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A NEW DEFINITION OF THE FUZZY SET
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The present fuzzy arithmetic based on Zadeh'’s possibilistic extension principle and on the classic definition of a fuzzy
set has many essential drawbacks. Therefore its application to the solution of practical tasks is limited. In the paper a
new definition of the fuzzy set is presented. The definition allows for a considerable fuzziness decrease in the number of
arithmetic operations in comparison with the results produced by the present fuzzy arithmetic.
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1. Introduction used by people. Further on, several definitions of a fuzzy
set used at present will be cited. The definition from (Klir

In the framework of fuzzy arithmetic (Kaufmann and and Folger, 1988) is as follows: “LeX denote a univer-

Gupta, 1991) various operations as, e.g., addition, subtracsal set. Then, the membership functipn by which a

tion, etc., are realized. These operations are made with thefuzzy set A is usually defined has the form

use of Zadeh's possibilistic extension principle (Dubois

and Prade, 1988) or its new, improved, and also possibilis- pa: X —[0,1],

tic version proposed by Klir (1997), which takes into ac-

count the so-calletbquisite constraintsArithmetic oper- ~ Where [0, 1] denotes the interval of real numbers from 0

ations are also performed under the assumption which wad© 1. inclusive. ... Such a functioniis called a membership

introduced by Zadeh (1978) that the membership function function and the set defined by it a fuzzy set.”

of a fuzzy set is qf a possibilist_ic character and that eagh Zadeh'’s definition (1965), also accepted by Dubois

element of the universal set, with a non-zero membership g4 prade (1988), states: ... a fuzzy #eis equivalent

grade, belongs to a fuzzy set (Zadeh, 1965). to giving a reference se® and a mapping:, of Q2 into

According to the author, all of the above factors [0, 1], the unitinterval.”
are reasons for many known shortcomings of the present
fuzzy arithmetic, which are often described by researchersform
in their publications. The shortcomings interfere with ap-
plications of fuzzy arithmetic in solving practical prob-
lems, cf. e.g., the contribution (Zadeh, 2002). Examples A= {(I,MA(QJ)) |z e X},
of the shortcomings include: large fuzziness of calcula-
tion results of arithmetic operations, especially of addi- pa(z) is called the membership function or grade of
tion, subtraction and multiplication, paradoxes connected membership (also degree of compatibility or degree of
with some operations causing their uselessness, e.g., th&uth) of z in A which mapsX to the membership space
insensitivity of the subtraction result to numbers succes- /. (When M contains only two points 0 and 14

The definition from (Zimmermann, 1996) has the
:“If X is a collection of objects denoted generically
by x then afuzzy setd in X is a set of ordered pairs:

sively subtracted from the minuend (Piegat, 2005b). is non-fuzzy andu4(z) is identical to the characteristic
To eliminate these shortcomings, some researchersfunction of a non-fuzzy set.)”
e.g., Kosnhski et al. (2003), try to develop new imple- Fuzzy sets are similarly defined in (Bezdek, 1993;

mentations of fuzzy arithmetic operations. In the au- Driankovet al, 1993; Yager and Filev, 1994). The above
thor’s opinion the main reason for the shortcomings of the classic definitions of fuzzy sets are, in the author’s opin-
present fuzzy arithmetic is inappropriate definition of a ion, insufficient. This can be illustrated by a simple exam-
fuzzy set, which does not fully correspond to fuzzy sets ple.
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Example 1.Let us consider membership functions of two
fuzzy sets: A = water and B = wine, cf. Fig. 1.
K

A = wine B = water

water/wine
ratio

TIOO%

1
0% 50%

99.99% water

Fig. 1. Membership functions of the fuzzy sets= waterand
B = winecharacterizing the mixture of water and wine.

According to the classic definitions of a fuzzy set, the
wine/water mixture with 0.01% of wine and 99.99% of
water is qualified in the fuzzy setine However, would
we (or other people) really classify such a mixture, after
tasting it, as wine? No!

Thus, why does the present definition of a fuzzy se
order such a qualification? ¢

2. Proposed Definition of a Fuzzy Set

Let X be a universe of elements denoted:byA fuzzy
set A of the elementsr is a collection of the elements
z | z € X, which possess a specific propemy of the
set and which were qualified in the set by a qualifigg
using a qualification algorithn@Alg ,. At least one ele-
ment of a fuzzy set must possess the specific propesty
of the setin an amount less than 1. If all elementgqual-

ified in a set possess the specific property in a full amount,

equal to 1, then the set iscaisp set

The decisionm 4 (z) | ma(z) € {0,1} of thequali-
fier Q4 aboutthe qualification of the elementin the set

A depends, in the general case, on the minimal amount

pamin Of the required, specific set property, on the type
Tga of the qualifier and on one or more conditions,

. determined by the qualifier or an outsidefiner. It
can be expressed as

ma(x) = QAlg(z) = f(pamin, Toa, Ch,...). Q)

If the qualification decision of the qualifier is positive
(ma(z) = 1), then the element acquires a membership
in the setA; otherwise(my(z) = 0) the element is not
in the set.

The qualification algorithmQAlg(z) is generally a
procedure consisting of formulas and IF-THEN condi-
tions. Its output takes a value from the st 1}. This

is information whether or not a given element has
been qualified in the set. Thus the output @Alg(x)

is the value of the membershim 4(z) in a set. The no-
tation f(pamin, Tga,C1,...) implies that the output of
QAlg(z) in the general case depends @fin, T4, and
various conditionsC1, ..., which can exist in the anal-
ysed problem. The type of qualifiéfy 4 in (1) can take
linguistic values from the set {deterministic, probabilistic,
possibilistic, ...}. It should be noticed that in the present
definition of a fuzzy set the notions of the qualifier and
the qualification algorithm do not appear at all. However,
qualification is always realized in one and the same way.

In the next sections a new approach to the notion of
the fuzzy set will be explained.

3. Explanations Referring to the Property
Function pa(x) of a Set

In the present fuzzy set theory, the membership of an ele-
ment z in a fuzzy setA, usually denoted by 4 (), ful-
fils two tasks simultaneously. It expresses both the grade
of the membership of the elementin the setA and in-

+ forms about the amount of the specific property of the set

A possessed by the element This specific property dis-
tinguishes the elements of the sétfrom other elements
of the universal seiX.

The specific property of a set is a primary notion.
The New Oxford Dictionary of English (Pearsal, 1999)
explains property as “an attribute, quality or characteristic
of somethingthe property of heat to expand metal at uni-
form rates’ The specific property of a set is defined by
a set definer according to what he or she is interested in.
A specific property can take linguistic values, equijte
tall, vehicle It can also be a fuzzy number, e.glpse
to 7. The amount of specific property can take real values
in the interval [0, 1].

In the new definition of a fuzzy set these two notions
are separated, because such a separation is made by peo-
ple creating sets in real problems. The mere possession of
a set-specific property4 in an amount greater than zero
is not always sufficient for an element to be qualified
in a fuzzy setA. For example, the set dfeautiful girls
in a class is not a set of all girls who possess the property
beautyto any grade, e.g., 0.001 as it defines the present
fuzzy set theory, but the set of girls who have the prop-
erty beautyat least in a sufficiently high (according to the
qualifier) amount. An example of the property function
pa(z) is depicted in Fig. 2.

The property function maps into [0,1]. Sometimes
a setA of elementsz can be chosen by a qualifi€p 4
fully at random from the elements of the universal 3ét
(e.g., a set of samples for testing a neural network chosen
from among all samples being at disposal for modeling a
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pA“ tion of their knowledge). It can also begroup of per-
sonswho make the decision about the admission of can-
didates for studies at a faculty of computer science (based
on marks from the chosen subjects and on fulfillment of
the required conditions). The qualifier can becanputer
program qualifying elementse from the universeX in
assumed and mathematically formulated sets, srgall

medium

height X, mediumX, large X, on the basis of numerical values
> of elementsz. It can also be dechnical devicequal-
160 170 180 x [cm] ifying elements into some sets, e.g., the sorting machine
which sorts bottles according to their colors on the basis of
Prmediun(z) the spectrum analysis of the light transmitted by the bottle
(180 — z)(x — 160) — 100 glass.
_Je (180—2)(z - 160) for 160 < = < 180 Generally, a qualifier can be of various structures. It
can be a simple, one-person, one-program, or one-device
0 else (machine) qualifier. It can also be a complex qualifier,

which is composed, e.g., of many sub-qualifiers and of
one super-qualifier as is in the case of the qualification
of candidates for the full professorship in Poland (three
reviewers make evaluations of the scientific, educational,
and organizational achievements of a candidate and, next,
a secret super-reviewer makes the final qualification deci-
system, a set of soldiers chosen by a sergeant for carry-sion based on the prior reviews of the open reviewers and
ing out some task). In this case the specific property on his or her own evaluation of the candidate’s achieve-
required from elements: is that they belong to the uni- ments).
versal setX. The qualification in to the se#l is a result The qualifier Q. always exists(explicitly or im-
of a random qualification algorithrpAlg 4 (z). plicitly) in each process of set creation from elements of
Dubois and Prade (1996; 1997) give three interpre- the universal sefX. First, the qualifier determines a spe-
tations of the traditional notion of the membership degree cific featurep, of the setA he or she wants to create,
pa(z) in afuzzy set. This degree can (according to the then formulates qualification conditions, and next carries
definition of the problem) be understood aslegree of out the qualification of elements to create the detf the
similarity (the degree of proximity of: to prototype ele- ~ qualifier is not a person, but a machine/device/computer
ments ofA), adegree of preferendeA represents a set of program, then the qualification algorithm is created out-
more or less preferred objects or values of a decision vari-Side by a humardefiner and introduced into it. The
able X and ;4 (x) represents an intensity of preference qualifier can also be the nature itself (natural selection),

Fig. 2. Property functionpmediunr{x) that determines the
amount of the propertynediumpossessed by a
person of the height: [cm].

in favour of the objectz, or the feasibility of selecting: but who/what is then the definer of the qualification algo-
as a value ofX) and adegree of uncertaintjthe quan-  rithm?

tity pa(z) is then the degree of possibility, ..., that “ Qualifiers are all measuring instruments. Let us an-
is A"). The degree of the specific propergy, («) intro- alyze, for simplicity, a discrete measuring device of tem-

duced in the new definition seems to be more connectedperature, which can indicate temperature values with the
with the degree of similarity and the degree of preference. accuracy of0.1°C (0, 0.1, 0.2, ..., 15.0, 15.1, 15.2, etc).

The degree of uncertainty (of possibility that ‘is A”") Then, if the real atmospheric temperature is, e.g., equal to
seems to be connected with the qualifier type and the qual-15.145739 . . .°C, the device must qualify it in only one
ification algorithm (possibilistic type). possible indication, i.e.]5.1°C or 15.2°C. The measur-

ing instrument makes a similar qualification of tempera-

ture as a man qualifying itin his or her possible indications
4. Explanations Referring to the Qualifier  as, e.g.Jow, medium andhigh temperature. The differ-

Qa ence consists only in the width of qualification distribu-

tions. The instruments have distributions of smaller width
A qualifier Q4 can bePerson1 qualifying Person 2ina  (higher accuracy) and the man’s distributions are of larger
set of persons a$hort, mediumor tall height on the ba-  width (lower accuracy). The qualifier can always use the
sis of the visual evaluation of height. The qualifier may same qualification algorithm, but it also can change the
act as an academic teacher who qualifies students into setglgorithm in time.
of good mediumor weakstudents (based on the evalua-
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5. Explanations Referring to the Qualifica-
tion Conditions C;

is not always sufficient for the qualification of the element
x in the setA;. For example, if a person possesses the
propertytall to the degreena () = 0.6 and the property

In simple cases people qualify elementsof the univer- mediumto the degreepmediun{) = 0.4, then the person
sal setX in asetA, e.g., when the elements possess a does not necessarily have to be qualified in thetakt
specific propertyps of the set at least to a certain mini-  The person can sometimes be qualified in thersadium

mal gradepamin. In this case the necessary qualification Why? It will be explained in Section 6.2.

condition is expressed by In this section only the simplest qualification con-

) ditions were described. In real tasks, the total condition
can be complex, multidimensional and composed of many
The minimal amount of a feature which is required sub-conditions, as was shown through the example of pro-
for qualification can, e.g., be equal to 0.5. It can also be fessorship in Section 4.
equal to, e.g., 0.9 if the qualifier is an especially exacting
one. The minimal requirement for the set membership can

pA(I) 2> PAmin-

also be as low as in classic fuzzy sets, i.e.,

®3)

This means thatlassic fuzzy sets are a special case
of generalized fuzzy setdetermined by the new def-
inition. People frequently use the following qualifica-
tion condition: “an elementr belongs to the set4;,

i € {1,...,m}, whose specific property 4, it possesses
at most.” This condition is expressed by

pa(x) > 0.

7pAm(x) }]
(4)

For example, a qualifier qualifies a person in the s¢albf
people if the person is (according to the qualifier) more
tall thanmedium This means that the person has more
propertytall than the propertynediumor short, cf. Fig. 3.

IF [pAi(x) = max {pAl(m),pAg(x),...
THEN (z € 4;).

ro,
prop A

medium tall

short

propy; = 0.9

PTOPmedium = 0.1

-
-

160 170 i 180

x (person 2)

x [cm]
height

proga”(a:) > prOpmediun{x) > propshort(x)

Fig. 3. Example of the qualification of an elemenin
a setA; whose property the element has to the
highest degree.

However, the mere possession of a specific property

pa by an element: in the grade higher than the minimal
grade pamin O in the gradep 4;(z), which is higher for
the setA,; than for other setsl;, j #1, j € {1,...,m},

6. Explanation Referring to the Qualifier
Type Tga

A qualifier Q4 making decisions about the qualification
of an elementz in a set A can be of various type, e.g.,
deterministic, probabilistic, possibilistic one, etc.

6.1. Deterministic Qualifier

A deterministic qualifier is a qualifier which qualifies
identical elementsr of the universal setX always in
one and the same set;. The deterministic qualifier uses
a deterministic qualification algorithr@Alg ,. An exam-
ple of the deterministic qualifier is a person who exactly
knows the qualification algorithm, is able to describe this
algorithm, and makes the qualification thoroughly con-
sciously without using sub-consciousness. To make deter-
ministic qualifications, the value of the qualified element
x must be exactly known. Figure 4 depicts a simple ex-
ample of deterministic property functions of height evalu-
ations, arbitrarily constructed by an expert.

prop A
short medium tall
1 F
0.55
0.45
i
: .
C >
160 170 180 x[cm]
176 height
Fig. 4. Deterministic  property  functions propy,,(z),

ProPediun(®): Propy, (xz) of linguistic evaluations
of height, arbitrarily defined by an expert.

If the property functions and the height of a given
person are exactly known (e.g., 176 cm), then we or a
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computer can exactly calculate how much of the prop- Solution

erty short medium or tall the person's height has |nthe case of a deterministic qualifier, we can easily deter-
(€9, PrOPshon(176) = 0, ProPregiun 176) = 0.45, mine the distribution function of qualification probability
Prop (176) = 0.55). If the qualification algorithm is: i 4 setqprob,; () and the distribution function of prob-

most of all”, then the person’s height 176 cm is determin-

istically qualified to the setll. However, in the next sec- prop , A, A, A,
tion we will see that such a qualification does not always short medium tall
occur if the qualifier is a probabilistic one. Lr - S

Now, let us consider theaverse qualification prob-
lem (dequalification problery i.e., the identification of
the elementz -value, which was qualified in a fuzzy set
A. The problem is solved under the assumption that the
only information we have at our disposal is the informa-
tion below.

160 165 170 175 180 x[cm]

gprob A (a)
Information qprobay(x)
An elementz, whose value is unknown to us, was quali- 1F
fied in the setA by a deterministic qualifie 4.
Query

What is the probable value of this element (what is the
probability density distribution ofc)? , , ,

160 165 170 175 180 x[cm]

height

Solution

degprobd
To solve this problem, we can use the opinion by Klir and A (b)
Folger (1988): “Within all probability measures, total ig-
norance is expressed by the uniform probability distribu- Ir
tion )
p(z) = x| forall z € X, medium
degprobdy,(x) .
where | X| is the cardinality of X.” A solution of the o1k . — | height
dequalification problem will be illustrated by Example 2. 160 165 170 175 180 [C;ﬂ
Example 2. ©
Information Fig. 5. Property functionsprop,, (), prop,,(«), props (z)
A person of heightz, which is unknown to us but ex- of height evaluationshort medium tall (a), the distri-

bution of the qualification probabilitygprob,,(x) of
the elementse in the setA> = mediumheight (b), and
the distribution of the dequalification probability den-
sity deqprobd,,(z) that the element qualified in the set
Az = mediumhas the valuer (c).

actly known to a deterministic qualifie@ 4;,, was qual-
ified in the setmedium The qualifier uses only three
evaluations (linguistic indications) of heighghort= A,
medium= A,, andtall= As. The corresponding property
functions are depicted in Fig. 5. The qualifier uses a deter-
ministic qualification algorithmQAlg 4, (x): “an element

» is qualified in the setd; whose propertyprop,, it has The rectangular distribution of the qualification prob-

ability gprob,,(z) in the setA, = mediumresults from

atmost’, the deterministic qualification algorithm, cf. (5). Because
ceAi|Aii=1,...,m, aII' heights z satisfying the conditipn165 < x <175
(Fig. 5(a)) have more propertyediumthan the proper-
1 if prop,;(z) = tie_sshortor t_a}ll, they are always, with probability 1 (cer-
Moa; = max{prop, (z), ..., prop,,.. (z)}, (5) tainty), qualified in the semedium cf. Fig. 5(b). As can

be seen, there exists (in the case of the deterministic qual-
ifier) no relation between the shape of the property func-
tion prop, (z) and the shape of the qualification function
Query gprob, (), which is always rectangular, independently of
What are the probable values of heigi? the shape of the property function. If our only information

0 otherwise
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is that heightz, whose value is unknown to us (but known
to the qualifier) was qualified in the set; = medium
then the density distributiodeqprobd, (z) of the proba-
bility that the evaluated height had the valug(Fig. 5(c))
can be determined by a transformation of the distribution
of qualification probability gprob,,(z) from Fig. 5(b)

such that the achieved distribution has the area normalized

to 1 (the total probability of all possible-values must
be equal to 1). To this end, the areaof the function
gprob, (z) should be calculated in accordance with

Knax
a |
Xmin
Next, the transformation coefficiemt = 1/a should

be determined. To make the transformatgprob, (z) —
degprobd, (x), we use

qprob, (z) > 1. (6)

deqprobd, (z) = « - gproby (z), (M
Once more the basic difference between the
qualification probability distributiongprob,,(z) and
the density distribution of dequalification probability
degprobd,,(xz) should be underlined. Both distribu-
tions give answers to contrary questions: The function
gprob,,(z) answers the question “What is the probabil-
ity that the deterministic qualifie® 4o will qualify height
x in the set A, = mediun?”. The probability of a sin-
gle elementx can be equal to 1 and the integral of the
distribution (area) is greater than 1. The dequalification
function deqgprobd,,(x) gives an answer to the question
“What is the probable value of height, which was qual-
ified in the set4, = mediun?”. The maximal value of
density is lower than 1 (apart from a singleton case) and
the integral of dequalification probability density distribu-
tion (area) equals 1. ¢

Remark 1. One should differentiate the satedium
height shown in Fig. 5(c) from the set of heights which
possess the propertpediumin an amount greater than
zero, cf. Fig. 6(b). The sehediumheight contains only
heights which have more propentyediumthan any other
property 6hortor tall). Therefore its supporfl65, 175],

cf. Fig. 5(c), is narrower than the suppdits0, 180], cf.

Fig. 6(b), of the set of heights which possess the feature

medium The last set is a fuzzy set in the classical sense.

One can also notice in Figs. 5 and 6 that in the case of de-

terministic fuzzy sets the property functions and the qual-
ification probability functions are of different shapes. The
relation between the two functions is very weak. In the

next section we will see whether the same takes place for

probabilistic qualifiers.
In the short form, a set being a result of determinis-

prop 4 short
propai(x)

==
N

tall
Propas(x)

—_——

medium
Propa(x)

1

height

-

160 165 170

(@
qprobas(x)

175 180 x[cm]

gprob
A

height

-
-

x [cm]

165 170 175
(b)

Fig. 6. Deterministic property functioprop,,(x) of
the height setnedium(a) and the probability
distribution gprob,,(z) qualifying height =
in the set of the heights which have the property
mediumin an amount greater than zero (b).

160 180

referring to elements: which were qualified in the set

A= {(a:,propA(a:)), QAIgA(m) ‘
Va : (ma(z) =1) A (z € X)}.

6.2. Probabilistic Qualifier

The distribution functions of the qualification probabil-
ity gproby,(x), which are declared by people in inquires
differ, often considerably, from functions which are re-
ally used by them. The reason for that is that people
qualify elements in sets not always fully consciously, but
mostly more or less subconsciously (sometimes fully sub-
consciously), and they are not able to precisely express
and describe the qualification (Piegat, 2001). Therefore,
instead of identifying qualification functions from spoken
inquires of people, it is better to identify them experimen-
tally, more objectively (Piegat, 2004).

Experimental investigations show that different per-

sons of the same height, e.g.= 176 cm, can sometimes

be qualified asnedium and sometimes aall people. If

a qualified person of the height 176 cm is slim or stands
near a person of short height, e.g., 150 cm, then we will
rather qualify the person aall. If the person (176 cm) is
corpulent or stands near a tall person, e.g., of the height
2 m, we will rather qualify he or she asedium This
means that qualification algorithms really used by people

tic qualification can be presented as a set of ordered pairsare often not of a deterministic but of a probabilistic type
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and that they contain distribution functioggrob,, (z) of
gualification probability as, e.g., the one depicted in Fig. 7
for height.

gprob
ro, tall
prop A qprob s(x)

propa(x)

medium
qprob(x)
Propa(x)

short
qprob,i(x)
propai(x)
1k

o}
176

160

3
> qgproby,(z) =1
=1

Fig. 7. Examples of the distribution functiongprob,,(xz) of
the qualification probability of the height in the sets
short mediumandtall. In this case the qualification
functions are numerically equal to the property functions
prop,;(x) of particular sets.

A person of the height 185 cm will, with probabil-
ity 1, (certainty) be qualified in the s#ll, cf. Fig. 7.

Remark 2. In the case of probabilistic qualifiers, qualifi-
cation probability functiongyprob,;(z) inform us about
the probability that an element of the universal setX
will be qualified in the setd;. The sum of qualification
probabilities in all setsd; equals 1. A given element
can be qualified only in one set;.

Technical measuring instruments are mostly proba-

bilistic qualifiers. Each of the instruments qualifies the
measured quantity: into one of its possible indications
Zing With some probability. For example, if a measuring

instrument of temperature indicates temperature with the

accuracy of0.1°C, then its indicationzj,g = 19.7°C
means that the real temperatute of neighborhood is
about 19.7°C. The qualification functiongprob,, ;(x)

of that indication is the probability distribution of qual-
ification of the real temperature in the indication set
about 19.7°C. Each possible indication of the measuring

instrument, e.g., 0.0, 0.1, 0.2, ..., 19.0, 19.1, 19.2, ...,

99.8, 99.9, 100.1C, is characterized by its own qualifica-

tion function gproh,4(z), e.g.,qprok, o (z), gproky, ; (z),
.., gprobyg o(z), qprob,y, o(z), etc. People also make

&Y

People make the qualification of the observed height
subconsciously with the use of probabilistic qualification
functions qproby,e(), AProbnegiun{z) and gproby ()
which exist in their brains.

If the qualification in a set is probabilistic, then it
may happen that an element which has the less spe-
cific property prop,,(x) of the set 4; than the prop-
erty prop,g.1y OF Prop,._,y of other neighboring
sets A;11 or A;_1 (propy;(z) < Propsgq(x) or
prop,;(x) < prop,(;_1)) will be qualified in the set4;
and not in the setd;,; or A;_;. For example, a per-
son of the heightz = 176 cm can be qualified by a
probabilistic qualifier (another person) not in the et
whose property his or her height has to the degree 0.64
(propy (z) = 0.64) butin the semediumvhose property
the height has to the degree 0.8&0p,cqgiur{z) = 0.36),
cf. Fig. 7.

An interesting issue ithe difference between the
meanings of the qualification function gprob,;,(z), the
property function prop,;(z), and the dequalification
function degprobd,,;(x) in the case of a probabilistic
qualifier. The qualification functiomprob,,(x) informs
us about the level of the probability of qualifying an el-
ementx in the set A;, e.g., the probability of qualify-
ing the height 170.23 cm for the indication 170.1 cm of a
technical instrument of height measurement. If “the mea-
suring instrument” is a man, than the qualification func-
tion qprobeqiun{x) informs us about the probability of
the height, e.g., 170.23 cm, to be qualified in the indication
setmedium In Fig. 8 three exemplary qualification func-
tions qprob,,(x) of a discrete measuring instrument of
height, which gives indications with the accuracy 0.1 cm,
are presented.

It should be noticed that, since the qualification func-
tions gprob,; () inform us about the qualification prob-
ability of an elementz in particular indication sets, the
sum of qualification probabilities of the element into all
indication sets must be equal to 1,

> gproby,(z) = 1. ®)
=1

The maximal values of the qualification functions
cannot be higher than Lmax gprob,,;(z) < 1). In the
example shown in Fig. 8 the maximal values of the quali-
fication functions are smaller than 1.

Property functions prop,;(z) inform us to what
degree the element possesses the specific property of
the set A;. It is obvious that a typical element of

measurements (evaluations) of various quantities. In thethe set A; must have a full amount of the set prop-

case of height we observe the heightof a given person
and then qualify it in one of our possible linguistic indi-
cations ashort mediumor tall. More exactly, we qualify

erty, e.g., prop;;o1(170.1) = 1, in Fig. 9 (the height
170.1 cm has the property of being about 170.1 cm to the
degree 1). In the case of probabilistic qualifiers, prop-

the observed height into one of the indication sets we use.erty functions prop,,;(z) are achieved by normalizing
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A qprob(x)
l -

A, =ab.170.2
qproby(x)
A;=ab. 170.1 Az =ab.170.3
qproba(x) 0.57 qprobas(x)

0.6

1 o
-

169.9 170.0 170.1| 1702 1703 1704 170.5 x [cm]
170.123 height

gproby; (170.123) + qprob,, (170.123)
+ gprob,;(170.123) = 1

oo
Vi,i=1,...,n: / gproby,(z)dz > 1

Fig. 8. Exemplary functionsqprob,,(z) qualifying the
measured heightt [cm] into three of many pos-
sible indication setsd; = about170.1 cm, Ay =
about170.2 cm, A3 = about170.3 cm of a tech-
nical measuring instrument.

Ay =ab. 170.2
A prop(x) Propa(x)

0.95

LT A zab 1701
Propai(x)

Az =ab. 170.3
Propas(x)

169.9  170.0 170.1 1702 1703 1704 1705 x [cm]
170.123 height

prop,, (170.123) + prop 4,(170.123)
+ prop,5(170.123) > 1

Vi, i=1,...,n: / prop,,(z)de > 1

Fig. 9. Property functionsprop,,(z) of three indica-
tion sets A; of a technical measuring instru-
ment of height, achieved by normalizing the
qualification functionsqgprob,,(z) of the in-
strument from Fig. 8.

qualification functionsqprob,,(x) to the interval [0,1].

In Fig. 9 exemplary property functions of three indica-

tion sets of a technical measuring instrument of height
achieved by normalizing qualification functions of the in-

strument from Fig. 8 are depicted.

Noticeably, the summarized amount of properties
prop,,(z) a given element: has must not be equal to 1.
It can be greater than 1, as takes place in the case shown
in Fig. 9. The property functiorprop,;(z) itself is not
of a probabilistic but of a deterministic type, though it
refers to a probabilistic qualifier. So in the example in
Fig. 9 the property functions inform us that the element
x = 170.123 cm has the propertyd; (about170.1 cm)
to the degree 0.95, the property of the sét (about
170.2 cm) to the degree 0.68 and the property of the set
Az (about170.3 cm) to the degree 0.03. However, the
mere possessing of the full amount of the specific prop-
erty of set A; (to the degree 1) by an element does
not necessarily forejudge that the element will be quali-
fied by a probabilistic qualifier in the set;. It depends
on the qualification algorithm, which is probabilistic in
this case. Figure 10 depicts exemplary, experimentally
identified qualification functions used by a person in vi-
sual height evaluation of adults, under the assumption that
the person uses only three linguistic indications of height:
Ay, = short Ay, = medium A3 = tall, and that the per-
son qualifies the perceived height in only one set. The
assumed height univers& is confined to the interval
[150 cm, 190 cm].

gprob(x)
A A, = short Az =tall
qpropai(x) . qpropas(x)
1 A, = medium
qprop (x)
0.8
0.5
01F height
! 1 1 1 »
0 >
150 160 165 167 170 173 175 180 190| x [cm]

X
VY : gproby, (z) + gproby, (z) + gproby;(z) = 1

Fig. 10. Exemplary qualification functiongjprob,,(x)
of a person qualifying the observed heights to
the linguistic indicationshort, mediumandtall
height.

The qualification functiorgprob,, (x) qualifying in
themediumheight has the maximal value equal to 0.8 and
notto 1, because 10% of persons of the height 170 cm are
qualified by the qualifier-person in tishortheight (under
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the influence of the corpulence, clothes, and height of theand Prade, 1988; Klir and Folger, 1988; Zimmermann,
previously seen person), and 10% of evaluated persons 0fl996). The notions of the possibility and the necessity

the height 170 cm the qualifier qualifies &l persons
for the same reasons. The property functigmsp,, (x),
prop,(x), propss(z), being numerically equal to the
qualification functionsqprob,,(z) (Fig. 10) normalized
to the interval[0, 1], are depicted in Fig. 11.

prop(x)
A, = short A, = medium Aj =tall
propa(x) Propp(x) Props(x)
1
0.625 -
0.125 F height
0 1 1 1 >
150 160 165 167 170 173 175 180 190 x [cm]
- " >
Fig. 11. Property functions prop,,(z) defining the

amount of specific properties of the set$;,
Ay, As (short medium tall height) possessed
by an elementz achieved by normalizing the
qualification functionsgprob,, (z) from Fig. 10.

Obviously, the height 170 cm has a full amount (to
the degree 1) of the propertgedium= about170 = A,
but also, according to the qualifier, it partly (to the de-
gree 0.125) possesses the properséort = A; and
tall = A3. The author claims that the membership func-
tions p4;(z) used in fuzzy set theory correspond to the
property functionsprop,;(z) of fuzzy sets.

In a short form, the setd being a result of proba-

bilistic qualification can be presented as a set of ordered

pairs referring to elements qualified in the set:

A = {(=, qproby, (z)), QAIg,(2) |
Vi (ma(z) =1) A (z € X)}.

6.3. Possibilistic Qualifier

A qualifier @ 4 is possibilistic if it uses in its qualification
algorithm QAlg 4, (z) a possibility distributions 4 (z) of

the qualification of an element in a set A. The possi-
bility distribution must be used to model the qualification
process of a real qualifier, when it is not possible to de-
termine the precise distributiogprob, () of the qualifi-
cation probability of the qualifier, because we do not have
precise information about the way of qualification but only
inaccurate, nested information. This problem will be ex-
plained further on. The notion of a possibility measure
II(A) and a necessity measu¥(A) of the event oc-
currence(x € A) is described in the literature (Dubois

measure are dual. They are characterized by the formu-
las (9), (Dubois and Prade, 1988). We have

I(A) =1— N(A) = sup{n(z) | z € A},
N(A)=1-TI(A) =inf{l — n(x) | = ¢ A},
m(z) = H({z}).

Additionally, possibility and necessity measures are
connected by relations (9). We have

II(A) = N(4),
NA) >0 = 1II(A) =1,
II(A) <1 = N4 =0.

As Dubois and Prade state in their monograph
(Dubois and Prade, 1988), the occurrence possibility of
an eventA means the maximal probability*(A) of
this event, whereas the occurrence necesSifyl) of the
event A means the minimal, but sure probabilify, (A)
of the event occurrence, see also (Piegat, 2005a).

These two notions are used when we have only un-
certain, nested evidence information about a given prob-
lem. It will be illustrated by Example 3.

Example 3.Let us assume thate do not haveprecise in-
formation about the way of qualification of heigltjcm]

in the setA, = mediumsuch as the exemplary informa-
tion given below:

e 80% of persons of the height 167 cm are qualified by
the qualifier in the setd; = medium

e 86% of persons of the height 168 cm are qualified in
the set4; = medium

e etceteras.

Insteadwe havethe inaccurate evidence information
E; as below.

The qualifier made qualifications of persons from
three groups in the sed, of themediumheight.

e Evidence informationF; : five persons of the height
confined to the interval [167 cm, 173 cm] from the
first group were qualified to be of tmeediumheight.

Evidence informationEs: ten persons of the height
confined to the interval [164 cm, 176 cm] from the
second group were qualified to be of theedium
height.

Evidence informationF3: fifteen persons of the
height confined to the interval [160 cm, 180 cm] from
the third group were qualified to be of tmeedium
height.
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The evidence information about the way of qualification #(x)
can be presented visually as in Fig. 12. nx) A medium
E5— 15 persons 1k Tr2(x)
E, — 10 persons 5/6 L
E; -5 persons
height
. - 3/6 |
160 164 167 170 173 174 180 x [cm]
Fig. 12. Visual presentation of the inaccurate, nested in- | | 4____417143(_)?_:_?____4_ _____ h?ght
formation E; about the way of qualification of -
160 164 167 170 173 174 180 x [cm]

height = [cm] in the set A, = medium height
realized by the qualifie 2.

Because the information about the way of quali-
fication is not precise, it is not possible to determine
the precise distribution of the qualification probability
gprob,,(z) in the setA, = mediumheight. However,
using the formula (9) from (Dubois and Prade, 1988), the
possibility distributionm 42 (x) of height qualification in
the setmediumcan be determined,

Vi, mao(x) = PZ2({$})

p
m(E;) fxeE;, x¢ E;i_q,
Z ’ (9)

0 ifceX—-E,

wherem(E;) denotes therobability masorresponding
to the evidence informatio’; (Dubois and Prade, 1988),
m(E;) = 1/6, m(Fy) = 2/6, m(E3) = 3/6.

The possibility distribution 742(z) determined
with (9) and the dual necessity distribution (z) of the
qualifying heightz in the setA; = mediumis shown in
Fig. 13.

Information uncertainty results in the impossibil-
ity of determining the precise probability distribution
gprob,,(z) of qualification. We can only determine the
upper probability constraint 42(x) (a possibility distri-
bution of qualification), and the lower probability con-
straint n42(x) (a necessity distribution of qualification).
The possibility distribution and the necessity distribution
are only two of many possible probability distributions of
qualification, which may result from the evidence infor-
mation E; (which could be used by the qualifier). In the
case when the variable is a continuous one, the num-
ber of possible distributions of qualification probability is
infinite! Therefore, the probability that the qualifi€) 4o

used in the qualification process has a qualification proba-

bility distribution qprob,,(z) just identical to the possi-
bility distribution 742 () or to the necessity distribution
naz(x) is very small (in the case of discrete variables) or
infinitesimal (in the case of continuous variables). In this

Fig. 13. Possibility distribution42(z) and necessity
distribution na2(z) of qualifying the heightr
in the setA, = mediumdetermined on the ba-
sis of the inaccurate evidence informatid ,
E> and E3 (Fig. 12) about the way of qualifi-
cation used by the qualifief 4.

situation, instead of using a very little probable possibility
or necessity distribution, it is reasonable to determine the
“probable, average” probability distribution of qualifica-
tion gprob,,,,e(x) in the set4; = medium If we have

at our disposal the previously determined possibility dis-
tribution 74 (x) of qualifying the element: in a set 4,
then the “average” probability distributiogprob, ()

of qualification can be determined using the formula (10)
from (Dubois and Prade, 1988),

APIOb () = 3 %{m@j) —ralzj)}, (10)
i=j

where z; is the i-th discrete value of the variable. The
numeration of the discrete valuas satisfies

walz) =1>ma(xs) > > wa(Tpy1). (11)
Here x,4+1 is a dummy value of the variable, whose
universe was divided inte. elements. Using (10), the av-
erage probability distributiomprob,, (x) of qualification
in set A, = mediumwas determined, cf. Fig. 14.

The possibilistic qualifier can be a computer, which
qualifies the elements of the universeX in a set A
with the use of a possibilistic distribution 4 (z) instead
of the unknown distribution of the qualification proba-
bility gprob,(x). In this case possibility distribution
(only very approximately) models the way of qualifica-
tion of a real probabilistic qualifier, e.g., of a man. For a
given x-value, the possibilistic qualifier determines, simi-
larly to the probabilistic one, the possibility grade (),
which means the maximal possible probability of qual-
ifying the elementz in the setA (Piegat, 2005). Next,
with a probabilityp 4 () determined at random, such that
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gprob(x)
n(x) A
7(x)

1
5/6

_________

3/6
2/6
1/6

174 180 x [cm]

Fig. 14. Average probability distributiongprob, .. () of
height qualification in the setd, medium de-
termined on the basis of the possibility distribution
maz(x) of the way of qualification, which was ob-
tained from the inaccurate evidence informatiéh
about qualification realized by the qualifi€) a2.

na(z) < pa(z) < ma(x), it generates 1 or 0. Gener-
ating 1 means the qualification of the elementin the

set A. Otherwise, the element is not qualified in the set.
The possibilistic qualifier is a very inaccurate model of
the probabilistic one, whose way of qualification was not
precisely identified because of the lack of precise informa-
tion about qualification results (only the inaccurate, nested
information E; about the qualified elements is at our

disposal). Therefore the author does not recommend us-

ing possibilistic qualifiers. When we have only inaccu-
rate, nested information, first the possibility distribution
ma(xz) and next the average distributicgprob,,.(z)

of qualification probability should be determined accord-
ing to the formula (10). Thus the possibilistic model of
the qualifier is transformed into a probabilistic one, which
can further be used according to the remarks contained in
Section 6.2.

In the short form, a sefl being a result of possibilis-
tic qualification (that was not transformed into the proba-

&

7. Impact of the New Definition of the Fuzzy
Set on Fuzzy Arithmetic

7.1. Deterministic Qualifier Case

A deterministic qualifier uses a deterministic qualification
algorithm with deterministic property functions. Further
on, from among many operations of fuzzy arithmetic, ad-
dition of two fuzzy numbers will be considered as an ex-
emplary operation. Example 4 will show how this oper-
ation is realized with the methods of the present fuzzy
arithmetic based on the classical definition of a fuzzy set.
Example 5 will show the influence of our new definition
of the fuzzy set on the results of the addition.

Example 4. (Classical approach to the addition of fuzzy
number} Assume that we have information about the in-
comes of two firmsA and B as below:

1;: Income of the firm A is medium(about4 million
euro).

I5: Income of the firm B is medium(about4 million
euro).

The membership functions of thew, mediumand
highincome are depicted in Fig. 15.

Ha

A
J! . .
s low medium = about 4 high
R
1 \\\ /// \\\ ///Q
N\ / \, 7/
SN o Q (>4
AN e AN s
\. / \\ //
& )¢
7/ \, 7 N\
// \\ // \\
j>4 Q yt L}
/ NS N income
0 ¢-—o:= ] Y VA 1 L >
1 2 3 4 5 6 7 8| x4 xz[mil euro]
P X4, Xp _

Fig. 15. Membership functions ofow, medium
andhighincome of the firmsA and B.

bilistic one) can be presented as a set of ordered tripletsQuery

referring to the elements, which were qualified in the
set:

4= {(ma(2), 1a(2)), QMg (2) |
Vo : (ma(z) =1) A (z € X)}.

What is the sum of both the incomeaaddium+ mediun)?

Solution

In the present fuzzy arithmetic, addition can be imple-
mented with the use of Zadeh’s extension principle ex-
pressed by

V(za,zg) |za+2B =1y

wats(y) = max { min [/J,A("EA)7/LB($B)] } (12)

The result of the addition is presented in Fig. 16.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 y=x,+xp
(©)
Fig. 16. Result (c) of the addition of two fuzzy numbers (a) and @)o(t4 + about4).
As can be seen in Fig. 16, the addition result of two PP
fuzzy numbersA and B has a support (16) which is A o .
equal to the sum of the supports (8+8) of both fuzzy num- low A= B =medium high
bers. Thus the fuzziness of the sum is very large and there- 1 N N /O
fore its practical usefulness is small. For this reason fuzzy \Q p/ “a &
arithmetic is rather seldom used in practice. In Example 5, A NS
the addition of two fuzzy numbers will be shown with the ,/\‘\ A
. el / \ s AN
use of the new definition of a fuzzy set. ¢ /g/ ‘Q\ /O/ \Q\
Example 5. (New approach to the addition of fuzzy num- ¢ " >
berg A deterministic qualifier evaluated the incomes of b2 3 45 6 7 8 xx[mil euro]
the firms A and B as below: _ Xa, Xp o

1;: Income of the firm A is medium(about4 million
euro).

I3 Income of the firm B is medium(about4 million
euro).

Let us notice that each of the incomes can take only
one crisp value from all values being in the setdium=
about4. The qualifier used an algorithm which qualifies
the incomez: in the set whose property the givenvalue
has at most. In Fig. 17, the property functions of the sets
low, mediumandhighincome are shown.

Query
What is the sum of the incomes of the firds and B?

Fig. 17. Property functions prop,,,,(z), PrOPmediunl )
and prop,,;,, (z) of the fuzzy setdow, medium
andhighincome of the firmsA and B.

Solution

Although the qualification algorithm is deterministic, the
same problem of fuzzy number addition is not determinis-
tic but probabilistic. It follows from the qualification algo-
rithm and from the property functions in Fig. 17 that only
the values {2,3,4,5,6} could be qualified asreediumin-
come. Both the income of the firrdl and that of the firm

B can be equal to one of these values with the same prob-



A new definition of the fuzzy set

ability. The probability distributiongdeqprob, (z4) and
degprol; (z ) of both firms are shown in Fig. 18.

A degprob,(x)

1k

A = about 4
LTI
1 1 1 >
1 2 3 4 5 6 7 8 x4
A degprobg(x)
1_
B = about 4
LTI
1 1 1 >
1 2 3 4 5 6 7 8 xp

Fig. 18. Distributions of the dequalification probability
degprob, (z4) and degprol, (zg) of the in-
come of the firmsA and B.

With the use of dequalification probability distribu-
tions of single incomes, the distributiatteqprob, , (y)
of the income sum can be calculated as follows:
deqprob, , 5(y) = card R(za + x5 = y)]

> deqgproby (z4) - deqproly (x5). (13)

(ra,zp)|zat+rp=Y

Figure 19 illustrates the calculation process.

As can be seenin Fig. 19, only one evant+xp =
4 is possible. It occurs when the income of the ficfp
z4 = 2, and the income of the firnB, zg = 2. The
probability of such an event is equal 1925. However, 5
eventsz, + xp = 8 are possible, e.g., when { = 2
andzp = 6), (r4 = 3 andxp = 5), etc. Thus, the prob-
ability that the income sum will be equal to 8 equaj®5.
The dequalification probability distribution of the sum in-
come of both the firmsd and B is shown in Fig. 20.

After the normalization of the resulting dequalifica-
tion probability distributiondeqprob, , (x) to the inter-
val [0,1], the property functionprop,, z(y) of the in-
come sum was obtained, cf. Fig. 21(b).

As can be seen in Fig. 21, the addition result of two
fuzzy numbersA and B achieved with the use of the new
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definition of a fuzzy set is considerably less fuzzy than the
result achieved with use of the classic definition of a fuzzy
set. Therefore the new definition has greater practical use-
fulness than the classic one. Less fuzzified results are also
achieved in other operations of fuzzy arithmetic.

It should also be mentioned that the property function
as a representation of a fuzzy number has small informa-
tive meaning. For example, in the case of the fuzzy num-
berabout8 in Fig. 21, its property functiomprop,_ 5 (v)
informs us only how much of the property of the set
about8 a giveny-value has. However, we do not know
what practical meaning the information that, e.g.= 5
possesses the specific property of theadmiut8 to the
degree 0.4 has. Considerably greater practical meaning
is assigned to the dequalification probability distribution
degprob,, z(y) form in Fig. 20c. The information that
“the sumy = x4 + xp of the firm incomes can be equal
to 5 million euro with probability 2/5” is understandable
to everyone and is of the great meaning for the user.

It seems that the application of property functions is
useful only in the phase of the qualification of the ele-
ments x in a fuzzy set. In the phase of the interpreta-
tion of calculation results are of practical meaning only
dequalification probability distributions. ¢

7.2. Probabilistic Qualifier Case

In the case of a probabilistic qualifier, the most important
function characterizing a fuzzy set is the qualification
probability distributiongprob, (z). By the normalization

of the function abscissas to the intervl 1], the prop-
erty function prop,(z) of a fuzzy set is achieved. By
the normalization of the area of the qualification probabil-
ity distribution gprob, () to the value 1, the distribution
of the dequalification probability densigyeqprob, (x) is
achieved (for continuous variables). Thus, there exists a
strict relation between the qualification probability dis-
tribution gprob,(«) and both functionsprop,(z) and
degproby (x), which fully depend on it.

It seems that the most advantageous implementa-
tion of fuzzy arithmetic operations is calculation with de-
qualification probability distributions (for discrete vari-
ables) or with distributions of the dequalification prob-
ability density deqprobd, (z) in the case of continuous
variables. An example of such calculations was shown in
Section 7.1.

7.3. Possibilistic Qualifier Case

In the case of arithmetic operations with fuzzy sets char-
acterized by the possibility distributions;(x) used by

a possibilistic qualifier, the operations can be realized
with Zadeh's extension principle. However, the results
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Fig. 19. lllustration of the calculation of the dequalification probability distributideqprob, | ;(y) of the sum[deqgprob, (z4) +
degprol, ()] in the addition of the incomes of the firm4 and B.
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Fig. 20. Result (c) of the addition of the dequalification probability distributions (a) and (b) of the incomes of twoffianmd B.
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Fig. 21. Membership functionua+g(y) representing the addition result of two fuzzy numbersand B

with the use of the classical definition of the fuzzy set (a), and the property funptipy, , » (y)
representing the addition result achieved with the use of our new definition of a fuzzy set (b).

of such operations will also be possibility distributions, Dubois D. and Prade H. (1988)Possibility Theory — New
which are of small practical meaning (see explanations in York: Plenum Press.
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