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A generic structure of reachable and controllable positive linear systems is given in terms of some characteristic components
(monomial subdigraphs) of the digraph of a non-negative a pair. The properties of monomial subdigraphs are examined and
used to derive reachability and controllability criteria in a digraph form for the general case when the system matrixA may
contain zero columns. The graph-theoretic nature of these criteria makes them computationally more efficient than their
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1. Introduction

Positive discrete-time linear control systems are described
by the equation

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . , (1)

where A = [aij ] ∈ Rn×n
+ , B = [bij ] ∈ Rn×m

+ , x ∈ Rn
+

is the state vector andu ∈ Rm
+ is the control vector. The

system (1) is denoted by the pair(A,B) and, when the
system is positive, by(A,B) ≥ 0.

A common property of positive systems is that their
state evolution is always positive (or at least non-negative)
whenever the initial state is positive (or at least non-
negative). Note thatA and B being non-negative matri-
ces is a necessary and sufficient condition for a discrete-
time linear system to have non-negative state evolution for
any non-negative initial state, given that the controls are
also non-negative.

The system (1) is said to bereachable (controllable
from the origin)if, for any final statexf ≥ 0, there exist
k ∈ N and a non-negative control sequenceu(t) ≥ 0,
t = 0, 1, 2, . . . , k, transferring the system fromx0 = 0
at t = 0 to xf at t = k. The system (1) is callednull-
controllable (controllable to the origin)if, for any initial

statexp ≥ 0, there existk ∈ N and a non-negative con-
trol sequenceu(t) ≥ 0, t = 0, 1, 2, . . . , k−1, transferring
the system fromx0 = xp at t = 0 to xf = 0 at t = k.
The system (1) iscontrollable when it is reachable and
null-controllable (Rumchev and James, 1989). Controlla-
bility is a fundamental property of the system that shows
its ability to move in space. It has direct implications in
many control problems such as optimal control, feedback
stabilization, non-negative realizations and system mini-
mality among others.

Characterizations of the reachability of the system
(1) can be given in terms of the reachability matrix of the
pair (A,B). The reachability matrix at timek is given
by

Rk(A,B) = [B|AB|A2B| . . . |Ak−1B]. (2)

It is well known that the pair(A,B) ≥ 0 is reachable if
and only if the reachability matrixRk(A,B) has a mono-
mial submatrix of ordern for some k ≤ n. We recall
that an n-dimensional vector is calledi-monomial if it
is a nonzero multiple of thei-th unit vector ei of Rn.
A monomial matrix consists ofn linearly independent
monomial vectors. Throughtout this paper we consider
non-negative vectors only.
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Various authors have contributed to the characteri-
zation of positive reachability and controllability proper-
ties, including Coxson and Shapiro (1987), Coxsonet al.
(1987), Rumchev and James (1989), Murthy (1986), Mu-
ratori and Rinaldi (1991), Bruet.al (2000) and Caccetta
and Rumchev (1998). At the same time, digraphs have
been widely used in control theory. It is sufficient to men-
tion only that the notion of the structural controllability of
linear systems (Lin, 1974) and criteria to test this property
have been formulated in terms of digraphs. However, al-
gebraic methods have been used for the same problems,
see, e.g., (Coxson and Shapiro, 1987; Muratori and Ri-
naldi, 1991; Rumchev and James, 1989). An overview of
these results in both forms (algebraic and graph-theoretic)
can be found in the very recent monograph by Kaczorek
(2002). Moreover, original results on the reachability and
controllability of continuous-time positive linear systems
are also provided in that monograph.

In this paper, in order to increase the understanding
of reachability and controllability properties of positive
linear systems, the generic structure of reachable and con-
trollable pairs(A,B) ≥ 0, for the general case whenA
may contain zero columns is given in terms of the digraph
of A. In this way, all possible structures (subdigraphs) of
the digraph ofA that can have a reachable or controllable
pair (A,B) are detected and studied.

The paper is organized as follows: In Section 2 some
basic combinatorial concepts are given as well as the reit-
eration of a basic but known lemma. The algebraic prop-
erties of all different monomial subdigraphs, which can
be in the digraph of a reachable pair, are studied in Sec-
tion 3. A characterization of reachability and controllabil-
ity properties of the system (1) is obtained in Section 4.
Finally, Section 5 contains conclusions.

2. Some Preliminaries

Let A = [aij ] be ann× n non-negative matrix. Thedi-
graphof A, denoted byD(A), is defined as follows: The
set of vertices ofD(A) is denoted byN = {1, 2, . . . , n}
and there is an arc inD(A) from vertex i to vertex j

Fig. 1. Monomial path.

if aji > 0. The set of all arcs is denoted byU . A walk
in D(A), from vertex i1 to vertex ik, is an alternating
sequence of vertices and arcs, and we will denote it by
(i1, . . . , ik). A walk is calledclosedif the initial and fi-
nal vertices coincide. Thelengthof a walk is the number
of arcs it contains. A walk is said to be apath if all its
vertices are distinct, and acycleif it is a closed path. The
number of arcs directed away from a vertexi is called
the outdegreeof i and is presented asod(i). The num-
ber of ingoing arcs of a vertexi is called theindegreeof
i and is denoted byid(i). Note that the number of non-
zero entries in thei-th column ofA is od(i), while id(i)
coincides with the number of non-zero entries of thei-th
row.

The positive entries of the columns of the matrixB
are associated with the corresponding vertices inD(A).
The vertices associated with the monomial columns ofB
are referred to asorigins.

We have the following simple but basic result (Cac-
cetta and Rumchev, 1998):

Lemma 1. Let M be an n × n matrix whosej-th col-
umn is an i-monomial. Letb be an n-dimensionalj-
monomial vector. Then the productMb is an i-monomial
vector. In particular, ifMsb is j-monomial, thenMs+1b
will be i-monomial.

The above lemma tells us that ifod(i) = 1 and b is
an i-monomial vector, thenMb is a monomial vector as
well. However, if od(i) > 1, then Mb is not monomial
anymore. In fact, the number of non-zero entries of that
product is exactlyod(i).

3. Monomial Subdigraphs

In this section we construct special subdigraphs of the
digraph D(A) called monomial subdigraphs. The
common property of monomial subdigraphs is the fact
that from the column ofB associated with the initial
vertex of a monomial subdigraph one can obtain a
maximal sequence of linearly independent monomial
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Fig. 2. Monomial tree.

vectorsb, Ab,A2b, . . . , Ap−1b, wherep is the number of
the vertices of the subdigraph. Now, given a non-negative
matrix A and a path(i1, i2, . . . , ip−1, ip) of length p−1
of a digraphD(A), we will consider the following special
paths:

Definition 1. (i) The above path is said to be an
i1−monomialpath if its vertices have outdegreeod(ij) =
1, for all j = 1, 2, . . . , p− 1, and od(ip) is arbitrary, but
ip cannot be connected with any other vertex of the path.
(ii) When the last vertex of the monomial path has
od(ip) = 0, then we have asinglemonomial path.
(iii) The path (i1, i2, . . . , ip−1, ip) of length p − 1 with
od(ik) = 1 for all k = 1, 2, . . . , p is called a(monomial)
cycleif i1 = ip.

A monomial path(i1, . . . , ip) of lenth p− 1 is pre-
sented in Fig. 1. WhenD(A) consists of a monomial
path or a (monomial) cycle, we have the following result:

Lemma 2. Let (A,B) ≥ 0 and let D(A) be a (single)
monomial path with vertices(i1, i2, . . . , ip) of length
p − 1, where p ≤ n, and let B have an i1-monomial
column b. Then

(i) the p vectors

b, Ab,A2b, . . . , Ap−1b (3)

are linearly independent monomial vectors, and

(ii) these p vectors constitute the maximal number of
linearly independent monomial vectors generated by
any column ofB.

Proof. (i) Apply Lemma 1.
(ii) Since od(ip) = 0 (single monomial path) or
od(ip) > 1 (monomial path), then the vectorApb is a
zero vector or has, respectively, more than one positive
entry, that is, it is not monomial anymore. By Lemma 4
and Remark 6 of (Caccetta and Rumchev, 1998), no non-
monomial columnb can generate in (3) as many mono-
mial vectors as thei1-monomial column. It is readily

seen that thei1-monomial column yields at least as many
monomial columns as any other monomial column.

Remark 1. The results in Lemma 2 hold for monomial
cycles. It is not difficult to see that monomial cycles raise
a p-periodic sequence (3). That is,Ak+lpb = Akb (up to
a scalar),0 ≤ k ≤ p− 1 and l = 0, 1, 2, . . . .

Definition 2. A subdigraph T of a digraph D(A) is
called amonomial treeif it is a union of different mono-
mial paths, originating at different vertices and connected
one to another from the last vertices only (inD(A)) with-
out forming cycles.

Note that the existence of at least a single monomial
path in a monomial tree results from the fact that there
are no cycles. As cycles are not permitted in monomial
trees, the monomial paths of any monomial tree can be
grouped in levels as follows: At levelT1 we consider all
single monomial paths of that monomial tree. Any mono-
mial path connected from its last vertex only with that of a
single monomial path will belong to levelT2. Any mono-
mial path connected from its last vertex only with that of
a monomial path fromT2, and possiblyT1, is in level
T3. By recursion, all levels in the monomial tree can be
defined up to the last, which is denoted byTn−1. The
digraph of Fig. 2 is a monomial tree of three levels.

Let T be the index set of all initial vertices of all
monomial paths ofT . A similar result to Lemma 2 can be
obtained for a monomial tree.

Lemma 3. Let (A,B) ≥ 0 and let D(A) be a monomial
tree T . Suppose thatB has thei-monomial columns, for
all i ∈ T . Then
(i) the vectors generated along each monomial path, as in
(3), form a set of linearly independent monomial vectors;
the union of all these sets is also linearly independent, and
(ii) this union is the maximal set of linearly independent
monomial vectors generated by any column ofB.

Definition 3. Let a digraphD(A) contain at least one
monomial path, one cycle and a treeT . A subdigraph
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Fig. 3. Flower.

F ⊆ D(A) is said to be aflower if it consists of a mono-
mial path (i1, i2, . . . , ip) of length p − 1, linked to a
(monomial) cycle(ip+1, ip+2, . . . , ip+k+1) with the arc
(ip, ip+1) and, moreover, from the vertexip of the mono-
mial path, there are arcs(ip, t) for somet ∈ T .

Observe that there must be a tree in the digraph
D(A) for a flower to exist, but the flower itself contains
only a monomial path and a connected (monomial) cycle.
All vertices of a flower haveod(is) = 1, except for the
vertex ip, in which caseod(ip) ≥ 2. Figure 3 represents
a flower.

Again, the following result is similar to Lemma 2.

Lemma 4. Let (A,B) ≥ 0 and let D(A) be the digraph
of A containing a flowerF connected to a monomial tree
T with q vertices. Assume that the flower has a monomial
path (i1, i2, . . . , ip), p ≤ n linked to the (monomial) cy-
cle (ip+1, ip+2, . . . , ip+k+1), k ≤ n−p−q−1. Suppose
that B has ani1-monomial column, namely,b. Then

(i) the p vectors{b, Ab,A2b, . . . , Ap−1b} are linearly
independent and monomial. In addition, thek + 1
vectors {Aq+pb, Aq+p+1b, . . . , Aq+p+(k+1)b} are
linearly independent and monomial, and

(ii) the union of both sets gives the maximal number of
linearly independent monomial vectors generated by
any column of B along the flowerF .

Proof. (i) Sinceod(ir) = 1, r = 1, 2, . . . , p−1, it is clear
that the p vectors {b, Ab,A2b, . . . , Ap−1b} are linearly
independent monomial vectors, cf. Lemma 2.

The vectorApb will have at least two positive entries
since od(ip) ≥ 2. These positive entries correspond to
the arcs fromip to a vertex ofT , and to a vertex of the
cycle. The vectors{Apb, Ap+1b, . . . , Ap+kb} will have
at least a positive entry in addition to theis-th entry, s =
p + 1, p + 2, . . . , p + k + 1, produced by the cycle. This
additional positive entry, namely, thej-th one, is yielded
by the link from ip to the monomial tree. However, thej-
th entry will eventually become zero, at least for the(q +
p)-th power ofA.

This is because the entry will ultimately correspond to the
final vertex of a single monomial path ofT . So, thek+1
monomial vectors{Aq+pb, Aq+p+1b, . . . , Aq+p+(k+1)b}
will be linearly independent. Clearly, the set
{b, Ab,A2b, . . . , Ap−1b, Aq+pb, Aq+p+1b,
. . . , Aq+p+(k+1)b} is formed by linearly independent
monomial vectors, since the vertices in the flower are dis-
tinct.
(ii) Similar to the proof of Part (ii) of Lemma 2.

Cycles associated with monomial columns ofB
produce linearly independent monomial vectors, see Re-
mark 1. In addition, (monomial) cycles may yield similar
periodic sequences of linearly independent monomial vec-
tors when they are associated with some special columns
of B, calledproper, as stated in Lemma 5, the proof being
similar to that of Lemma 4.

Lemma 5. Let (A,B) ≥ 0 and let C be a (monomial)
cycle with vertices(i1, i2, . . . , ip = i1), where p < n.
Also, let T be a monomial tree withq vertices inD(A).
Suppose thatB has a proper column, which can be writ-
ten asb = eik

+ w, where ik is one of the indices of the
cycle, e. g.,ik = i1, and whenwj > 0, then j is a vertex
of the monomial treeT . Then

(i) the p vectors {Aqb, Aq+1b, . . . , Aq+p−1b} are
linearly independent monomial vectors, and

(ii) these p vectors constitute the maximal number of
linearly independent monomial vectors generated by
any column of B associated with the cycleC.

We can weaken the definition of a monomial tree in
order to obtain linearly independent monomial vectors.

Definition 4. A subdigraphP of a digraph D(A) is
called apalm if it is a path (i1, i2, . . . , ip), such that
od(ik) = 1, k = 1, 2, . . . , p − 1, and an arbitrary sub-
set of arcs(ip, ik), k = 1, 2, . . . , p.

From Definition 4 it follows that monomial paths
can be considered as a special type of palm without
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Fig. 4. Palm.

{(ip, ik), k = 1, 2, . . . , p}, but not every palm is a mono-
mial path. If od(ip) = 0, the path is, indeed, a single
monomial path in a monomial tree. Note that any con-
nection from ip−1 to any monomial tree is excluded. It
seems that a flower can be viewed as a particular type of
palm, in which the last vertexip is connected with only
one vertexik, k = 2, . . . , p. For the existence of flowers,
links (ik−1, t), t ∈ T , must exist. But such links are not
permitted in the palm. For this reason, we have consid-
ered the digraph flower independently. In addition, note
that any monomial path or cycle that is not in a monomial
tree, flower or (monomial) cycle is considered as a palm.
An example of a palm is given in Fig. 4.

The following properties can be deduced in a similar
way as in Lemma 2.

Lemma 6. Let (A,B) ≥ 0 and let D(A) be a palm with
verticesi1, i2, . . . , ip, wherep ≤ n. Suppose thatB has
a columnb which is i1-monomial. Then

(i) the p vectors{b, Ab,A2b, . . . , Ap−1b} are linearly
independent monomial vectors, and

(ii) the set of thosep vectors is the maximal set of lin-
early independent monomial vectors generated by
any column of B.

Palms can be linked with one another by arcs(ip, p)
for some vertexp of another palmP , forming a family
of palms, in which caseother cyclescan appear. Palms
can also be linked to any otheri1-monomial subdigraph
by arcs (ip, t) for some vertext in a monomial tree or
flower or (monomial) cycle.

The above lemma is Theorem 3 of (Coxsonet al.,
1987). In addition, for multi-input systems(A,B) a com-
position of palms is used in (Rumchev, 2000, Thm. 1) to
study the case whereA does not have any null columns.

4. Positive Reachability and Controllability

It is clear that when a pair(A,B) is such thatD(A) is
one of the monomial subdigraphs introduced in the pre-

vious section andB contains all columns needed to gen-
erate the maximal number of linearly independent mono-
mial vectors onD(A), then the pair(A,B) is reachable.
This is because one can obtain a monomial matrix of or-
der n in the reachability matrix. With the above results, a
characterization of reachable positive systems(A,B) is
given in this section.

For this purpose, consider a non-negative pair
(A,B) and the associated digraphD(A). Recall that
the positive entries of the monomial columns ofB are
identified with the corresponding vertices inD(A) called
origins. From theseorigins, construct the maximal mono-
mial subdigraphs, without repeating vertices, in the fol-
lowing order: (i) all possible monomial trees; the initial
vertices of all monomial paths of the monomial trees form
the index set oforigins T ; (ii) all possible flowers; the
initial vertices of all monomial paths of the flowers form
the index set oforigins F ; (iii) all possible palms; the ini-
tial vertices of all paths of the palms form the index set
of origins P; (iv) all possible (monomial) cycles from the
proper columnsof B, blr = elr + w, where the indices
of the positive components of vectorw are vertices of a
monomial tree; indiceslr form the set oforigins C.

Let

L =
{

(ip, t), ip ∈ F, t ∈ T

and (ip, t), ip ∈ P, t ∈ T or t ∈ F or t ∈ P or t ∈ C
}

be the set of all arcs linking the formed monomial subdi-
graphs. DefineD′(A) = D(A) \ L = (N ′, U ′), where
N ′ = N and U ′ = U \ L. Thus, the monomial subdi-
graphs inD′(A) are disjoint.

The following characterization follows from this
construction:

Theorem 1. Let A ≥ 0 and let D(A) be the associated
digraph. LetT , F , P and C be the index sets of the ori-
gins of the monomial subdigraphs, respectively, monomial
trees T , flowersF , palmsP , and (monomial) cyclesC
of D(A) formed from the monomial and proper columns
of B. Then the pair(A,B) is reachable if and only if
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D′(A) is a union of these monomial subdigraphs, i.e.,

D′(A) =
ct⋃

t=1

Tt

cf⋃
f=1

Ff

cp⋃
p=1

Pp

cp⋃
c=1

Cc, (4)

where ct,cf ,ck and cp stand for the numbers of mono-
mial trees, flowers, palms and (monomial) cycles, respec-
tively.

Proof. Assume that all possible monomial subdigraphs
are formed, without repeating vertices, in the order stated
above, from theorigins T , F , P and C obtained from
the monomial and proper (blr = elr + w) columns ofB.

Suppose thatD′(A) is a union of monomial subdi-
graphs:

D′(A) =
ct⋃

t=1

Tt

cf⋃
f=1

Ff

cp⋃
p=1

Pp

cp⋃
c=1

Cc.

SinceB has monomial columns corresponding to indices
of T , F , and P, and columns of typeblr = elr + wlr

corresponding toC, then by Lemmas 3–6 for each mono-
mial subdigraph we obtain a maximal set of linearly in-
dependent monomial vectors. SinceD′(A) is a union of
these monomial subdigraphs and it contains all vertices of
D(A), the union of all these vectors is a set ofn linearly
independent monomial vectors. This occurs because each
vertex of D′(A) is in one and only one monomial subdi-
graph, and so the pair(A,B) is reachable.

Conversely, assume now that (4) does not hold, i.e.,

ct⋃
t=1

Tt

cf⋃
f=1

Ff

cp⋃
p=1

Pp

cp⋃
c=1

Cc ⊂ D′(A).

Then eitherD′(A) has at least one vertex or an arc not
included in the union. Denote by(N ′′, U ′′) the digraph
formed by the union of those monomial subdigraphs,
whereN ′′ is the vertex set andU ′′ is the arc set.

Case 1. Suppose thatN ′′ ⊂ N ′. Hence the number of
vertices in the union is smaller than the numbern of

 
Fig. 5. Diagraph D(A).

vertices ofD′(A) and D(A). Then the maximal number
of linearly independent monomial vectors produced by
the union of all monomial subdigraphs is smaller than
n. Since the monomial subdigraphs give the maximal
number of such vectors, according to Lemmas 3–6 the
reachability matrix Rn will not contain a monomial
submatrix of ordern. The columns ofB which are not
monomial or proper are not used in the formation of the
monomial subdigraphs of the union. They might produce
with columns ofA (corresponding to the vertices of cer-
tain subdigraphs, which are inD′(A) and not in the union
of monomial subdigraphs) some linearly independent
monomial vectors in the sequenceb, Ab,A2b, . . . , Akb.
However, the number of such vectors is smaller than the
number of linearly independent monomial vectors gen-
erated by the monomial column ofB, corresponding to
theorigins, applied to the same subdigraph, cf. the proof
of Lemma 2. ThereforeRn will not contain ann × n
monomial submatrix and the pair(A,B) is not reachable.

Case 2. Now U ′′ ⊂ U ′. Since all arcs connecting mono-
mial subdigraphs are inL, the strict inclusion is due to the
existence of an arc not included inL. Such an arc has a
vertex in D′(A), but not in the union, that is,N ′′ ⊂ N ′,
and then we can proceed as in Case 1.

The following examples illustrate the monomial sub-
digraphs of the digraph of a pair(A,B) ≥ 0.

Example 1.Let

A =



0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0


,
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and

B1 =



0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 1
0 0 0 0
1 0 0 0
0 0 0 0


.

The digraph ofA is given in Fig. 5.

First note that the matrixB1 has unit vectorse4, e8

and e3. It is clear that starting from:

• vector e4, a single monomial path(4), of length
zero, is found and it will be in the monomial treeT ;

• vector e3, a flower, F , is found and it is formed
by the monomial path(3), of length zero, and the
(monomial) cycle(7, 2); note that vertex3 is con-
nected with this cycle and there is an arc from vertex
3 to T , the arc(3, 4);

• vectore8, the monomial path(8, 5, 1), of length two,
is obtained and it will be in the set of palmsP ; it
cannot be inT because this would produce a cycle
in T ;

• vector b = e6 + w, where the positive components
of w are just the4-th component and this index is
a vertex of T ; therefore, from that vector, one can
consider the cycle(6, 9), which is a (monomial) cy-
cle C.

It is clear thatD′(A) = T
⋃

P
⋃

F
⋃

C and thus
the pair (A,B1) is reachable. The arcs ofD(A) not
included in D′(A) are L = {(1, 4), (1, 6), (3, 4)}. It is
worth noticing that the same decomposition can be ob-
tained if the matrixB1 has the monomial columne6 in-
stead of the columnb4.

Example 2.Let A be the matrix of Example 1 and let

B2 =



0 0 0 1
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0
1 0 0 1
0 0 0 0


.

In this case, the monomial treeT , the flower F
and the palmP previously described are obtained start-
ing from the vertices which correspond to the first three
columns of B2. However, from the fourth columnb =
e6 + e8 + e1 one cannot obtain monomial vectors be-
cause vectorsAkb, k = 0, 1, 2 . . . , have more than one
positive component. The cycle(6, 9) cannot be obtained
and T

⋃
P

⋃
F ⊂ D′(A). Hence the pair(A,B2) is not

reachable.

Following the approach proposed in this paper we
can identify reachable parts (monomial trees, flowers,
palms, cycles) of the system matrixA even when the pair
(A,B) is not reachable. The positive system can be made
reachable by applying suitable controls (see Examples 1
and 2).

As is well known, reachability from zero plus nilpo-
tence is equivalent to controllability (Coxson and Shapiro,
1987; Rumchev and James, 1989)). It is thereby sufficient
to eliminate all possible monomial subdigraphs ofD(A)
with cycles for obtaining the controllability property. In
fact, we can establish the following result:

Theorem 2. Let (A,B) ≥ 0 and let D(A) be the as-
sociated digraph ofA. Then the pair(A,B) is control-
lable if, and only if, D(A) =

⋃cT

t=1 Tt and B contains
all monomial columns corresponding to the origins of the
monomial trees.

5. Conclusion

In this paper, reachability and controllability properties of
discrete-time positive linear systems, in the more general
case when the system matrix contains zero columns, are
established in terms of the digraph of the pair(A,B).
Monomial subgraphs of reachable and controllable non-
negative pairs(A,B) are identified and their properties
studied. Criteria in a digraph form recognising the reach-
ability and controllability properties of such pairs are ob-
tained in the paper. These criteria give a better understand-
ing of the structure of reachable and controllable discrete-
time positive linear systems than the corresponding crite-
ria in an algebraic form. The results obtained in this paper
can be used to develop computationally efficient combina-
torial algorithms for revealing fundalmental properties of
discrete-time positive linear systems such as reachability
and controllability.
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