can readily be distinguished as

y(t) =
B̄(q−1)
Â(q−1)

∆u(t− 1) +
C(q−1)
Â(q−1)

v(t), (5)

where Â(q−1) = ∆A(q−1) =
∑NA+1

i=0 âiq
−i, â0 = 1,

and B̄(q−1) = qB(q−1). In our development an ad-
ditional restriction is assumed, namely,nB ≤ NB ≤

NA + 1, assuring that the dimension of the minimal state-
space representation associated with the incremental-
control channelB(q−1)/Â(q−1) is equal toNA + 1 (a
detailed discussion can be found in (Clarke and Mohtadi,
1989) and Appendix B).

2.1. Diophantine Basis

Let (Â(q−1), B(q−1)) be coprime. The Diophantine ba-
sis defined fori ≥ 1 consists of the following two pairs
of coupled Diophantine equations:

D1 : Â(q−1)Ei(q−1) + q−iFi(q−1)

= C(q−1), (6)

D2 : C(q−1)Hi(q−1) + q−iGi(q−1)

= B̄(q−1)Ei(q−1), (7)

D3 : Â(q−1)Hi(q−1) + q−iLi(q−1)

= B̄(q−1), (8)

D4 : Â(q−1)Gi(q−1) + B̄(q−1)Fi(q−1)

= C(q−1)Li(q−1). (9)

The coefficients of the quotient polynomialHi(q−1) =∑i−1
j=0 hjq

−j are Markov parameters of the control chan-

nel B̄(q−1)/Â(q−1) =
∑∞

i=0 hiq
−i. Note that here

hnb
= bnB

is the first non-zero Markov parameter. Sim-
ilarly, the coefficients of the second quotient polynomial
Ei(q−1) =

∑i−1
j=0 ejq

−j with e0 = 1 are Markov pa-

rameters of the disturbance channelC(q−1)/Â(q−1) =∑∞
j=0 ejq

−j . The residues of the Diophantine basis

take the following forms: Fi(q−1) =
∑NA

j=0 fi,jq
−j ,

Gi(q−1) =
∑NG

j=0 gi,jq
−j , andLi(q−1) =

∑NA

j=0 li,jq
−j ,

where NG = max {NB − 2, NC − 1}. With (NB ≤
1, NC = 0), we assume thatGi(q−1) = 0 for ev-
ery i. Likewise, the zeroing ofGi(q−1) appears when
B̄(q−1) = C(q−1). Moreover, in the sequel, only the
non-trivial case ofNG ≥ 0 will be considered.

It is a simple matter to check that in the case of a
non-zero transportation delaynb > 0 and for i ≥ nb +1
we have Hi(q−1) = q−nbH0

i (q−1) with H0
i (q−1) =∑i−1

j=nb
hjq

−(j−nb), while Hi(q−1) = 0 andH0
i (q−1) =

0 if 1 ≤ i ≤ nb. This then results in the follow-
ing residual polynomials for1 ≤ i ≤ nb: Gi(q−1) =
qiB̄(q−1)Ei(q−1) and Li(q−1) = qiB̄(q−1).

2.2. Design with Anticipative Filtering

The minimum-variancei-step ahead predictor of the plant
output has the following form derived from the model (1)
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for i ≥ 1:

ŷ(t + i) = Hi(q−1)∆u(t + i− 1) + ŷ(t + i|t), (10)

where ŷ(t + i|t) denotes the free component that can be
resolved recursively from (Gorezet al., 1987; Clarke and
Mohtadi, 1989):

C(q−1)ŷ(t + i|t) = Fi(q−1)y(t) + Gi(q−1)∆u(t− 1).
(11)

A vector

∆u(t) = [∆u(t) · · · ∆u(t + Nu − 1)]T,

whereNu denotes the control horizon, is sought after by
the minimization of the following quadratic cost function:

Ĵ(∆u(t)) =
N2∑

i=N1

(
ê(t + i)− δŷ(t + i)

)2

+ λ

Nu∑
i=1

(
∆u(t + i− 1)

)2
, (12)

where N1 and N2 are bottom and top prediction hori-
zon parameters, respectively. The functionê(t + i) =
ê(t + i |t ) = rie(t) represents a filtered error sequence
defined for a current control errore(t) = w(t) − y(t),
and [N1, N2], with N2 ≥ N1 ≥ 1, determines an
observation interval. For the constant future set points
w(t + i) = w(t), the quantitiesri are the coefficients
of the step response of the anticipation filter (AF), and
δŷ(t + i) = ŷ(t + i)− y(t) describes the trajectory of the
incrementally predicted plant output (Kowalczuket al.,
1996). A similar concept of such a ‘reference trajectory’
was also considered by Camacho and Bordons (1999) and
Maciejowski (2002).
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Fig. 1. Anticipative perspective on the plant output signal.

As is shown in Fig. 1, with the anticipative approach,
the generalized-predictive control signal ought to drive the
predicted outputδŷ(t+i) to the reference signal̂e(t+i),
taking into account the cost of control within the time in-
terval [1, Nu]. In practice, at each step, only the first el-
ement of a currently computed optimal control sequence

∆u∗(t) minimizing the index (12) is applied to the con-
trolled plant input

∆u∗(t) = kT
(
ê(t |t )− δŷ(t |t )

)
, (13)

where, for an effective observation horizonN0 =
N2 − N1 + 1, the vectors ê(t |t ) ∈ RN0 and
δŷ(t |t ) ∈ RN0 are respectively defined aŝe(t |t ) =
(w(t)− y(t)) [ rN1 · · · rN2 ]T and δŷ(t |t ) =

[ŷ(t + N1|t)− y(t) · · · ŷ(t + N2|t)− y(t) ]T, while

kT = [ k1 · · · kN0 ], k ∈ RN0 , is the first row of the

gain matrixK ∈ RNu×N0 :

K =
[
(HNu

N1,N2
)THNu

N1,N2
+ λINu

]−1

(HNu

N1,N2
)T,

(14)
where thematrix HNu

N1,N2
∈ RN0×Nu of Markov param-

etershas the Toeplitz structure

HNu

N1,N2
=


hN1−1 · · · hN1−Nu

...
...

...

hN2−1 · · · hN2−Nu

 , (15)

with hk = 0 for k < 0.

Note that our synthetic approach using Toeplitz ma-
trices is dual (or rather complementary) to the classical
Kalman-Ho identification-based system theory methodol-
ogy using Hankel matrices (see Appendix C).

Certain fundamental properties of the above matrix
are presented in Appendix D.

2.3. Analysis of the Closed-Loop System

From (11) and (13) it follows that the AF-GPC algorithm
can be written down in the form

C(q−1)∆u∗(t) = gC(q−1) (w(t)− y(t))

−G(q−1)∆u∗(t)−F̃ (q−1)y(t), (16)

where

g =
N0∑
i=1

kirN1+i−1 (17)

and, furthermore, G(q−1) = q−1∑N0
i=1 kiGN1+i−1(q−1), F̃ (q−1) = F (q−1) − C(q−1)∑N0
i=1 ki in which we haveF (q−1) =

∑N0
i=1 kiFN1+i−1

(q−1). Then the resulting closed-loop AF-GPC control
system takes its observer structure depicted in Fig. 2.

Taking into account that

Â(q−1)G(q−1) + B(q−1)F (q−1)

= q−1C(q−1)L(q−1), (18)
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Fig. 2. Observer structure of the AF-GPC system.

where L(q−1) =
∑N0

i=1 kiLN1+i−1(q−1), we obtain the
following characteristic polynomial of the closed-loop
system:

D(q−1) = D0(q−1)C(q−1), (19)

with D0(q−1) = D̃(q−1) + g∗B(q−1), D̃(q−1) =
Â(q−1) + q−1L(q−1), and

g∗ = g −
N0∑
i=1

ki =
N0∑
i=1

ki(rN1+i−1 − 1). (20)

As C(q−1) is assumed to be stable, the closed loop
system is stable ifD0(q−1) is stable. A classical root-
locus technique applied tõD(q−1) + g∗B(q−1) imme-
diately shows (Kowalczuket al., 1996) that for a given
B(q−1) and with a properly shaped̃D(q−1), preferably
of a low degree, there is an open interval for realg∗ such
that the resulting zeros of̃D(q−1) + g∗B(q−1) lie in the
unit open circle. Yet another observer structure of the AF-
GPC system is shown in Fig. 3, where the feedforward (g)
and feedback (g∗) gains are distinguished and an altered
observer filter is applied to the plant output.

�

�

1 Plant

FG
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++

y
∆

∆ u�

g*

�

Fig. 3. Alternative observer structure of the AF-GPC system.

Note that switching off the AF filter (ri = 1, i =
N1, . . . , N2) makesg∗ zero. Otherwise, the closed-loop
transfer functions from the commandw(t) to the plant
output y(t) can be shown as

Gwy(q−1) =
gB(q−1)

D̃(q−1) + g∗B(q−1)
. (21)

If there is no ‘differentiation’ in the incremental-
control channel of the plant model (i.e.,B(1) 6= 0), it

can be easily found out that the closed-loop system has a
unit DC gain (i.e.,Gwy(1) = 1). Note that in the case of
coprime Â(q−1) and B(q−1), the conditionB(1) 6= 0
must always be fulfilled. Moreover, from the first Dio-
phantine equation (6) it follows thatFi(1) = C(1) for
i ≥ 1. This means that the derivative action appears in the
output observer filterF̃ (q−1)/C(q−1) shown in Fig. 2.

3. Solvability of the GPC Problem

We shall now consider zeroing the coefficientλ in the
cost function (12) which implies that the control effort
is not included in the optimal design procedure. Such
a choice is principally motivated by the presumption of
looking for a fully analytical design algorithm. In such
a case the nominal control signal can still be moder-
ately shaped by suitably selecting the gain coefficient (17),
which is related to the analyzed design parameters (the
time horizons and the anticipation filter parameters). This
is one of the design tools which allows the designer to find
a balance between the control effort and the speed of the
controlled process.

With such a simplifying assumption (λ = 0), a nec-
essary and sufficient condition for the existence ofK
can be entirely based on the full column rank ofHNu

N1,N2
.

Consequently, a useful characterization of solvability con-
ditions in terms of preliminary GPC parameters and pre-
cise conditions for low-order closed-loop GPC systems
are given in the following subsections.

3.1. Basic Characteristics of Solvability

For N2 ≥ N1 + Nu − 1 the following two conditions
assuring thatrankHNu

N1,N2
= Nu were stated in (Peng

and Hanus, 1991):

(N1 = NB , Nu ≥ 1)
and

(N1 > NB , Nu = NA + 1).

Alternatively, based on the assumption thatNB = NA,
nB = 1 and N2 ≥ N1 + Nu − 1, the following two
(partial) conditions for the solvability of the GPC problem
were derived in (Zhang, 1996):

(N1 ≥ 1, Nu = NA + 1)
and

(N1 = NA = NB , Nu ≥ NA + 2).

Our complete assertions related to the solvability problem
are given in Lemma 1 and 2 (cf. Kowalczuk and Suchom-
ski, 2001).



Z. Kowalczuk and P. Suchomski10

Lemma 1. (Basic solvability regions). For coprime
Â(q−1) and B(q−1), the matrixHNu

N1,N2
has a full col-

umn rank (rankHNu

N1,N2
= Nu) if one of the following two

triple conditions is satisfied:

(1′) Nu = NA + 1, (1′′) Nu > NA + 1,

(2′) N1 ≥ NB , (2′′) N1 = NB ,

(3′) N2 ≥ N1 + NA, (3′′) N2 ≥ N1 + Nu − 1.

Proof. An elementary but tedious proof is given in Ap-
pendix E.

Remark 1. Note that in the above lemma in (1′′) Nu ≥
NA +1 is also admissible. Moreover, for the first set (1′)–
(3′) the other necessary condition (3′′) is satisfied, which
can be stated in terms of the effective observation horizon
as N0 ≥ Nu.

Lemma 2. (Admitted and denied regions).Let Â(q−1)
and B(q−1) be coprime.

(a) The matrix HNu

N1,N2
has a full column rank

(rank HNu

N1,N2
= Nu) if one of the following four

triple conditions is satisfied:

(10) Nu ≥ 1, (1′′−) Nu ≤ NA + 1,

(20) N1 ≤ nB , (2′′−) nB ≤ N1 ≤ NB

(30) N2 ≥ nB + Nu − 1, (3′′−) N2 ≥ NA + NB ,

(1′′+) Nu ≥ NA + 1, (1′−) Nu ≤ NA + 1,

(2′′+) nB ≤ N1 ≤ NB , (2′−) N1 ≥ NB ,

(3′′+) N2 ≥ NB + Nu − 1, (3′−) N2 ≥ N1 + NA.

(b) The matrix HNu

N1,N2
has a degenerated (column)

rank (rank HNu

N1,N2
= NA + 1 < Nu) if the fol-

lowing condition is fulfilled:

(1′+) Nu > NA + 1,

(2′+) N1 > NB ,

(3′+) N2 ≥ N1 + Nu − 1
(and ifN2 < N1 + Nu − 1).

Proof. Claims (1o)–(3o): For Nu ≥ 1, N1 ≤ nB ≤ NB

and N2 ≥ nB + Nu − 1 the matrix HNu

N1,N2
has a

square submatrixHNu

nB ,nB+Nu−1 of the lower-triangular
Toeplitz structure with a non-zero main diagonal com-
posed ofhnB−1 = hnb

= bnB
. This implies

rank HNu

N1,N2

∣∣∣Nu ≥ 1

N1 ≤ nB ≤ NB

N2 ≥ nB + Nu − 1

= rankHNu

nB ,nB+Nu−1 = Nu.

Claims (1′′−)–(3′′−): Taking into account the claims (1′)–
(3′) of Lemma 1, we can observe that ifNu ≤ NA + 1,
N1 = NB and N2 ≥ NA + NB , the matrixHNu

N1,N2
is

of a full column rank. Thus, for the selected horizonsNu

and N2, the matrixHNu

N1,N2
with an increased number of

rows maintains its column rank

rank HNu

N1,N2

∣∣∣Nu ≤ NA + 1

N1 ≤ NB

N2 ≥ NA + NB

= Nu.

Note that for N1 ≤ nB < NB the restriction onN2

established by the claim (3o) is weaker than the one rep-
resented by the claim (3′′−). In such a case, using the set
(1o)–(3o) is recommended.

Claim (1′′+)–(3′′+): The conditions (1′′)–(3′′) of Lemma 1
can be expanded as

(1′′· ) Nu ≥ NA + 1,

(2′′· ) N1 = NB ,

(3′′· ) N2 ≥ NB + Nu − 1.

Hence, forNu and N2 chosen such thatNu ≥ NA + 1
and N2 ≥ NB + Nu − 1, increasing the number of rows
of the analysed matrix by diminishingN1 ≤ NB does
not affect the matrix rank

rank HNu

N1,N2

∣∣∣Nu ≥ NA + 1

N1 ≤ NB

N2 ≥ NB + Nu − 1

= Nu.

Note that the caseN1 ≤ nB ≤ NB has a wider interpre-
tation in the claims (1o)–(3o). Therefore, ifN1 = nB <
NB , this set of conditions is recommended.

Claim (1′−)–(3′−): From the claims (1′)–(3′) of Lemma
1 it follows that with N1 ≥ NB and N2 ≥ N1 + NA

the matrixHNA+1
N1,N2

has a full column rank. Hence, it can
be deduced that the matrix having a decreased number of
columns is also of a full column rank:

rankHNu

N1,N2

∣∣∣Nu ≤ NA + 1

N1 ≥ NB

N2 ≥ N1 + NA

= Nu.

Claim (1′+)–(3′+): Let Nu ≥ NA + 2, N1 > NB and
N2 ≥ N1+Nu−1. From (D.5) and (D.7) in Appendix D it
follows that HNu

N1,N2
âNA+1

Nu
= 0N0 . As âNA+1

Nu
is non-

zero, it is evident that the columns ofHNu

N1,N2
are not

linearly independent. Clearly, the necessary condition for
HNu

N1,N2
to be of a full column rank takes the form of the

basic inequalityN2 ≥ N1 + Nu − 1.

The basic solvability regions have their plane (angu-
lar) interpretations in the three dimensional space of the
design parameters(N1, N2,Nu) as shown in Fig. 4. This
area can be used as an outset for determining other regions
pertinent to the design of the GPC controller that are de-
fined in Lemma 2 and illustrated in Figs. 5 through 7.
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Fig. 4. Basic GPC solvability regions.
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Fig. 5. Four regions admitted for GPC solutions.

The restrictive condition (b) can be interpreted as a
region that has a complementary projection with respect
to orthogonal projections of all the regions of (a) on a
quarter-plane(N1, Nu), as is shown in Fig. 7.

A useful reformulation of the solvability conditions
is given in Lemmas 3 and 4 solely from the viewpoint of
the prediction/observation horizon parametersN1 andN2.

Lemma 3. (Solvability regions with respect toN1). The
GPC-design solvability area can be entered in the follow-
ing ways:

()0 if 1 ≤ N1 ≤ nB , then Nu ≥ 1
and N2 ≥ nB + Nu − 1;

()′′ with nB ≤ N1 ≤ NB , if
()′′− 1 ≤ Nu ≤ NA +1, then N2 ≥ NB +NA or
()′′+ Nu ≥ NA + 1, then N2 ≥ NB + Nu − 1;
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Fig. 6. Denied region from the GPC solvability viewpoint.
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Fig. 7. Entire area of solvability and its orthogonal pro-
jections on(N1, Nu).

()′− for N1 ≥ NB it is necessary that
1 ≤ Nu ≤ NA + 1 and N2 ≥ N1 + NA.

Lemma 4. (Restricted certainty of solvability with respect
to N1). For any pair (N1, Nu) such thatN1 ≤ NB or
Nu ≤ NA + 1, there exists anN2 such that the ma-
trix HNu

N1,N2
associated with the coprimêA(q−1) and

B(q−1) has a full column rank. Alternatively, for the
pairs (N1, Nu) with N1 > NB and Nu > NA + 1, the
matrix HNu

N1,N2
does not maintain its column rank.

Remark 2. The conditions (1o), (1′−) and (1′′) may seem
too conservative as compared to the ‘strictly’ necessary
condition N2 = N1 + Nu − 1. However, it is worth
noticing that, in general, this condition is not a sufficient
one.

Example 1. Let us considerA(q−1) = 1 + q−1 +
0.75q−2 + 0.75q−3 and B(q−1) = q−1 + 0.5q−2. It can
be easily verified that for the case of the condition (1′

−) we
have rank H2

2,3 = rankH2
2,4 = 1 but rank H2

2,5 = 2,
and rank H2

3,4 = 1, whereasrank H2
2,6 = 2. As another

example, let us takeA(q−1) = 1 − 0.25q−1 − 0.5q−2 +
0.25q−3 + 0.25q−4 − 0.1q−5 and B(q−1) = q−1 −
0.75q−2 − 0.675q−3 + 0.45q−4, where in the case (1′′−):
rank H3

2,4 = 2, while rank H3
2,9 = 3. For yet another

set of polynomials (A(q−1) = 1 + 0.5q−1 + 3.125q−2 −
0.5q−3, B(q−1) = q−1 + 0.5q−2 + 1.125q−3) and the
case (1′′+) we haverank H4

2,5 = 3 and rank H4
2,6 = 4.

�

The completeness of the above lemmas should be
confronted with the results obtained previously. Note that
an extensive discussion of the relevant results is given
in (Kowalczuk and Suchomski, 2001; Suchomski and
Kowalczuk, 2002a). Some generic guidelines for the se-
lection of the tuning parameters(N1, N2, Nu, λ) of the
basic GPC algorithm can be found in (Clarkeet al., 1987;
Clarke, 1988; Clarke and Mohtadi, 1989; Mohtadi and
Clarke, 1986). Simple methods, such as model algorith-
mic control rules (Rouhani and Mehra, 1982), require
N1 = 1 and Nu = N2 with λ = 0, which, however,
do not guarantee the existence ofK (Clarke and Mo-
htadi, 1989). The dead-beat (DB) GPC controller can also
be derived via settingN1 = NA + 1, N2 ≥ 2NA + 1,
Nu = NA +1 and λ = 0 (Clarke, 1988; Clarke and Mo-
htadi, 1989). Moreover, it has been claimed that in most
practical cases of minimal plant models the following set
of GPC parameters should be effective:N1 = NA + 1,
N2 ≥ 2NA + 1, Nu ≤ NA + 1 and λ = 0. The choice
Nu = 1 can be satisfactory, whilst a ‘difficult’ plant re-
quiresNu equal to the number of unstable/underdamped
poles (Clarke, 1988; Clarke and Mohtadi, 1989). Since we
assume thatN2 ≥ N1 + Nu − 1 and λ = 0, the follow-
ing two conditions for the DB control law can be proposed
(Peng and Hanus, 1991): (N1 > NB , Nu = NA + 1)
and (N1 = NB , Nu ≥ NA + 1). These settings can
be used for a suitably augmented system to make the GPC
strategy equivalent to a typical pole-placement design. An
incomplete theorem on reducing the GPC closed-loop or-
der by properly choosing the tuning parameters was sug-
gested in (Zhang, 1996), where, under the assumption
that NB = NA, nB = 1, N2 ≥ N1 + Nu − 1
and λ = 0, the following two conditions were derived:
(N1 ≥ NA = NB , Nu = NA+1) and (N1 = NA = NB ,
Nu ≥ NA + 2), which lead to the DB property of the
GPC system. On the other hand, the following experi-
mentally confirmed strategies for selecting the GPC de-
sign parameters were recommended in (McIntoshet al.,
1991): (N1 = 1, N2 ≥ nb + 1, Nu = 1), (N1 = 1,
N2 > nb + Nu, Nu = NA + 1) and (N1 = NB + 1,
N2 ≥ N1 + Nu − 1, Nu = NA + 1) with λ = 0. An in-
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teresting discussion concerning various methods of tuning
GPC parameters can also be found, e.g., in (Maciejowski,
2002; Rossiter, 2003).

Ending the basic analysis of the GPC tuning prob-
lem, let us give a short comment on the consequences of
using the zeroed lambda. On the one hand, within our
methodology the coefficientλ does not play the role of a
contributing safety factor in assuring that the inversion in
the formula (14) will exist. Note that such a naive regular-
ization of the solvability of the GPC problem can be help-
ful in the lack of knowledge about the full column rank
of the celebrated Markov matrixHNu

N1,N2
, but here this

trick is not necessary because we utilize the demonstrated
beauty of H. On the other hand, after pre-selecting de-
sign parameters according to the proposed methodology,
a non-zero lambda can always be used as an additional
re-tuning instrument in the GPC control design. What is
more, even the analytical nature of the design procedure
can then be partially preserved. Namely, as the coefficient
λ contributes to the prediction control gain matrix and to
the closed-loop characteristic polynomial, a suitable anal-
ysis can be performed with the use of the standard root-
locus technique (Kowalczuket al., 1996; Kowalczuk and
Suchomski, 2002; Suchomski and Kowalczuk, 2002b).
Thus theλ-optimization objective simply represents yet
another design space, which can be explored (in the case
of concrete unfulfilled control signal constraints, for in-
stance).

3.2. Conditions for Low-Order Polynomials D̃(q−1)

Principal conditions for the existence of the optimal solu-
tion vector k|λ=0 in terms of pertinent GPC design pa-
rameters were analyzed in (Suchomski and Kowalczuk,
2002a), where an explicit parameterization of the poly-
nomials D̃(q−1) of an arbitrary degree was presented.
Clearly, by employingD̃(q−1) of a sufficiently low de-
gree, the designer can substantially facilitate the issue of
stabilizing the closed-loop system. The following sum-
marizing theorem deals with the conditions for̃D(q−1)
of the zero, one and second degrees as the most relevant

Table 2. First degree conditions:̃D(q−1) = 1 + d̃1q
−1.

NB Nu N1 N2 d̃1

()0
a nB + 1 ≥ 1 ≤ nB nB + Nu − 1 α1

b nB + 1 ≥ NA + 1 ≤ nB ≥ nB + Nu α1

c1
c2

nB + 1
nB

NA

NA

≤ nB

≤ nB

≥ nB + Nu

≥ nB + Nu

α1 + α2

α3

()′′− NA NB − 1 ≥ NA + NB α4 + α5

()′′+ ≥ NA + 1 NB − 1 ≥ NB + Nu − 1 α4

()′− NA ≥ NB ≥ N1 + NA α6

cases of practical importance, including stability. In order
to save space, we use a concise table form to present the
details of the theorem. Note that this set can be derived
on the basis given in (Kowalczuk and Suchomski, 2001;
2002; Suchomski and Kowalczuk, 2002a).

Theorem 1. (Conditions for D̃(q−1) of a low degree).
With a minimal plant model applied in the GPC design,
the polynomialD̃(q−1) has a prescribed low degree if the
corresponding conditions listed in Tables 1–3 are fulfilled
(Table 4 details the components of the parameters of these
polynomials).

Table 1. Zero degree conditions:̃D(q−1) = 1.

NB Nu N1 N2

()0
a nB ≥ 1 ≤ nB nB + Nu − 1

b nB ≥ NA + 1 ≤ nB ≥ nB + Nu

()′′+ ≥ NA + 1 NB ≥ NB + Nu − 1
()′− NA + 1 ≥ NB ≥ N1 + NA

Remark 3. The closed-loop control system with̃D(q−1)
of the first degree is stable iff|d̃1| < 1. The closed-loop
control system withD̃(q−1) of the second degree is sta-
ble iff 1 + d̃1 + d̃2 > 0, 1− d̃1 + d̃2 > 0, and d̃2 < 1.

Remark 4. Assuming thatNu ≥ NA+1, 1 ≤ N1 ≤ nB ,
and N2 ≥ nB + Nu − 1, we can rewrite the conditions
()0b by taking NB = nB , NB = nB + 1, and NB =
nB + 2 for D̃(q−1) of the zero, first and second degrees,
respectively.

Concluding this section, let us emphasize that from
the viewpoint of design completeness our results are
pioneering (see Lemma 2 and the denied and admitted
regions in Figs. 5 and 6). The designer obtains new
design perspectives, although the optimal parameter
choice apparently depends on both the desirable control
goals (stability, quality, complexity) and other parameters
being fixed. For example, the full range of the values
of N1 (see Lemma 3) can be utilized if necessary (from
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Table 3. Second degree conditions:D̃(q−1) = 1 + d̃1q
−1 + d̃2q

−2.

NB Nu N1 N2 d̃1 d̃2

()0 a nB + 2 ≥ 1 ≤ nB nB + Nu − 1 γ1 γ2

b nB + 2 ≥ NA + 1 ≤ nB ≥ nB + Nu γ1 + γ3 γ2

c1

c2

c3

c4

nB

nB + 1

nB + 2

nB + 2

NA − 1

NA − 1

NA − 1

NA

≤ nB

≤ nB

≤ nB

≤ nB

≥ NA + nB − 1

≥ NA + nB − 1

≥ NA + nB − 1

≥ NA + nB

β1 + β2

β1 + β2 + γ3

β1 + β2 + γ1 + γ3

β2 + γ1 + γ3

β3

β3

β3 + γ2

γ2

a NA − 1 NB − 2 ≥ NA + NB β4 + β5 + γ1 + γ3 β6 + γ2

()′′− b NA − 1 NB − 1 ≥ NA + NB β4 + β5 + γ3 β6

c NA NB − 2 ≥ NA + NB β5 + γ1 + γ3 γ2

()′′+ ≥ NA + 1 NB − 2 ≥ NB + Nu − 1 γ1 + γ3 γ2

()′− NA − 1 ≥ NB ≥ N1 + NA β4 + β5 β6

Table 4. Constituent parameters of the parameters of the characteristic polynomials described in Tables 2 and 3.

i αi βi γi

1 kNB−N1bNB
(aNA−1 − aNA

)
N2−nB+1∑

i=1

ki+nB−N1hi+nB−NA−1 kNB−N1−1bNB−1

2 aNA

N2−nB+1∑
i=1

ki+nB−N1hi+NB−NA−3 aNA

N2−nB+1∑
i=1

ki+nB−N1hi+nB−NA−2 kNB−N1−1bNB

3 aNA

N2−nB+1∑
i=1

ki+nB−N1hi+NB−NA−2 aNA

N2−nB+1∑
i=1

ki+nB−N1hi+nB−NA−1 kNB−N1bNB

4 k1bNB
(aNA−1 − aNA

)
N0∑
i=1

kihi+N1−NA−1

5 aNA

N0∑
i=1

kihi+NB−NA−3 aNA

N0∑
i=1

kihi+N1−NA−2

6 aNA

N0∑
i=1

kihi+N1−NA−2 aNA

N0∑
i=1

kihi+N1−NA−1

some technical standpoint). GreaterN1 can be used, for
instance, to comply with some control signal restrictions.
Note that, at the same time, all the low order solutions
determined by Theorem 1 are available to the designer.

A discussion concerning the closed-loop perfor-
mance resulting from the overrated value of the bottom
horizon parameterN1 can be found in (Kowalczuk and
Suchomski, 2002; Suchomski and Kowalczuk, 2002a).
Overestimating the plant model order leads to enlarging
both the horizon bottomN1 (related to the structure of the
numerator of the plant model,nB , NB) and the effective
observation horizonN0 = N2 −N1 + 1 (related usually
to the degree of the plant denominator,N0 ≥ NA + 1).
Consequently, this design imperative can cause degrada-

tion in the speed of the output, which, at the same time,
can alleviate the control effort (such an effect of inaccu-
rate modeling can be amended by appropriately tuning the
top horizon N2, (Kowalczuk and Suchomski, 2002; Su-
chomski and Kowalczuk, 2002a)).

It should also be mentioned here that, in general,
with the non-linear characteristics of design, one could
not expect a monotonous progress of the control indices
in terms of a given design tuning parameter (see also the
results presented by Suchomski and Kowalczuk (2002a)).
Though, in most cases (surely, not always), such an effect
is possible to be obtained as long as one keeps the ap-
plied conditioning of the GPC design (defined in Tables 1
through 3).
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4. GPC Design for Non-minimal Models

In systems theory, it is often required to determine (with-
out resorting to factorization) whether two given polyno-
mials are relatively prime. For example, the knowledge
of an ‘unstable’ pole-zero cancellation in a real rational
system model is essential for the analysis of most crucial
system characteristics, such as stability and sensitivity to
parameter variations. A cardinal algebraic test for detect-
ing a common factor in two polynomials requires check-
ing the rank deficiency of a resultant Sylvester matrix as-
sociated (in terms of coefficients) with these polynomials
(Cullen and Hall, 1971; Middleton and Goodwin, 1990;
Ogata, 1995, Landauet al., 1998). This, however, implies
numerically inept handling of a matrix of the order equal
to the sum of the degrees of the two polynomials. A sim-
ple necessary and sufficient condition for two polynomi-
als to have a common factor was given in (Vogt and Bose,
1970), and it is based on a test for the zeroing of the deter-
minant of one (matrix) polynomial for an argument being
the row companion (regulator) form of a system model,
having the other polynomial as its characteristic polyno-
mial. A comparison of the computational effort required
for the above approaches can be found in (Cullen and Hall,
1971). The determination of the model order based on
tests for common factors in models estimated via direct
least-squares and maximum-likelihood methods was dis-
cussed in (Unbehauen and Göhring, 1974; van den Boom
and van den Enden, 1974). A systematic way of perform-
ing tests for possible pole-zero cancellations in uncertain
models obtained in least-squares identification was pre-
sented in (Söderström, 1975). A non-iterative maximum-
likelihood approach for the detection and estimation of
the greatest common factor (divisor) of two given poly-
nomials, whose coefficients are assumed to have a normal
distribution with a consistently estimable covariance, was
introduced in (Stoica and Söderström, 1996).

In order to facilitate a further discussion, let us intro-
duce the following notation associated with a given poly-
nomial P (q−1) =

∑NP

i=0 piq
−i of deg P (q−1) = NP :

p =
[

p0 · · · pNP

]T

, (22)

T P
m =


p 0NP +1

... 0NP +1

0NP +1 p
... 0NP +1

...
...

...
...

0NP +1 0NP +1

... p


,

m ≥ 1, T P
m ∈ R(NP +m)×m. (23)

The Diophantine equations D1–D4 can be written in the
following compact forms of linear equations:

D1 :

[
T Â

i

0i,NA+1

INA+1

] [
ei

fi

]

=

[
c

0NA−NC+i

]
, (24)

D2 :

[
T C

i 0i,NG+1

0NG−NC+1,i ING+1

] [
hi

gi

]

=

[
ẽi

0NG−NB+2

]
, (25)

D3 :

[
T Â

i

0i,NA+1

INA+1

] [
hi

li

]

=

[
b̄

0NA−NB+i+1

]
, (26)

D4 :
[

T Â
NG+1 T B̄

NA+1

] [
gi

fi

]

=

[
l̃i

0NG−NC+1

]
, (27)

where ẽi ∈ RNB+i−1 and l̃i ∈ RNA+NA+1 are associ-
ated with polynomialsẼi(q−1) = B̄(q−1)Ei(q−1) and
L̃i(q−1) = C(q−1)Li(q−1), respectively. The matrices
of (24)–(26) are of a lower triangular structure with unit
diagonal elements. Solutions to these equations can thus
be easily (i.e., recursively) obtained by performing a stan-
dard low-cost and numerically stable procedure of ‘for-
ward substitution’ (Golub and van Loan, 1996; Higham,
1996). The matrix (27) has a Sylvester-like structure that,
for any coprime pair(Â(q−1), B(q−1)), achieves guar-
anteed non-singularity (Higham, 1996). However, the so-
lution of (27) requires higher computational efforts when
compared to (24)–(26) and can even become numerically
ill-conditioned when an approximate (near-) cancellation
appears in(Â(q−1), B(q−1)).

Assume that the model equation (1) decrees
an overparametrized model of the controlled plant
with A(q−1) = A′(q−1)Λ(q−1) and B(q−1) =
B′(q−1)Λ(q−1), where A′(q−1) and B′(q−1) denote
the factual (true) plant polynomials, whileΛ(q−1) of
degΛ(q−1) = NΛ > 0 is a monic polynomial, repre-
senting the greatest common factor (GCF) ofA(q−1) and
B(q−1). NΛ will be referred to as the cancellation or-
der. Likewise, all ‘primed’ items (polynomials and pa-
rameters) will be henceforth associated with the minimal
model.
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Three crucial problems can be formulated:

Problem 1. (Principal GPC-design problems resulting
from overparameterization).

1. How does the lack of knowledge about the cancella-
tion order influence the GPC design?

2. How is the resulting GPC control law affected by the
presence of common factors?

3. Are there any difficulties the controller calculations
that are imposed by the common factors?

4.1. Regional Behavior (No Knowledge onNΛ)

Let us consider the effect of uncertainty about the system
order, which in the case of its overestimation and in virtue
of Lemmas 1 and 2 clearly results in the overestimation of
Nu, N1 and N2. Taking into account the distinguished
regions forrank HNu

N1,N2
= Nu, the following corollary

can be proposed:

Corollary 1. (Sensitivity to overparameterization).In the
specific regions of invertability of (14) forλ = 0 model
overparameterization has the following effects:

(j) The claim ()′′+:
– for larger N1 the loss of solvability is possible,
– letting N1 = nB guarantees solvability.

(jj) The claim ()′′−:
– for larger N1 solutions of type()′− are probable,
– for larger Nu solutions can be of type()′′+,
– the loss of solvability is possible (for bothN1 and
Nu overestimated),

– letting N1 = nB or Nu = 1 guarantees solva-
bility.

(jjj) The claim ()′−:
– too big Nu may lead to the loss of solvability,
– letting Nu = 1 guarantees solvability.

In general, in all the above cases of overparameteri-
zation, there is no possibility of obtaining̃D(q−1) of an
assumed degree. Thus, in particular, the DB control is
also impossible.

An important inference follows from Corollary 1,
i.e., the existence ofK for λ = 0 can always be en-
forced. With the lack of knowledge about the cancella-
tion order NΛ, however, there are no means of establish-
ing D̃(q−1) of a desired low degree. And this practically
implies difficulties in guaranteeing the stability of GPC
closed-loop systems. For example, as we can see from
(Suchomski and Kowalczuk, 2002a), takingNu = 1 al-
ways givesD̃(q−1) with a ‘high’ degree ofNA. More-
over, it is worth noticing that the lack of knowledge about
the exact value of the plant transportation delay may lead
to the loss of solvability solely if bothNA and NB are
overestimated.

4.2. Closed Loop Analysis

As the system’s Markov parametershi, i ≥ 1, are inde-
pendent of the common factorΛ(q−1), for properly cho-
sen design parameters(N1, N2, Nu) the gain g is also
unaffected by overparameterization. At the same time,
however, the polynomialsG(q−1), F (q−1), F̃ (q−1) and
L(q−1) = L′(q−1)Λ(q−1) have different forms for dif-
ferent Λ(q−1).

Since there holds Â′(q−1)G(q−1) +
B′(q−1)F (q−1) = q−1C(q−1)L′(q−1), we con-
clude that by employing the control law with the observer
filters G(q−1)/C(q−1) and F̃ (q−1)/C(q−1) (or
F (q−1)/C(q−1)) to the actual plant described with the
aid of A′(q−1) and B′(q−1), the following closed-loop
characteristic polynomial results:

D(q−1) = D′
0(q

−1)C(q−1), (28)

whereD′
0(q

−1) = Â′(q−1) + q−1L′(q−1) + g∗B′(q−1)
does not depend onΛ(q−1).

Remark 5. Note that from the viewpoint of identification
(used in adaptive GPC schemes), it is of great significance
that in this case there is no need forΛ(q−1) to be sta-
ble. On the other hand, ifC(q−1) = C ′(q−1)Λ(q−1),
we have G(q−1) = G′(q−1)Λ(q−1) and F (q−1) =
F ′(q−1)Λ(q−1). Consequently, in such cases, as well as
when the control channel of the plant model itself is non-
minimal with a common factorΛ(q−1), the internal sta-
bility condition requiresΛ(q−1) to be stable.

4.3. Cancellation Order Detection and Design
Perspectives

From the third Diophantine equation (8) it follows that for
given Â(q−1) and B̄(q−1) a quite ‘natural’ way of de-
termining the cancellation orderNΛ can be based on the
examination of the column rank of subsequent left column
submatrices of the matrixHNu

N1,N2
with properly chosen

parametersN1 and N2.

Lemma 5. (Rank deficiency of HNu

N1,N2
for a

reducible/non-coprime pair(Â(q−1), B̄(q−1))). Let
N1 ≥ NB and N2 ≥ N1 + NA. For polynomials
Â(q−1) of deg Â(q−1) = NA + 1 and B̄(q−1) of
deg B̄(q−1) = NB − 1 having a greatest common fac-
tor Λ(q−1) of deg Λ(q−1) = NΛ > 0, we have

rank HNu

N1,N2
=

{
Nu if Nu ≤ NA′ + 1,

NA′ + 1 if Nu > NA′ + 1,
(29)

and the range space ofHNu

N1,N2
can be found as

R[HNu

N1,N2
] = R[Hmin{Nu,NA′+1}

N1,N2
].
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Proof. Taking into account the fact thatN1 ≥ NB > NB′

and N2 ≥ N1 + NA > N1 + NA′ , we observe that the
claim ()′− of Lemma 2 produces

rank HNu

N1,N2

∣∣∣Nu ≤ NA′ + 1

N1 ≥ NB′

N2 ≥ N1 + NA′

= Nu,

while the claim()′+ of the same lemma provides

rank HNu

N1,N2

∣∣∣Nu > NA′ + 1

N1 > NB′

N2 ≥ N1 + Nu − 1

< Nu.

A recursive algorithm developed for examining the
rank deficiency ofHNu

N1,N2
, being a version of a recursive

procedure (Boullion and Odell, 1971; Bunch and Nielsen,
1978) for computing the Moore-Penrose pseudoinverse of
a matrix, can be found in (Kowalczuket al., 1996; Kowal-
czuk and Suchomski, 1999; 2002).

Consider an increasing sequence ofNu = 1, 2, . . . ,
and let N̄u denote the lowestNu for which the defi-
ciency of the column rank ofHNu

N1,N2
is detected. Then

we infer that the cancellation orderNΛ can be established
as

NΛ = NA − N̄u + 2. (30)

In the process of detecting the column rank defi-
ciency ofHNu

N1,N2
, any ‘thresholding’ mechanism of deci-

sion can be employed. The basic criterion can be obtained
by examining singular values of subsequent left submatri-
ces of HNu

N1,N2
: it is well known that a deficiency in the

rank of a matrix may be signaled by a ‘gap’ in its singu-
lar values (Golub and van Loan, 1996; Stewart, 1998). A
numerically cheap, ‘SVD-free’ algorithm can also be con-
sidered that is based on a recursively computed measure
of an angular distanceκi

N1,N2
, i ≥ 1, between a left sub-

matrix Hi
N1,N2

of HNu

N1,N2
and its subsequent column

hi+1
N1,N2

= [ hN1−i−1 · · · hN2−i−1 ]T:

κi
N1,N2

= sin∠
{

hi+1
N1,N2

, PR[Hi
N1,N2

]h
i+1
N1,N2

}
, (31)

wherePR[Hi
N1,N2

] denotes the orthogonal projector onto

R[Hi
N1,N2

]. It is worth noticing that while completing
the above-mentionedNΛ-estimation algorithm for chosen
N1 ≥ NB and N2 ≥ N1 + NA, a sequence of the gain
vectorsk for consecutiveNu = 1, . . . , NA′ +1 is estab-
lished as a by-product (at the same time).

Remark 6. A critical point of the above approaches is
a right answer to the thresholding question: How small
should the tested value (a singular value or an angular dis-
tance) be to be classified as ‘zero’? In other words: At

what level should a decision threshold be placed? This
question can also be posed as a classical problem of deter-
mining a numerical rank of a given matrix (Higham, 1996;
Stewart, 1998). When numerically computed (perturbed)
singular values ofHNu

N1,N2
are small and differ very

slightly, the standard algorithms for solving this problem
may have inferior sensitivity (Bjorck, 1996; Golub and
van Loan, 1996). It is also worth emphasizing that the ob-
served ‘gap’ between the singular values, which serves as
a basis for the decision on rank deficiency, must be reason-
ably large as compared to an actual estimate (ε) of compu-
tation errors. On the other hand, overly largeε can easily
result in missing the gap (Stewart, 1998). The same draw-
back is characteristic if algorithms are based on checking
the angular distance between the subsequent column of
HNu

N1,N2
and the range subspace of its corresponding left

submatrix (Kowalczuket al., 1996; Kowalczuk and Su-
chomski, 1999; 2002).

Now, let NΛ be known and C(q−1) of
deg C(q−1) = NC ≤ NA − NΛ + 1 represent an
arbitrarily chosen stable observer polynomial. From the
fourth Diophantine (D4) of the equation (9) it follows
that, for i ≥ 1,

Â(q−1)G′
i(q

−1) + B̄(q−1)F ′
i (q

−1)

= C(q−1)Li(q−1), (32)

where the polynomialsG′
i(q

−1) of deg G′
i(q

−1) =
NG′ = max {NB −NΛ − 2, NC − 1} ≥ 0 and
F ′

i (q
−1) of deg F ′

i (q
−1) = NA − NΛ denote the

reduced-in-degree numerators of the input and output
observer filters, respectively, whileLi(q−1) is appro-
priately derived by using the non-minimal model of
the control channel. The polynomialsG′

i(q
−1) and

F ′
i (q

−1) can thus be computed based on the triplet
(A(q−1), B(q−1), C(q−1)) without performing any re-
duction in the control channel model.

By considering the Diophantine equations (D1)–
(D3) of (6)–(8), we derive the formula(

G′
i(q

−1) + Hi(q−1)F ′
i (q

−1)
)
Λ(q−1)

= Li(q−1)E′
i(q

−1), (33)

in which the polynomials of the plant model of (5) do not
appear. Having obtainedG′

i(q
−1) and F ′

i (q
−1), we can

regard this formula as a Diophantine equation inΛ(q−1)
andE′

i(q
−1) of deg E′

i(q
−1) = i−1. On the other hand,

the coefficients ofE′
i(q

−1) and Ei(q−1) are obviously
related via the following relation:

∞∑
j=0

e′jq
−j = Λ(q−1)

∞∑
j=0

ejq
−j . (34)

Note that solving the (Diophantine) equation (33)
should give the sameΛ(q−1) for all i ≥ 1.
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The above observations establish a suitable basis for
the following procedure for estimatingNΛ: At this stage,
since NΛ is unknown, it is convenient to assume the
simplest caseC(q−1) = 1. Considering a hypothesis
NΛ = m, where m ∈ {1, . . . , NB − nB}, we obtain
the following coupled Diophantine equations:

Â(q−1)Gm
i (q−1) + B̄(q−1)Fm

i (q−1) = Li(q−1), (35)(
Gm

i (q−1) + Hi(q−1)Fm
i (q−1)

)
Λm

i (q−1)

= Li(q−1)Em
i (q−1), (36)

where for i ≥ 1 the following degree-constraints are as-
sumed: deg Λm

i (q−1) = m, deg Gm
i (q−1) = NB −

m−2 (with Gm
i (q−1) = 0 if m = NB −nB and nB =

1), deg Fm
i (q−1) = NA − m, and deg Em

i (q−1) =
i − 1. The equation (35) can be transformed into the fol-
lowing sets of linear equations for the coefficients of the
polynomialsGm

i (q−1) and Fm
i (q−1):

[
T Â

NB−m+1 T B̄
NA−m+1

][gm
i

fm
i

]
=

[
li

0NB−m−1

]
,

T B̄
NA−NB+2f

m
i = li

if m = NB − nB and nB = 1.

(37)

In order to transform (36) into an equation linear
solely in Λm

i (q−1), we should consider an estimate of
Em

i (q−1). By virtue of (34) the following recursive for-
mula can be written fori > 1:

∞∑
j=0

em
i,jq

−j = Λm
i−1(q

−1)
∞∑

j=0

ejq
−j , (38)

where Λm
i (q−1) =

∑m
j=0 λm

i,jq
−j with λm

i,0 = 1.
Now, taking into account the fact thatEm

i (q−1) =∑i−1
j=0 em

i,jq
−j with em

i,0 = 1, we obtain

em
i,j =

min{j,m}∑
k=0

λm
i,kej−k for j = 0, . . . , i− 1. (39)

Hence the required set of linear equations inλ̃m
i takes the

subsequent aggregate form:[
0T

m

T
Mm

i
m

]
λ̃m

i = T Li
i em

i −

[
mm

i

0m

]
, (40)

where λ̃m
i = [ λm

i,1 λm
i,2 . . . λm

i,m ]T is a vector of
the coefficients of the cancellation polynomialΛm

i (q−1),
and

Mm
i (q−1) = Gm

i (q−1) + Hi(q−1)Fm
i (q−1), (41)

λm
i =

[
1

λ̃m
i

]
. (42)

For eachm, a sequence of least-squares solutions
Λm

i (q−1) can be evaluated fori = 1, . . . , Nq, where
Nq ≥ 2 is a free parameter. In general, three cases should
be discerned while examining the solutions of the design
equations (36)–(39):

(i) m < NΛ – (37) with the matrix of a column-rank
deficiency has a non-unique least-
squares solution with a zero residue,

– (40) with the matrix of a full column
rank has a unique least-squares solu-
tion with a non-zero residue,

(ii) m = NΛ – (37) and (40) with the matrices of a
full column rank have unique least-
squares solutions of zero residue,

(iii) m > NΛ – (37) and (40) with the matrices of
a full column rank have unique
least-squares solutions with non-zero
residues.

Comparing the consecutive solutionsλm
i permits

the detection ofNΛ with the use of a directΛ-estimation
index (43) utilized in the following lemma:

Lemma 6. (Robust detection of the cancellation order
NΛ ). Let

Jm
Nq

=
Nq−1∑
i=1

‖λm
i − λm

i+1‖
‖λm

i ‖
. (43)

Starting fromm = NB − nB , a specific valuem̄ of m
is sought, for whichJm̄

Nq
= 0. Consequently,NΛ = m̄.

In the case of a non-zeroJm
Nq

for all m ∈ {1, . . . , NB −
nB}, we conclude that(Â(q−1), B̄(q−1)) are coprime.
It is important that during an effective stage of searching
for m̄, i.e., for m ≥ NΛ, the corresponding least-squares
problems described by the system (37) are numerically
well-conditioned by having the matrices of full column-
ranks.

With a particular ‘design relevant’C(q−1) and after
having determinedNΛ, the reduced-in-degree polynomi-
als G′

i(q
−1) and F ′

i (q
−1), i ≥ 1, can be easily obtained

in a numerically robust way by solving (32).

Remark 7. The parameterization ofHNu

N1,N2
given in

Lemma 5 guides the designer to the region()′− of the
GPC design solvability. In this case, having three de-
grees of freedom, i.e.,N1 > NB , N2 ≥ N1 + NA and
Nu ≤ NA′ + 1, we observe that, as far as closed-loop sta-
bility is concerned, the parameterNu makes a basic de-
sign ‘knob.’ It can then be easily shown (Suchomski and
Kowalczuk, 2002a) thatdeg D̃(q−1) = NA′+1−Nu (cf.
also the results of Theorem 1). Thus, by choosing suffi-
ciently largeNu, we can simply obtain a suitable polyno-
mial D̃(q−1) of a low degree. Note, however, that in this



Discrete-time predictive control with overparameterized delay-plant models and an identified cancellation order 19

design case increasingNu leads to more intense control
actions. On the other hand, choosing largerN1 and N2

means further trading-off between the speed of the closed-
loop system transient reaction and the control-signal en-
ergy (Suchomski and Kowalczuk, 2002a).

From the above discussion it follows that, having es-
timated NΛ, the designer has three ways of designing
GPC controllers, which are given in the following propo-
sition:

Proposition 1. (GPC design perspectives).

1. A low-order controller can be computed based on the
minimal model (A′(q−1), B′(q−1), C(q−1)) with
deg C(q−1) ≤ NA′ + 1 obtained by virtue of
Appendix F. In order to derive the polynomials
G′

i(q
−1) and F ′

i (q
−1), i ≥ 1, it is recommended

that Eqns. (D1) and (D2) be solved according to (24)
and (25).

2. A high-order controller can be computed
with the use of the non-minimal model
(A(q−1), B(q−1), C(q−1)) with deg C(q−1) ≤
NA + 1. Solving (24) and (25) is recommended in
order to acquire the Diophantine productsGi(q−1)
and Fi(q−1), i ≥ 1.

3. A low-order controller can be computed based on
the non-minimal model(A(q−1), B(q−1), C(q−1))
with deg C(q−1) ≤ NA′+1. This time, the (D3) and
(D4)-related polynomialsG′

i(q
−1) and F ′

i (q
−1),

i ≥ 1, should be obtained by solving (26) and (37).

Proposition 1 represents a concise summary of
known facts and design perspectives resulting from the
presented analysis of the GPC problem in the context of
overparameterized plant models. At this point it may be
worth emphasizing that in this contribution we are not
concerned with the consequences of wrong modeling (re-
sults of such a discussion are given by Kowalczuk and Su-
chomski (2002), and Suchomski and Kowalczuk (2002a)),
but instead we focus our attention on proper utilization of
any product of modeling and identification in terms of re-
trieving the necessary information about the ‘exact’ plant
model in a numerically robust way.

Several numerical examples of GPC designs based
on all the admitted solvability regions specified in Lemma
2 can be found in (Kowalczuk and Suchomski, 2001;
2002; Suchomski and Kowalczuk, 2002a).

5. Illustrative Design Examples

Let us illustrate the above discussion by considering two
design examples. The first example illustrates some ba-
sic properties of the analysed method of GPC tuning.

Namely, the AF mechanism is applied to solutions from
the region()′− of the GPC feasibility area, and a simple
case of overparameterization is given. The second exam-
ple illustrates some more complicated issues of the detec-
tion of the cancellation order.

5.1. Example 1: Unstable Minimum-Phase Plant

Assume that an unstable minimum-phase plant is charac-
terized by the following minimal model (Filali and Wertz,
2001):

A′(q−1) = 1− 2.4428q−1 + 1.4918q−2, (44)

B′(q−1) = 0.2672q−1 + 0.2181q−2. (45)

Hence we setNA′ = 2, NB′ = 2, and nB = 1. More-
over, let us assume thatC(q−1) = 1−0.7q−1 +0.12q−2.

5.1.1. Design Based on the Region()′−

As has been shown in the previous section, the pro-
posed design methodology for overparameterized mod-
els can be founded on exploring the region()′− of the
GPC solvability area. Let us illustrate some properties of
this approach by starting from the above minimal model
(A′(q−1), B′(q−1)). The DB solution results from the de-
sign settingsN1 = 2, N2 = 4 and Nu = 3.

First of all, let us consider the effect of the anticipa-
tion filter (AF) by varying the value of its first parameter
r2 ∈ [0.5, 1.0], while keeping fixedr3 = r4 = 1. Fig-
ure 8(a) outlines the resulting GPC controller gains. The
plots presented in Fig. 8(b) illustrate closed-loop step re-
sponses. The norms of the control error and incremental
control signals are given in Figs. 8(c) and 8(d), respec-
tively. It is clear that employing the AF mechanism offers
a simple and convenient tool for making a trade-off be-
tween the speed of the system response and the control
effort.

Secondly, let us reflect on the possibility of control
based onD̃(q−1) = 1 + d̃1q

−1. From Theorem 2 it
follows that such an effect can be obtained by setting
N1 = 2, N2 ≥ 4 and Nu = 2 with the AF mech-
anism switched off (g∗ = 0). Let N2 serve as a free
design parameter that allows for shaping the coefficient
d̃1 of the factorD0(q−1) = D̃(q−1) of the closed-loop
characteristic polynomial (19). The plot given in Fig. 9(a)
illustrates howd̃1 depends onN2. On this basis we con-
clude that the control system can be stabilized and that via
increasingN2 a similar-as-before effect can be expected:
The system response can be made slower and the control
signal can be made less active. The corresponding plots
depicted in Figs. 9(b)–(e) show the controller gain and the
achievable control system performance, respectively, and
confirm the above conjecture.
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Fig. 8. Example 1: Effects of anticipative filtration.

5.1.2. Detection of the Cancellation Order

Let

Λ(q−1) = (1 + 0.3q−1)(1− 0.7q−1)(1 + 1.2q−1). (46)

The cancellation order is thusNΛ = 3. Three methods of
the detection ofNΛ will be considered. AsNA = 5 and
NB = 5, Lemma 5 shows that the matrixH6

5,10 with
reasonably bigNu = NA + 1 = 6 can be appropriate
in this case. Figure 10(a) illustratesκi

5,10 of (31) being
the angular distance between the left submatrixHi

5,10 of
H6

5,10 and its subsequent columnhi+1
5,10, i ≥ 1. The draft

given in Fig. 10(b) shows the quantity of arelative gap in
the singular values

ρi
5,10 =

σi+1(H6
5,10)

σi(H6
5,10)

, (47)

which is a standard measure representing a relative gap
in the singular valuesσi of H6

5,10, i ≥ 1. Ultimately,
the directΛ-estimation indexJm

3 of (43) for Nq = 3 is
depicted in Fig. 10(c).

It can be easily shown that all the discussed methods
of the detection of the cancellation order give the same
correct solution. Unfortunately, this is not always the case,

as will be learned from the next, a bit more complicated
example of the GPC tuning procedure.

5.2. Example 2: Unstable Non-minimum-Phase
Plants

Consider two unstable and non-minimum-phase plants
numerically represented by the following overparameter-
ized models withNA′ = 6, NB′ = 7, nB = 2 and
NΛ = 3:

A′(q−1) = (1− 1.9q−1 + 0.965q−2)(1− q−1)

×(1−0.8q−1)(1−0.5q−1)(1+1.5q−1), (48)

Λ(q−1) = (1−0.3q−1)(1−0.2q−1)(1+6.2q−1), (49)

and

B′
I(q

−1) =−0.2q−2(1−3.5q−1)(1−0.2q−1)

×(1−0.1q−1)(1+0.2q−1)(1+2.5q−1), (50)

B′
II(q

−1) =−0.2q−2(1− 3.5q−1)(1− 0.2q−1)

×(1−0.51q−1)(1+0.2q−1)(1+2.5q−1). (51)

Observe that an additional near-cancellation occurs in
the second pair(A′(q−1), B′

II(q
−1)), which can have
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Fig. 9. Example 1: GPC control based oñD(q−1) of the first degree.

a critical impact on the design process, including the
NΛ-detection procedure. At the same time, it is per-
ceptible that the appearance of a double zero at q=0.2,
which is partially cancelled in the entire numerical model
B(q−1)/A(q−1) of the plant, has no effect on our GPC
design.

5.2.1. Detection of the Cancellation Order

With NA = 9 and NB = 10, similarly as before (by
virtue of Lemma 5), we infer that it is the matrixH10

10,19

(with Nu = 10) that should be the subject of our exam-

ination. Moreover, letNq = 4. The indices of the an-
gular distance (31), the relative gap (47) and the directΛ-
estimation index (43), denoted byκi

10,19, ρi
10,19 and Jm

4 ,
respectively, were computed for the above two models and
depicted in Figs. 11 and 12, respectively.

As can be seen from the above, only the utilization of
Jm

4 leads to the right solution. The other methods based
on the indicesκi

10,19 andρi
10,19 generally fail by roughly

advising that the cancellation order isNΛ = 2, or, alter-
natively, based onρi

10,19 from Fig. 12(b), thatNΛ = 4
(which could have resulted from the additional near can-
cellation).
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Fig. 10. Example 1: Indices of the detection of the cancellation order.

5.2.2. Design Based on the Region()′−

Once we have obtained the correct cancellation order and
assumed the design simplifying terms (making also the
DB-setting possible):λ = 0 and g∗ = 0, three GPC
controllers can be completely designed based on the tun-
ing specifications concerning the region()′− of GPC solv-
ability and given in Theorem 1 (for̃D(q−1) of the three
lowest degrees, respectively). Moreover, let us assume
C(q−1) = (1− 0.3q−1)(1− 0.4q−1)(1− 0.5q−1).

Considering the model withB′
I(q

−1) and taking
N1 = 7 together withN2 = 13, we achieve GPC so-
lutions of the following characteristics:

(i) Nu = 7: deg D̃(q−1) = 0 (DB): g = 0.6614,

‖e‖2 = 2.0698, ‖∆u‖2 = 5.9979 ;

(ii) Nu = 6: deg D̃(q−1) = 1: g = 0.4205,

‖e‖2 = 2.0733, ‖∆u‖2 = 3.0428,

d̃1 = −0.3641;

(iii) Nu = 5: deg D̃(q−1) = 2: g = 0.2235,

‖e‖2 = 2.1648, ‖∆u‖2 = 1.2152,

d̃1 = −0.8600, d̃2 = 0.1980.

The plots given in Fig. 13 describe the step responses
and control signals for the above systems. The results con-
firm that enlargingNu intensifies the control action. A
further improvement in closed-loop performance is pos-
sible by utilizing the AF mechanism and theN2-tuning
(Kowalczuk et al., 1996; Kowalczuk and Suchomski,
2001; 2002; Suchomski and Kowalczuk, 2002a).

6. Concluding Remarks

The overparameterization of the identified models used in
adaptive systems can be considered as a suitable treat-
ment of the uncertainty or variability of identified and
controlled plant structures. What is more, in the case
of system non-stationarity, noise, disturbances, and other
systemic properties, as well as due to limited numerical
(finite wordlength) mechanization, approximate cancella-
tions can always occur in the system model being pro-
cessed. In a usual course of the control system design
such models give rise to severe difficulties (unfeasibility
of design goals, ill-conditioning of design solutions, rank
deficiency of design matrices, large-valued controller co-
efficients, degraded closed-loop performance, etc.).
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Fig. 11. Example 2: Detecting the cancellation order for the model(A′(q−1)Λ(q−1), B′
I(q

−1)Λ(q−1)).

A discrete-time AF-GPC controller design procedure
appropriate for plants with a non-zero transportation delay
and robust to an overparameterization of the plant model
was provided along with conditions for the existence and
stability of solutions of the AF-GPC design in terms of
relevant GPC design parameters. In this context, four
basic GPC-solvability regions were distinguished based
on a rigorous proof. Moreover, explicit analytical forms
of GPC closed-loop characteristic polynomials were sup-
plied.

From the systems theory viewpoint, our GPC syn-
thesis conception based on the Toeplitz matrix of system
Markov parameters can be considered as dual (comple-
mentary) to the classical Kalman-Ho identification-based
methodology using Hankel matrices.

With the approach to the estimation of the cancel-
lation order suggested in this paper and, in particular,
with the algorithm based on the directΛ-estimation in-
dex, we are able to identify models of an overestimated
order, evaluate the model cancellation order, recalculate
the effective orders of system polynomials, and design a
suitable controller of a reasonably low order. Thus the set
of tuning rules acquired from the derived solvability con-
ditions can be safely used in adaptive control. The nec-
essary design calculations can be performed with the aid

of suitable GPC-design algorithms. These issues are dis-
cussed, for instance, in (Kowalczuket al., 1996; Kowal-
czuk and Suchomski, 2001; 2002; Suchomski and Kowal-
czuk, 2002a).

Consequently, we hope to fill up the exiting gap con-
nected with the lack of explicit tuning rules in the clas-
sical literature on predictive control that can impair us-
ing the stable GPC procedure in practice. Moreover,
apart from the challenge concerning overparameteriza-
tion, solvability, system structure and complexity, the pro-
posed methodology can be considered as a functional con-
tribution to adaptive GPC control system applications,
basically, in the framework of GPC without constraints.
Though, in view of the tuning results obtained, one can
take into consideration the possibility of controlling both
system stability and the trajectories of plant input and out-
put signals by means of the defined set of design parame-
ters.

The illustrating numerical material highlights certain
general design problems and the properties of GPC design
methodology for overparameterized plant models, as well
as confirms the applicability of the proposed approach.
The presented numerical examples also portray the way
in which our approach insures both the stability of the
closed-loop system and a limitation of the control sig-



Z. Kowalczuk and P. Suchomski24

1 2 3 4 5 6 7 8 9
10 -16

10 -12

10 -8

10 -4

010

104

i

κ 10,19
i

       

ρ 10,19
i

i
1 2 3 4 5 6 7 8 9

10 -16

10 -12

10 -8

10 -4

010

104

(a) 28ˆ =−=Λ uNN     (b) 28ˆ =−=Λ uNN  or 46ˆ =−=Λ uNN

J 4
m

m

2 3 4 5 6 7 81
10 -16

10 -12

10 -8

10 -4

010

104

(c) 3ˆ =ΛN
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nal, as opposed to the regular final constrained receding-
horizon control approach, which is inappropriate in the
presence of common factors.

With overparameterization inducing the well-known
problem of pole-zero cancellations, the estimation of the
cancellation order is necessary to obtain the characteristic
polynomial of a desired degree. To do so, we consider two
ways: the classic SVD-based approach, the effectiveness
of which depends on ana priori-set threshold, and a new
one based on a distance measure between subsequent so-

lutions of a properly defined set of Diophantine equations.
The merit of the latter method, based on a numerically ro-
bust algorithm, has also been explained by two comple-
mentary design computation examples given in the text.

The fact that the obtained practical tuning rules have
been analytically derived due to the simplifying assump-
tion that λ is equal to zero does not imply any design re-
striction. Indeed a non-zeroλ can always be used in the
GPC design after the proposed arrangement of pre-design
tuning parameters.
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In this context, it is also worth noticing that discrete-
time GPC designs, embedded in the pole-placement or
dead-beat paradigms, often lead to an excessive control
action that can easily result in a very limited practicable
range ofλ, which implies numerical difficulties (note that,
in general, non-zeroλ does not necessarily assure the de-
sired matrix regularization) and some other related sensi-
tivity problems (the value ofλ used in minimizing the
cost function can appear to be too small to be feasible in a
practical context).

In conclusion, let us also annex some remarks on an-
ticipative filtering (AF) applied to the GPC design strategy
in order to fictitiously abate the command signal. As has
been shown in (Kowalczuk and Suchomski, 1999; 2002;
Suchomski and Kowalczuk, 2002a), AF can have a de-
sired effect on both the closed-loop system behavior and
the control effort (thus, to some extent, the effect of AF
is similar to that of non-zeroλ). This leads to an im-
proved balance within the combined cost function, what
makes theλ-tuning feasible and permits an alleviation of
the control effort. At the same time, as results from the
mathematical characteristics of the AF-GPC design that
consist in reducing the effect of the AF filter to a scalar
outer-loop gain coefficient(g), the simplest AF mecha-
nization with a single knobr = rN1 is sufficient.

Furthermore, even though we have considered the
unconstrained design case, the results can be used in more
general settings. Namely, it is possible to use the proposed
analytical methodology by suitably handling GPC design
parameters within their tuning scopes defined by the lem-
mas and theorems recommended in this paper, with the
purpose of shaping the nominal output and control sig-
nals (balancing the control effort and the regulation speed,
for instance). Moreover, on a similar basis, the control
weighting factorλ can be used to additionally re-tune the
GPC control system in order, for instance, to comply with
some control signal restrictions (at the same time, the stan-
dard root-locus technique based on the prediction control
gain can allow the designer to preserve some analytical
character of the design). Such aλ-optimization objective,
representing yet another design space not considered in
this paper, can also be explored in the constrained control
case (cf. also Maciejowski, 2002; Rosssiter, 2003). Cer-
tainly, this could be an interesting subject of another study.

Another interesting search direction both from the
practical and theoretical points of view is associated with
the problem of a control system’s robustness to modeling
uncertainty (Rossiter, 2003). Within this subject, a sim-
ple contribution to robust GPC was presented in (Kowal-
czuk and Suchomski, 1998), whereas an effective Youla-
Kučera approach to the robustification of continuous-time
C-GPC systems was proposed in (Kowalczuk and Su-
chomski, 2004).
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Discrete-time and continuous-time generalised predictive
control with anticipated filtration: tuning rules. — Int. J.
Appl. Math. Comput. Sci., Vol. 6, No. 4, pp. 707–732.

Kowalczuk Z. and Suchomski P. (1997):Generalised predic-
tive control of delay systems. — Proc. 4thEurop. Control
Conf., Brussels, Belgium, Vol. 2, (CD-ROM: FR-M, B1)
pp. 1–6.

Kowalczuk Z. and Suchomski P. (1998):Two-degree-of-freedom
stable GPC design. — Proc. IFAC WorkshopAdaptive
Systems in Control and Signal Processing, Glasgow, Scot-
land, U.K., pp. 243–248.

Kowalczuk Z. and Suchomski P. (1999):Analytical design of
stable continuous-time generalised predictive control. —
Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 1, pp. 53–100.

Kowalczuk Z. and Suchomski P. (2001):Discrete-time predic-
tive control design applied to overparameterized delay-
plant models. — Faculty Report, Electronics Telecom.
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Appendix A
MBPC–GPC Odyssey

The original MBPC strategies are mostly based on in-
put/output models of the controlled plant (Camacho and
Bordons, 1999; Maciejowski, 2002; Rossiter, 2003). Let
some of these strategies be listed below:

• MPHC – model predictive heuristic control derived
from the impulse response representation of the con-
trolled plant (Richaletet al., 1978),

• MAC – model algorithmic control also using the
plant impulse response (Rouhani and Mehra, 1982),

• DMC – dynamic matrix control based on the step re-
sponse of the plant (Cutler and Ramaker, 1980; Geor-
giouet al., 1988; Hinde and Cooper, 1994),

• GDMC – generalized dynamic matrix control utiliz-
ing the step response model of the plant (Xi, 1989),

• EHAC – extended horizon adaptive control applying
the variable forgetting factor (VFF) method for the
identification of a polynomial (ARMA) model of the
plant (Ydstie, 1984; Ydstieet al., 1985),
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• EPSAC – extended prediction self-adaptive control
built on parallel CARMA models (de Keyser and van
Cauwenberghe, 1981),

• GPC – generalized predictive control (Clarkeet al.,
1987; Clarke and Mohtadi, 1989) considered in this
paper.

Having in mind the advantageous properties of state
equations, effective extensions of the MBPC paradigm to
multivariable plants are also essential. Some key observa-
tions concerning the state-space reformulation of MBPC
can be found in (Liet al., 1989; Ricker, 1990; Berlin and
Frank, 1992; Kwonet al., 1992b; Ordys and Clarke, 1993;
Leeet al., 1994; Elshafeiet al., 1995). A variety of mul-
tivariable algorithms recently developed, i.e.,

• RHTC – receding horizon tracking control (Kwon
and Byun, 1989; Kwonet al., 1992a),

• CRHPC – constrained receding horizon predictive
control (Clarke and Scattolini, 1991; Scokaert and
Clarke, 1994),

• SIORHC – stabilizing I/O receding horizon control
(Mosca and Zhang, 1992),

• MGPC – multivariable generalized predictive control
(Shahet al., 1987),

• MSGPC – multivariable stable generalized predictive
control (Kouvaritakis and Rossiter, 1993; Kouvari-
takiset al., 1997), and

• LQGPC – linear quadratic generalized predictive
control (Grimble, 1990; 1993; Taube and Lampe,
1992; Hangstrupet al., 1997),

well illustrate the broad applicability of the predictive con-
trol paradigm.

There are stability outcomes concerning the receding
horizon LQ control both in the discrete- and continuous-
time domains (Kleinman, 1974; Kwon and Pearson, 1975,
1978; Longchamp, 1983). These results were employed
in a redesign of GPC controllers (Clarke and Scattolini,
1991; Mosca and Zhang, 1992), with a finite end-point
weighting (i.e., equality constraints on the system out-
put) added to the usual GPC cost. On the other hand,
additional weighting on a predicted ultimate system-state
was utilized in (Demircioglu and Clarke, 1993; Jolly and
Bentsman, 1993), where it was demonstrated that closed-
loop stability can be guaranteed by choosing sufficiently
robust weighting. A similar technique of receding hori-
zon predictive control (Yoon and Clarke, 1993) utilizes
exponentially increasing weights on the predicted track-
ing errors. Another application of the end-point con-
straint principle along with a stabilizing inner feedback

loop called SGPC (stable generalized predictive control)
is presented in (Kouvaritakiset al., 1992), where the
minimization of a control error norm leads to a mono-
tonically decreasing cost, which guarantees closed-loop
stability and asymptotic tracking. The results of SGPC
from the input-output framework are extended to state-
space models taking into account numerical conditioning
issues (Kouvaritakis and Rossiter, 1993; Kouvaritakiset
al., 1997; Rossiter and Kouvaritakis, 1994; Rossiteret
al., 1998; Rossiter, 2003). Moreover, as was shown in
(Rossiter, 1997), the constrained receding horizon pre-
dictive control CRHPC (Clarke and Scattolini, 1991), the
stabilizing I/O receding horizon control SIORHC (Mosca
and Zhang, 1992) and the SGPC (Kouvaritakiset al.,
1992) approaches implement the same control law.

A modified GPC routine combined with a pole-
placement technique is presented in (Penget al., 1992;
1993), where a set of controller parameters is fixed by
solving a set of non-linear algebraic equations, and the
control law is implemented in a receding horizon man-
ner. In turn, in (Limet al., 1998), a GPC design method
is reported where the closed-loop poles are located in a
restricted region determined by the required settling time
and overshoot of the control system step response.

Several simple rules for tuning MBPC controllers
can be found in (Scattolini and Bittanti, 1990; Taube,
1991; Banerjee and Shah, 1992). Some generic guidelines
for the selection of tuning parameters (time horizons)N1,
N2 and Nu of the basic GPC algorithm are given in (Mo-
htadi and Clarke, 1986; Clarkeet al., 1987; Clarke, 1988;
Clarke and Mohtadi, 1989). A comprehensive presenta-
tion of studies on tuning GPC can be found in (Kowal-
czuk and Suchomski, 2002; Suchomski and Kowalczuk,
2002a). Specifically, in (McIntoshet al., 1991) it is il-
lustrated how the GPC control law can be expressed by
an equivalent linear transfer function, and certain sim-
ple tuning strategies are recommended as well. The fre-
quently considered case of GPC systems with a one-step
control horizon was examined in (Elshafeiet al., 1991).
Sufficient conditions for dead-beat settings of the GPC
controller given in (Peng and Hanus, 1991) can be used
to make the GPC strategy (suitably augmented) equiva-
lent to the common pole-placement design. Several exist-
ing tuning guidelines for predictive controllers, including
the GPC algorithm, were investigated in (Rani and Unbe-
hauen, 1997), where an auto-tuning procedure based on
the speed and shape of the closed-loop system response
and on its integral squared errors was also proposed. An
incomplete theorem about reducing the GPC closed-loop
order by properly choosing tuning parameters along with
some results concerning the dead-beat GPC control was
proposed in (Zhang, 1996). Workable design guidelines
for plants with monotone or convex step responses were
given in (Zhang and Xi, 1998) along with a conjecture
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that the minimal dynamic matrix controller (DMC) can be
regarded as a specific type of the GPC control law. Ex-
tensive simulations (Krämer and Unbehauen, 1992; Rani
and Unbehauen, 1996, 1997) illustrate the usefulness of
the MBPC methods under study. Genetic approaches ap-
plied to the optimization of design parameters of GPC
controllers can also be found in the literature (Filali and
Wertz, 2001).

Appendix B
State Space Models

B1. The ordern of the irreducible model of the incre-
mental control channelB(q−1)/Â(q−1) is equal to the
dimension of a minimal state space representation asso-
ciated with this input-output model. The ordern can
also be established by expressing the transfer function
model B(q−1)/Â(q−1) in the forward shift operatorq.
If NB > NA + 1, the model hasNB −NA − 1 poles at
the origin of the complex plane (z = 0). Assuming that
nB ≤ NB ≤ NA + 1, we can constrain our deliberations
to the modelsB(q−1)/Â(q−1) having no zero poles:

n = ord
(
B(q−1)/Â(q−1)

)
= max

{
NA + 1, NB

}
= NA + 1.

B2. In order to clarify the number of the properties of
such models let us recall their controllable canonical state-
space form(Â, b̂, ĉ) with Â ∈ Rn×n, b̂ ∈ Rn and
ĉ ∈ R1×n:

Â =


0 1 · · · 0
...

...
...

...

0 0 · · · 1
−âNA+1 −âNA

· · · −â1

 , (B.1)

b̂ =

[
0NA

1

]
, (B.2)

ĉ =



[
bNB

· · · bnB

]
if NB = NA + 1, nB = 1,[

bNB
· · · bnB

0T
nB−1

]
if NB = NA + 1, nB > 1,[

0T
NA−NB+1 bNB

· · · bnB

]
if NB < NA + 1, nB = 1,[

0T
NA+1−NB

bNB
· · · bnB

0T
nB−1

]
if NB < NA + 1, nB > 1.

(B.3)

As there are no zero poles, the state matrixÂ has a full
rank: rankÂ = NA + 1.

B3. Considering the minimal state-space model(Â, b̂, ĉ)
associated withB̄(q−1)/Â(q−1), we immediately find
that hi = ĉÂib̂, i = 0, 1, . . . .

Appendix C
Classical Kalman-Ho System Theory

using Hankel Matrices

Recall that Markov parameters of linear time-invariant
(LTI) systems play an important role in deterministic real-
ization theory. The first solution to the determination of a
minimal state-space representation from impulse response
data was given in a seminal work by Ho and Kalman
(1966). The problem consists of two sub-problems: (i)
how to determine the McMillan degree of an input/output
rational model from a potentially infinite set of data, and
(ii) how to compute the matrix parameters(A,B, C, D)
of the corresponding state-space model.

The generic solution (Ho and Kalman, 1966) is based
on the factorization of a Hankel matrix composed of
system Markov parameters into the product of an in-
definite observability matrix and an indefinite controlla-
bility matrix (similar results were independently gained
by other researchers, cf. e.g., (Silverman, 1971; Tether,
1970)). Many improvements of the basic Kalman-Ho
approach were proposed. Specifically, it is clear that
in real conditions, e.g., when data are contaminated by
noise, the Hankel matrix tends to have a full rank. This
makes the problem of determining a minimum-order state-
space model non-trivial. Consequently, some approx-
imate finite-dimensional techniques have to be applied
(seemingly, the most reliable approaches to the problem
of guessing the ‘true’ order of the system are based on
the SVD technique (Zeiger and McEwen, 1974; Kung,
1978)). An effective recursive solution to the minimal par-
tial state-space realization problem based on a decompo-
sition of submatrices of the Hankel matrix was given in
(Rissanen, 1971). Contemporary versions of such algo-
rithms can be found in (van Overscheeet al., 1997).

Appendix D
Properties of Markov Matrices

D1. The relationship between the pair of polynomials
(Â(q−1), B(q−1)) and the Markov parametershi, i =
0, 1, . . . , of the modelB̄(q−1)/Â(q−1) can be expressed
by applying the following doubly infinite lower-triangular
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Toeplitz-like matrix:

nb




0 0 0 · · ·
· · · · · · · · · · · ·
0 0 0 · · ·

hnb
0 0 · · ·

hnb+1 hnb
0 · · ·

hnb+2 hnb+1 hnb
· · ·

· · · · · · · · ·
...





â0

â1

...

âNA+1

0
...



=



0
...

0
bnB

...

bNB

0
...



 nb

. (D.1)

D2. Let an auxilary vectorhk
N1,N2

∈ RN0+k with k ≥
N1 −N2 be defined as

hk
N1,N2

=



[
hN1−1 · · · hN2−1

]T

if N1 −N2 ≤ k ≤ 0,[
0T

k hN1−1 · · · hN2−1

]T

if k > 0.

(D.2)

Note that fork ≤ 0, we havehk
N1,N2

= h0
N1−k,N2

. For
Nu > 1, the following two partitions of the Markov ma-
trix HNu

N1,N2
will play an important role in the further de-

velopment:

HNu

N1,N2
=

[
h0

N1,N2
HNu−1

N1−1,N2−1

]
, (D.3)

HNu

N1,N2
=

[
HNu−1

N1,N2
hNu−N1

1,N2−Nu+1

]
. (D.4)

D3. Assuming thatNu > NA + 1 and employing the
equation (D.1), we obtain

HNu

N1,N2
âNA+1

Nu
= bNB

N1,N2
, (D.5)

where âNA+1
Nu

∈ RNu is given by

âNA+1
Nu

=

 â if Nu = NA + 2[
âT 0T

Nu−NA−2

]T

if Nu > NA + 2
(D.6)

with the vector â ∈ RNA+2 defined as â =
[ â0 â0 · · · âNA+1 ]T = [ â0 ãT ]T, and like-

wise, ã = [ â1 â2 · · · âNA+1 ]T, ã ∈ RNA+1,

while bNB

N1,N2
∈ RN2−N1+1 takes the following form:

bNB

N1,N2
=



0N2−N1+1 if N1 > NB ∨N2 < nB ,[
bN1 · · · bNB

0T
N2−NB

]T

if N1 ≥ nB ∧N2 > NB ,[
bN1 · · · bN2

]T

if N1 ≥ nB ∧N2 ≤ NB ,[
0T

nB−N1
bnB

· · · bNB
0T

N2−NB

]
if N1 < nB ∧N2 > NB ,[

0T
nB−N1

bnB
· · · bN2

]T

if N1 < nB ∧N2 ≤ NB .
(D.7)

If Nu = NA + 2, then (D.5) becomesHNA+2
N1,N2

âNA+1
NA+2 =

bNB

N1,N2
. Thus (D.3) and (D.6) result in

h0
N1,N2

= bNB

N1,N2
−HNA+1

N1−1,N2−1ã. (D.8)

D4. Consider HNu

N1,N2
with N1 ≥ Nu. In this case,

the (i, j)-th entry of HNu

N1,N2
, i.e., the Markov parameter

hN1+i−j−1, 1 ≤ i ≤ N2 −N1 + 1 and 1 ≤ j ≤ Nu, can
be represented ashN1+i−j−1 = ĉÂN1+i−j−1b̂. Thus

HNu

N1,N2
=


ĉ

ĉÂ
...

ĉÂN2−N1


× ÂN1−Nu

[
ÂNu−1b̂ · · · Âb̂ b̂

]
. (D.9)
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Appendix E
Proof of Lemma 1

E1. Sufficiency of the conditions (1′)–(3′). Assuming
that the claims (1′) and (3′), i.e., Nu = NA + 1 and
N2 ≥ N1 + NA, respectively, provide a suitable means of
distinguishing between the following two sub-conditions
related to the basic region border (2′) of Lemma 1:
(i) N1 ≥ NA + 1 (in this case we haveN1 ≥ NB),
(ii) N1 ≤ NA (valid only if NB ≤ N1 ≤ NA).

Let us start from the inequality (i). IfN1 ≥ NA + 1
and Nu = NA + 1, from (D.9) we have

HNA+1
N1,N2

=


ĉ

ĉÂ
...

ĉÂN2−N1


× ÂN1−NA−1

[
ÂNA b̂ · · · Âb̂ b̂

]
. (E.1)

The coprimeness ofÂ(q−1) and B(q−1) implies that
the two sets of (column and row) vectors{Âib̂}NA

i=0

and {ĉÂi}N2−N1
i=0 , respectively, are linearly independent.

SinceN2 −N1 + 1 ≥ NA + 1, we have

rank
[

ÂNA b̂ · · · Âb̂ b̂
]

= rank


ĉ

ĉÂ
...

ĉÂN2−N1


= NA + 1. (E.2)

Combining the above with the result thatrank Â = NA+
1 yields

rank HNA+1
N1,N2

∣∣∣N1 ≥ NA + 1

N2 ≥ N1 + NA

= NA + 1. (E.3)

Considering the inequality (ii), we conclude that (D.7)
together with the assumption thatN1 > NB enforce
the zeroing ofbNB

N1,N2
: bNB

N1,N2
= 0N2−N1+1. Conse-

quently, (D.8) generates

h0
N1,N2

= −HNA+1
N1−1,N2−1ã if N1 > NB , (E.4)

h0
N1+1,N2+1 = −HNA+1

N1,N2
ã if N1 ≥ NB . (E.5)

Now we shall proceed with the following scheme by
induction:
(iii) N1 = NA,
(iv) N1 = NA − 1,
and so on.

Considering the setting (iii) and takingN2 ≥ N1 +
NA (see also the basic region limitation (3′)), by virtue
of (E.5) we haveh0

NA+1,N2+1 = −HNA+1
NA,N2

ã. This
means thath0

NA+1,N2+1 is a linear combination of the

columns of HNA+1
NA,N2

. As âNA+1 6= 0, the last col-
umn of this matrix, i.e.,h1

1,N2−NA
, can be substituted by

h0
NA+1,N2+1 without affecting the rank ofHNA+1

NA,N2
:

rank HNA+1
N1,N2

∣∣∣
N1=NA

= rank
[

HNA

NA,N2
h0

NA+1,N2+1

]
. (E.6)

By interchanging the first and the last column of the ma-
trix [ HNA

NA,N2
h0

NA+1,N2+1 ] the rank is not affected.
Thus

rank HNA+1
N1,N2

∣∣∣
N1=NA

= rank
[

h0
NA+1,N2+1 HNA

NA,N2

]
. (E.7)

Now, taking into account (D.3), we obtain

rank HNA+1
N1,N2

∣∣∣
N1=NA

= rankHNA+1
NA+1,N2+1. (E.8)

In order to apply the effect of (E.3) to the resulting matrix

HNA+1
NA+1,N2+1 = HNA+1

N ′
1,N ′

2

∣∣∣N ′
1 = NA + 1

N ′
2 = N2 + 1

, (E.9)

we should check the following two conditions:N ′
1 ≥

NA + 1 and N ′
2 ≥ N ′

1 + NA. The first one is appar-
ently fulfilled, asN ′

1 = NA + 1. In order to deal with the
other one, let observe thatN ′

2 = N2 + 1 ≥ 2NA + 1 =
N ′

1 + NA. Consequently,rank HNA+1
NA+1,N2+1 = NA + 1,

and

rank HNA+1
N1,N2

∣∣∣N1 = NA

N2 ≥ N1 + NA

= NA + 1. (E.10)

To perform the next induction Step (iv), let us con-
sider the matrixHNA+1

NA−1,N2
. If N1 = NA − 1 ≥ NB

and N2 ≥ N1 + NA hold, then from (E.5) we have
h0

NA,N2+1 = −HNA+1
NA−1,N2

ã. Proceeding similarly to the
above case (iii), we get

rank HNA+1
N1,N2

∣∣∣
N1=NA−1

= rank
[

HNA

NA−1,N2
h0

NA,N2+1

]
= rank

[
h0

NA,N2+1 HNA

NA−1,N2

]
= rankHNA+1

NA,N2+1. (E.11)
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In order to employ the previously shown result (E.10) to
the matrix

HNA+1
NA,N2+1 = HNA+1

N ′
1,N ′

2

∣∣∣N ′
1 = NA

N ′
2 = N2 + 1

, (E.12)

it should be guaranteed thatN ′
2 ≥ N ′

1 +NA. Clearly, this
is the case, becauseN ′

2 = N2 + 1 ≥ N1 + NA + 1 =
N ′

1 + NA and

rank HNA+1
N1,N2

∣∣∣N1 = NA − 1

N2 ≥ N1 + NA

= NA + 1. (E.13)

The above procedure can be carried until

rank HNA+1
N1,N2

∣∣∣N1 = NB

N2 ≥ N1 + NA

= NA + 1. (E.14)

E2. Sufficiency of the conditions (1′′)–(3′′). Combining
(2′′) and (3′′) providesN2 ≥ NB + Nu − 1. From (D.7)
it follows that for N1 = NB and N2 > NB we have

bNB

N1,N2

∣∣∣N1 = NB

N2 > NB

=

[
bNB

0N2−NB

]
. (E.15)

The proof starts from the lowest admissibleNu:
(i) Nu = NA + 2,
(ii) Nu = NA + 3,
...

(i) In this case, (D.5) can be rewritten asHNA+2
NB ,N2

â =
bNB

NB ,N2
. It follows that bNB

NB ,N2
acts as a linear combina-

tion of the columns ofHNA+2
NB ,N2

. From (D.8) we conclude

that bNB

NB ,N2
= h0

NB ,N2
+ HNA+1

NB−1,N2−1ã. It follows that

the first column ofHNA+2
NB ,N2

(i.e., the vectorh0
NB ,N2

) can

be replaced withbNB

NB ,N2
. And the last conclusion, ac-

cording to (E.15), results in

rank HNu

NB ,N2

∣∣∣
Nu=NA+2

= rank
[

bNB

NB ,N2
HNA+1

NB−1,N2−1

]

= rank

 bNB hNB−2 · · · hNB−NA−2

0N2−NB
HNA+1

NB ,N2−1

 .

(E.16)

Therefore

rank HNu

NB ,N2

∣∣∣
Nu=NA+2

= 1 + rankHNA+1
NB ,N2−1.

(E.17)
Applying the first basic region (1′)–(3′) in order to evalu-
ate the rank ofHNA+1

NB ,N2−1, we have

rank HNA+1
N ′

1,N ′
2

∣∣∣N ′
1 = NB

N ′
2 = N2 − 1

= NA + 1. (E.18)

It is a consequence of the fact thatN ′
2 = N2 − 1 ≥ N1 +

Nu − 2 = NA + NB = N ′
1 + NA . From this we deduce

that

rank HNu

NB ,N2

∣∣∣Nu = NA + 2

N2 ≥ NB + Nu − 1

= NA + 2. (E.19)

(ii) Now Nu = NA + 3 and N2 ≥ NA + NB + 2. With
reference to the matrix equation (D.1), we obtain

HNA+3
NB ,N2

[
â

0

]
= bNB

NB ,N2
=

[
bNB

0N2−NB

]
. (E.20)

A similar-as-before judgment applied to this case yields

rank HNu

NB ,N2

∣∣∣
Nu=NA+3

= 1+rankHNA+2
NB ,N2−1, (E.21)

and, consequently,

rank HNu

NB ,N2

∣∣∣Nu = NA + 3

N2 ≥ NB + Nu − 1

= NA + 3. (E.22)

Almost the same development can be repeated for
any Nu ≥ NA + 2, and can be shown to yield the final
assertion as

rank HNu

NB ,N2

∣∣∣Nu ≥ NA + 2

N2 ≥ NB + Nu − 1

= Nu. (E.23)

Appendix F
Reconstruction of the Minimal Model

(A′(q−1),B′(q−1))

Let A(q−1) = A′(q−1)Λ(q−1) of deg A(q−1) = NA

and B(q−1) = B′(q−1)Λ(q−1) of deg B(q−1) = NB

be reducible with a greatest common factorΛ(q−1) of the
known degreedeg Λ(q−1) = NΛ > 0. The coefficients
of the minimal polynomialsA′(q−1) =

∑NA−NΛ
i=0 a′iq

−i,
a′1 = 1, and B′(q−1) =

∑NB−NΛ
i=nB

b′iq
−i satisfy a′0 = 1,

b′nB
= bnB

and

[
T B0

NA−NΛ
−T A

NB−nB−NΛ

] [
a′

b′

]
= tab

if NΛ < NB − nB , (F.1)

T B0

NA−NΛ
a′ = t̄ab if NΛ = NB − nB , (F.2)

where

a′ =
[

a′1 · · · a′NA−NΛ

]T

, a′ ∈ RNA−NΛ ,

(F.3)
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b′ =
[

b′nB+1 · · · b′NB−NΛ

]T

,

b′ ∈ RNB−nB−NΛ if NΛ < NB − nB , (F.4)

tab = −


bnB+1

...

bNB

0NA−NΛ

 + bnB


a1

...

aNA

0NB−nB−NΛ

 ,

tab∈RNA+NB−nB−NΛ if NΛ <NB−nB , (F.5)

t̄ab = −


bnB+1

...

bNB

0NA−NΛ

 + bnB


a1

...

aNA

 ,

t̄ab ∈ RNA if NΛ = NB . (F.6)
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