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A generic structure of reachable and controllable positive linear systems is given in terms of some characteristic components
(monomial subdigraphs) of the digraph of a non-negative a pair. The properties of monomial subdigraphs are examined and
used to derive reachability and controllability criteria in a digraph form for the general case when the systeminmatix

contain zero columns. The graph-theoretic nature of these criteria makes them computationally more efficient than their
known equivalents. The criteria identify not only the reachability and controllability properties of positive linear systems,
but also their reachable and controllable parts (subsystems) when the system does not possess such properties.
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1. Introduction stater, > 0, there existk € N and a non-negative con-
trol sequencey(t) >0, t =0,1,2,...,k—1, transferring
Positive discrete-time linear control systems are describedihe system fromzg =z, att =0 to z; = 0 at ¢t = k.
by the equation The system (1) izontrollable when it is reachable and
null-controllable (Rumchev and James, 1989). Controlla-
w(t+1) = Az(t) + Bu(t), t=0,1,2,...., (1)  yility is a fundamental property of the system that shows

its ability to move in space. It has direct implications in
many control problems such as optimal control, feedback
stabilization, non-negative realizations and system mini-
mality among others.

where A = [a;5] € RT*", B = [b;;] e RT*™, x € R"
is the state vector and € R’ is the control vector. The
system (1) is denoted by the pdid, B) and, when the

system is positive, by A, B) > 0. L .
Characterizations of the reachability of the system

A common property of P‘?S'“"e systems is that th_e|r (1) can be given in terms of the reachability matrix of the
state evolution is always positive (or at least non-negative) pair (A, B). The reachability matrix at timé: is given
whenever the initial state is positive (or at least non- by ’

negative). Note thatd and B being non-negative matri-
ces is a necessary and sufficient condition for a discrete-
time linear system to have non-negative state evolution for
any non-negative initial state, given that the controls are |1 is well known that the pai A, B) > 0 is reachable if
also non-negative. and only if the reachability matrisR, (A, B) has a mono-
The system (1) is said to lreachable (controllable  mial submatrix of ordern for some &k < n. We recall
from the origin)if, for any final statex; > 0, there exist  that an n-dimensional vector is calledmonomialif it

Ri(A, B) = [B|AB|A®B|...|A*1B]. 2

k € N and a non-negative control sequencg) > 0, is a nonzero multiple of the-th unit vectore; of R™.
t =0,1,2,...,k, transferring the system fromy = 0 A monomial matrix consists of. linearly independent
att =0 to xy att = k. The system (1) is calledull- monomial vectors. Throughtout this paper we consider

controllable (controllable to the originif, for any initial non-negative vectors only.



Various authors have contributed to the characteri- if a;; > 0. The set of all arcs is denoted dy. A walk
zation of positive reachability and controllability proper- in D(A), from vertexi; to vertexig, is an alternating
ties, including Coxson and Shapiro (1987), Coxsoal. sequence of vertices and arcs, and we will denote it by
(1987), Rumchev and James (1989), Murthy (1986), Mu- (i1,...,4). A walk is calledclosedif the initial and fi-
ratori and Rinaldi (1991), Bret.al (2000) and Caccetta nal vertices coincide. Thiengthof a walk is the number
and Rumchev (1998). At the same time, digraphs haveof arcs it contains. A walk is said to bepathif all its
been widely used in control theory. It is sufficient to men- vertices are distinct, and@cleif it is a closed path. The
tion only that the notion of the structural controllability of number of arcs directed away from a vertéxs called
linear systems (Lin, 1974) and criteria to test this property the outdegreeof ¢ and is presented asd(:). The num-
have been formulated in terms of digraphs. However, al- ber of ingoing arcs of a vertex is called thendegreeof
gebraic methods have been used for the same problems; and is denoted byd(i). Note that the number of non-
see, e.g., (Coxson and Shapiro, 1987; Muratori and Ri- zero entries in the-th column of A is od(¢), while id(7)
naldi, 1991; Rumchev and James, 1989). An overview of coincides with the number of non-zero entries of thi
these results in both forms (algebraic and graph-theoretic)row.
can be found in the very recent monograph by Kaczorek The positive entries of the columns of the matiix
(2002). Moreover, original results on the reachability and are associated with the corresponding verticesipA).

controllability of continuous-time positive linear systems The vertices associated with the monomial columngof
are also provided in that monograph. are referred to asrigins.

In this paper, in order to increase the understanding We have the following simple but basic result (Cac-
of reachability and controllability properties of positive cetta and Rumchev, 1998):
linear systems, the generic structure of reachable and con-
trollable pairs(A, B) > 0, for the general case when Lemma 1. Let M be ann x n matrix whosej-th col-
may contain zero columns is given in terms of the digraph Umn is an:-monomial. Letb be an n-dimensionalj-
of A. In this way, all possible structures (subdigraphs) of monomial vector. Then the produsfb is an i-monomial
the digraph ofA that can have a reachable or controllable Vector. In particular, if M*b is j-monomial, then/**'b
pair (A, B) are detected and studied. will be i-monomial.

The paper is organized as follows: In Section 2 some The above lemma tells us thatdfl(i) = 1 and b is
baS|.c coTblnatc_)rlal coknceptsI are glvenhas vlveII as.the reit- 21 s-monomial vector, them\/b is a monomial vector as
eration of a basic but known lemma. The algebraic prop- e\ However, if od(i) > 1, then Mb is not monomial

erties of all different monomial subdigraphs, which can ,,vmore I fact, the number of non-zero entries of that
be in the digraph of a reachable pair, are studied in Sec'product is exactlyod ().

tion 3. A characterization of reachability and controllabil-
ity properties of the system (1) is obtained in Section 4.

Finally, Section 5 contains conclusions. 3. Monomial Subdigraphs

In this section we construct special subdigraphs of the

2. Some Preliminaries digraph D(A) called monomial subdigraphs. The

Let A = [a;;] be ann x n non-negative matrix. Thei- common property of monomial subdigraphs is the fact
graphof A, denoted byD(A), is defined as follows: The that from the column of B associated with the initial
set of vertices ofD(A) is denoted byN = {1,2,...,n} vertex of a monomial subdigraph one can obtain a
and there is an arc ifD(A) from vertexi to vertex j maximal sequence of linearly independent monomial
i
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Fig. 1. Monomial path.
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Fig. 2. Monomial tree.

vectorsb, Ab, A%b, ..., AP~1b, wherep is the number of

seen that thé;-monomial column yields at least as many

the vertices of the subdigraph. Now, given a non-negative monomial columns as any other monomial column.

matrix A and a path(iy, s, . ..,i,—1,1,) Oflengthp—1
of a digraphD(A), we will consider the following special
paths:

Definition 1. (i) The above path is said to be an
i1 —monomialpath if its vertices have outdegree(i;) =
1,forall j =1,2,...,p—1,andod(i,) is arbitrary, but

i, cannot be connected with any other vertex of the path.
(i) When the last vertex of the monomial path has
od(i,) = 0, then we have ainglemonomial path.

(iii) The path (1,42, ...,%p—1,4,) Of lengthp — 1 with
od(ip) =1 forall k =1,2,...,p is called amonomial)
cycleif iy = ip.

A monomial path(iy, ..., i,) oflenthp — 1 is pre-
sented in Fig. 1. WhenD(A) consists of a monomial
path or a (monomial) cycle, we have the following result:

Lemma 2. Let (A,B) > 0 and let D(A) be a (single)
monomial path with verticeiq,i2,...,%,) Of length
p — 1, wherep < n, and let B have ani;-monomial
columnb. Then

(i) the p vectors
b, Ab, A%b, ... AP71p (3)

are linearly independent monomial vectors, and

(i) thesep vectors constitute the maximal number of

Remark 1. The results in Lemma 2 hold for monomial
cycles. Itis not difficult to see that monomial cycles raise
a p-periodic sequence (3). That ig)*+?h = A¥b (up to
ascalann0<k<p-1andl=0,1,2,....

Definition 2. A subdigraphT of a digraph D(A) is
called amonomial tredf it is a union of different mono-
mial paths, originating at different vertices and connected
one to another from the last vertices only @n(A)) with-

out forming cycles

Note that the existence of at least a single monomial
path in a monomial tree results from the fact that there
are no cycles. As cycles are not permitted in monomial
trees, the monomial paths of any monomial tree can be
grouped in levels as follows: At level’, we consider all
single monomial paths of that monomial tree. Any mono-
mial path connected from its last vertex only with that of a
single monomial path will belong to levél,. Any mono-
mial path connected from its last vertex only with that of
a monomial path froml;, and possiblyT}, is in level
T3. By recursion, all levels in the monomial tree can be
defined up to the last, which is denoted @}_;. The
digraph of Fig. 2 is a monomial tree of three levels.

Let 7 be the index set of all initial vertices of all
monomial paths off". A similar resultto Lemma 2 can be
obtained for a monomial tree.

linearly independent monomial vectors generated by Lemma 3. Let (A, B) > 0 and let D(A) be a monomial

any column ofB.

Proof. (i) Apply Lemma 1.
(i) Since od(ip) 0 (single monomial path) or
od(i,) > 1 (monomial path), then the vectod?b is a

zero vector or has, respectively, more than one positive

entry, that is, it is not monomial anymore. By Lemma 4

tree T'. Suppose thaB has thei-monomial columns, for
all i € 7. Then

(i) the vectors generated along each monomial path, as in
(3), form a set of linearly independent monomial vectors;
the union of all these sets is also linearly independent, and
(ii) this union is the maximal set of linearly independent
monomial vectors generated by any columnif

and Remark 6 of (Caccetta and Rumchev, 1998), no non-
monomial columnb can generate in (3) as many mono- Definition 3. Let a digraphD(A) contain at least one
mial vectors as the;-monomial column. It is readily = monomial path, one cycle and a trde A subdigraph
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Fig. 3. Flower.

F C D(A) is said to be dlowerif it consists of a mono-
mial path (i1,%9,...,i,) of length p — 1, linked to a
(monomial) cycle (ipt1,ipt2,- .., ip+k+1) With the arc
(ip, ip+1) and, moreover, from the verte of the mono-
mial path, there are ards,,, t) for somet € T

This is because the entry will ultimately correspond to the
final vertex of a single monomial path df. So, thek+1
monomial vectors{ A9tPy, Adtrtly  Aatpt(E+Dp)

will be linearly independent. Clearly, the set
{b, Ab, A%, ..., AP~1h A9FPp Adtrtlp,

.., Aetpt(+pY s formed by linearly independent

Observe that there must be a tree in the digraph monomial vectors, since the vertices in the flower are dis-

D(A) for a flower to exist, but the flower itself contains
only a monomial path and a connected (monomial) cycle
All vertices of a flower haveod(i;) = 1, except for the
vertex iy, in which caseod(i,) > 2. Figure 3 represents
a flower.

Again, the following result is similar to Lemma 2.

Lemma 4. Let (A, B) > 0 and let D(A) be the digraph

of A containing a flowerF' connected to a monomial tree
T with ¢ vertices. Assume that the flower has a monomia
path (i1, i2,...,%,), p < n linked to the (monomial) cy-
cle (ip+1;tpt+2,- -, iptkt1), K <n—p—g—1. Suppose
that B has ani;-monomial column, namely, Then

(i) the p vectors{b, Ab, A%b,..., AP=1b} are linearly
independent and monomial. In addition, thet 1
vectors {A9tPp, Astrtlp  Actrt(EEDpL are
linearly independent and monomial, and

tinct.

- (i) Similar to the proof of Part (i) of Lemma 2. =

Cycles associated with monomial columns &f
produce linearly independent monomial vectors, see Re-
mark 1. In addition, (monomial) cycles may yield similar
periodic sequences of linearly independent monomial vec-
tors when they are associated with some special columns
of B, calledproper, as stated in Lemma 5, the proof being

| similar to that of Lemma 4.

Lemma 5. Let (A, B) > 0 and let C' be a (monomial)
cycle with vertices(iq, iz, ...,4, = i1), wherep < n.
Also, letT" be a monomial tree witly vertices inD(A).
Suppose thaf3 has a proper column, which can be writ-
ten asb = ¢;, + w, wherei,, is one of the indices of the
cycle, e. g.i = 41, and whenw; > 0, then j is a vertex
of the monomial tred". Then

(i) the union of both sets gives the maximal number of () the p vectors {A%, A7, ... AtP~1p}  are

linearly independent monomial vectors generated by

any column of B along the flower.

Proof. (i) Sinceod(i,) =1, r =1,2,...,p—1, itis clear
that the p vectors {b, Ab, A%b, ..., AP~1b} are linearly
independent monomial vectors, cf. Lemma 2.

The vectorAPb will have at least two positive entries
since od(i,) > 2. These positive entries correspond to
the arcs fromi,, to a vertex ofT’, and to a vertex of the
cycle. The vectors{ APb, AP+1p, ... AP+Fp} will have
at least a positive entry in addition to thgth entry, s =
p+1,p+2,...,p+ k+ 1, produced by the cycle. This
additional positive entry, namely, thgth one, is yielded
by the link from,, to the monomial tree. However, tiye
th entry will eventually become zero, at least for the+
p)-th power of A.

linearly independent monomial vectors, and

(i) thesep vectors constitute the maximal number of
linearly independent monomial vectors generated by
any column of B associated with the cyde

We can weaken the definition of a monomial tree in
order to obtain linearly independent monomial vectors.

Definition 4. A subdigraph P of a digraph D(A) is
called apalmif it is a path (i1,42,...,4,), such that
od(ig) = 1, k = 1,2,...,p — 1, and an arbitrary sub-
set of arcs(ip, ix), k =1,2,...,p.

From Definition 4 it follows that monomial paths
can be considered as a special type of palm without
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Fig. 4. Palm.

{(ip,ix), k=1,2,...,p}, but not every palm is a mono-
mial path. If od(i,) = 0, the path is, indeed, a single
monomial path in a monomial tree. Note that any con-
nection fromi,_; to any monomial tree is excluded. It

vious section andB contains all columns needed to gen-
erate the maximal number of linearly independent mono-
mial vectors onD(A), then the pair( A, B) is reachable.
This is because one can obtain a monomial matrix of or-

seems that a flower can be viewed as a particular type ofder n in the reachability matrix. With the above results, a

palm, in which the last vertex, is connected with only
one vertexiy, k = 2,...,p. For the existence of flowers,
links (ix—1,t), t € T, must exist. But such links are not
permitted in the palm. For this reason, we have consid-
ered the digraph flower independently. In addition, note
that any monomial path or cycle that is not in a monomial
tree, flower or (monomial) cycle is considered as a palm.
An example of a palm is given in Fig. 4.

The following properties can be deduced in a similar
way as in Lemma 2.

Lemma6. Let (A, B) > 0 andlet D(A) be a palm with
verticesiy, is, . .., ip, Wherep < n. Suppose thal3 has
a columnbd which is ¢;-monomial. Then

(i) the p vectors{b, Ab, A%b, ..., AP~1b} are linearly
independent monomial vectors, and

(ii) the set of those vectors is the maximal set of lin-
early independent monomial vectors generated by
any column of B.

Palms can be linked with one another by afés p)
for some vertexp of another palmP, forming a family
of palms, in which casether cyclescan appear. Palms
can also be linked to any othéf-monomial subdigraph
by arcs (ip,t) for some vertext in a monomial tree or
flower or (monomial) cycle.

The above lemma is Theorem 3 of (Coxsetnal.,
1987). In addition, for multi-input system(s4, B) a com-
position of palms is used in (Rumchev, 2000, Thm. 1) to
study the case wherd does not have any null columns.

4. Positive Reachability and Controllability

It is clear that when a paifA, B) is such thatD(A) is
one of the monomial subdigraphs introduced in the pre-

characterization of reachable positive systefrs B) is
given in this section.

For this purpose, consider a non-negative pair
(A, B) and the associated digrapP(A4). Recall that
the positive entries of the monomial columns Bf are
identified with the corresponding vertices In(A) called
origins. From theserigins, construct the maximal mono-
mial subdigraphs, without repeating vertices, in the fol-
lowing order: (i) all possible monomial trees; the initial
vertices of all monomial paths of the monomial trees form
the index set obrigins 7; (ii) all possible flowers; the
initial vertices of all monomial paths of the flowers form
the index set obrigins F; (iii) all possible palms; the ini-
tial vertices of all paths of the palms form the index set
of origins P; (iv) all possible (monomial) cycles from the
proper columnf B, b, = ¢;. + w, where the indices
of the positive components of vectar are vertices of a
monomial tree; indice$, form the set obrigins C.

Let

L= {(ip,t),z'p EFRteT

and  (ip,t),ip eP,teTorteFortePorteC}

be the set of all arcs linking the formed monomial subdi-
graphs. DefineD’(A) = D(A)\ L = (N',U’), where
N’ = N and U’ = U \ L. Thus, the monomial subdi-
graphsinD’(A) are disjoint.

The following characterization follows from this
construction:

Theorem 1. Let A > 0 and let D(A) be the associated
digraph. Let7, F, P and C be the index sets of the ori-
gins of the monomial subdigraphs, respectively, monomial
trees T, flowers F', palms P, and (monomial) cycleg’

of D(A) formed from the monomial and proper columns
of B. Then the pair(A, B) is reachable if and only if



D’(A) is a union of these monomial subdigraphs, i.e.,  vertices of D’(4) and D(A). Then the maximal number
o . . of linearly independent monomial vectors produced by
N i g the union of all monomial subdigraphs is smaller than
D'(A) = tLJITt fU1 Fy UIPP Ul(jc’ “) n. Since the monomial subdigraphs give the maximal
= 1 = =

number of such vectors, according to Lemmas 3-6 the
where ¢;,cp,c;, and ¢, stand for the numbers of mono- reachability matrix R,, will not contain a monomial

mial trees, flowers, palms and (monomial) cycles, respec-submatrix of ordern. The columns ofB which are not
tively. monomial or proper are not used in the formation of the

] ) ] monomial subdigraphs of the union. They might produce

Proof. Assume that all possible monomial subdigraphs \yith columns of A (corresponding to the vertices of cer-
are formed, without repeating vertices, in the order stated 5, subdigraphs, which are if’ (4) and notin the union
above, from theorigins 7, F, P and C obtained from 4t monomial subdigraphs) some linearly independent
the monomial and propeb = e;, + w) columns of 3. monomial vectors in the sequendeAb, A%b, ..., AFb.
However, the number of such vectors is smaller than the
number of linearly independent monomial vectors gen-
erated by the monomial column a8, corresponding to

s o . e theorigins, applied to the same subdigraph, cf. the proof
D'(A) = U T, U Fy U P, U C.. of Lemma 2. ThereforeR,, will not contain ann x n

=1 =1 p=1 =1 monomial submatrix and the paid, B) is not reachable.

Suppose thatD’(A) is a union of monomial subdi-
graphs:

Since B has monomial columns corresponding to indices case 2 Now U ¢ U’. Since all arcs connecting mono-

of T, F, ar_ld P, and columns of typey,, = e;, + w, mial subdigraphs are i, the strict inclusion is due to the
corresponding t@, then by Lemmas 3—6 for each mono-  gyistence of an arc not included ib. Such an arc has a

mial subdigraph we obtain a maximal set of linearly in- \ertex in D'(A), but not in the union, that isN” ¢ N’,
dependent monomial vectors. Siné&(A) is aunion of 344 then we can proceed as in Case 1.m

these monomial subdigraphs and it contains all vertices of

D(A), the union of all these vectors is a setroflinearly The following examples illustrate the monomial sub-
independent monomial vectors. This occurs because eackjigraphs of the digraph of a pajtd, B) > 0.

vertex of D’(A) is in one and only one monomial subdi- B

graph, and so the paitA, B) is reachable. Example 1.Let
Conversely, assume now that (4) does not hold, i.e., "0 0 0 0 1 0 0 0 0]

Ct cf Cp Cp 00 0 0 0 O0O 10 O0

UrnUrUrCccDA. 000000O0O0DO

t=1 f=1 p=1 =1 101 00 O0O0O0TO
Then eitherD’(A) has at least one vertex or an arc not A=10000O0O0O0OT1O0],
included in the union. Denote byN",U") the digraph 10 00000 0 1
formed by the union of those monomial subdigraphs, 01100000 0
where N” is the vertex set and’” is the arc set. 100000000
Case 1 Suppose thatV” ¢ N’. Hence the number of (00000100 0]

vertices in the union is smaller than the numberof

Fig. 5. Diagraph D(A).
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and
[0 0 0 07
0 00O
01 0O
0 011
Bi=[0 0 0 0
0 0 01
0 00O
10 00
L0 0 0 0 |

The digraph ofA is given in Fig. 5.

First note that the matri¥3; has unit vectors:y, eg
and es. Itis clear that starting from:

e vector e4, a single monomial path(4), of length
zero, is found and it will be in the monomial tré&é

e vector e3, a flower, F, is found and it is formed
by the monomial path(3), of length zero, and the
(monomial) cycle(7,2); note that vertex3 is con-
nected with this cycle and there is an arc from vertex
3 to T, the arc(3,4);

e vector eg, the monomial path{8, 5, 1), of length two,
is obtained and it will be in the set of palmB; it
cannot be inT' because this would produce a cycle
in T;

e vector b = eg + w, where the positive components
of w are just the4-th component and this index is
a vertex of T'; therefore, from that vector, one can
consider the cycld6,9), which is a (monomial) cy-
cle C.

It is clear thatD'(A) = TJPJFJC and thus
the pair (A4, By) is reachable. The arcs ab(A) not
included in D'(A) are L = {(1,4),(1,6),(3,4)}. Itis
worth noticing that the same decomposition can be ob-
tained if the matrixB; has the monomial columag in-
stead of the columm,.

Example 2.Let A be the matrix of Example 1 and let

000 1
0000
0100
0010

B,=|0 0 0 0
000 1
0000
100 1
L0 0 0 0]

@

In this case, the monomial tre®, the flower F'
and the palmP previously described are obtained start-
ing from the vertices which correspond to the first three
columns of B,. However, from the fourth columm =
eg + es + e; one cannot obtain monomial vectors be-
cause vectorsd®b, k = 0,1,2..., have more than one
positive component. The cyclg, 9) cannot be obtained
andT|JP|JF c D'(A). Hence the paif A, By) is not
reachable.

Following the approach proposed in this paper we
can identify reachable parts (monomial trees, flowers,
palms, cycles) of the system matrix even when the pair
(A, B) is notreachable. The positive system can be made
reachable by applying suitable controls (see Examples 1
and 2).

As is well known, reachability from zero plus nilpo-
tence is equivalent to controllability (Coxson and Shapiro,
1987; Rumchev and James, 1989)). It is thereby sufficient
to eliminate all possible monomial subdigraphsiofA)
with cycles for obtaining the controllability property. In
fact, we can establish the following result:

Theorem 2. Let (A, B) > 0 and let D(A) be the as-
sociated digraph ofA. Then the pair(A4, B) is control-
lable if, and only if, D(A) = |J;Z, T: and B contains

all monomial columns corresponding to the origins of the
monomial trees.

5. Conclusion

In this paper, reachability and controllability properties of
discrete-time positive linear systems, in the more general
case when the system matrix contains zero columns, are
established in terms of the digraph of the péit, B).
Monomial subgraphs of reachable and controllable non-
negative pairs(A, B) are identified and their properties
studied. Criteria in a digraph form recognising the reach-
ability and controllability properties of such pairs are ob-
tained in the paper. These criteria give a better understand-
ing of the structure of reachable and controllable discrete-
time positive linear systems than the corresponding crite-
ria in an algebraic form. The results obtained in this paper
can be used to develop computationally efficient combina-
torial algorithms for revealing fundalmental properties of
discrete-time positive linear systems such as reachability
and controllability.
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