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1. Introduction and Pang, 2003; Qi, 1999) and references therein. In this
) paper, we consider a more general scheme which admits
Let K and V' be nonempty convex sets in the real Eu- papial regularization of the initial problem since it ap-
clidean spaceR™, K C V, andletG' : V. — R" bea  pears to be sufficient for any auxiliary problem to have
mapping. Denote bya, b) the scalar product of elements 5 ynique solution. More precisely, we employ a minimal
a and b in R". The variational inequality problem (VI nymper of regularization terms for each problem under
for brevity) is the problem of finding:* € K" such that consideration and establish sufficient conditions for the
(G(a*),z — ") >0, VreK. 1) convergence of solutions of perturbed prob_le_ms. Then the
perturbed problems become closer to the initial problem.
Variational inequalities are known to be a very useful However, even the full regularization method does not
tool for formulating and investigating various equilibrium guarantee the convergence of the sequence of solutions of
problems arising in mathematical physics, economics, en-perturbed problems to a solution of the initial problem if
gineering, and operations research (Baiocchi and Capelothe cost mapping is not monotone (Facchinei and Kanzow,
1984, Facchinei and Pang, 2003; Nagurney, 1999). How-1999; Facchinei and Pang, 2003, Sec. 12.2). We first con-
ever, many problems arising in applications possess a spesider the case when the feasible set is bounded and after-
cial structure of constraints, in which the feasible ét wards present some additional conditions which enable us
is a box-constrained set. Such VIs extend the usual com-to apply the method in the unbounded case. We describe
plementarity problems and are traditionally considered in two rather broad classes of perfectly and non-perfectly
the case where satisfiesP type properties (Cottlet competitive economic equilibrium models which are in-
al., 1992; Facchinei and Pang, 2003; Moré and Rhein- volved in this class of VIs and outline regularization ap-
boldt, 1973). These properties yield various existence andproaches for these problems.
uniqueness results for the problem (1) and suggest effec-
tive solution methods. However, they seem too restrictive .. 0) meansz; > 0 (resp.z; > 0)forall i =1,...,n,
for applications whereP, conditions are used. For such and we set -
problems, various regularization approaches become very n _ n
popular, most works in this field being concentrated on Ri={zeR |z =20}
the full Browder-Tikhonov regularization, see, e.g. (Cot- and
tle et al, 1992; Facchinei and Kanzow, 1999; Facchinei RY ={z e R" |z > 0}.

In what follows, for a vectorr € R™, > 0 (resp.,
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Also, we denote byK™* the solution set of the prob- Proposition 1. (Fiedler and Ptak, 19623 uppose that a

lem (1). Let L be any subset ofV = {1,...,n}. We matrix A is a Z-matrix. If there exists a vector > 0
denote byA; the n x n diagonal matrix whose diagonal such thatAz > 0 (resp.Ax > 0), then A is an M-
entries are given by matrix (resp. anMy-matrix).
>0 if iel, Now we recall extensions of these properties for
Qi = { —0 i idL mappings which were introduced in (Konnov, 2000; Moré
‘ and Rheinboldt, 1973).

Then Ay is a diagonal positive definite matrix. Next, if o
a; = 1 for all i, then Ay = I, i.e., itis the identity ~ Definition 2. Let U be a convex subset &&". A map-

matrix in R™. ping F': U — R"™ is said to be

(@) a P-mapping if jmax (zi—yi) (Fi(x) = Fi(y)) > 0
2. Technical Preliminaries forall z,y e U, x#y;
In this section, we recall some definitions and give some (b) astrict P-mappingiif there existsy > 0 such that
properties which will be used in our further deliberations. F —~I,, is a P-mapping;
We shaII.con'.5|der the VI (1) under the following standing (¢) auniform P-mapping if there existsT > 0 such
assumptions: that
(Al) G : V — R™ is a continuous mapping, and is a )
nonempty convex subsetRf'. max (z; — ;) (Fi(x) = Fi(y)) = 7llz — |

(A2) K is abox constrained set, that is, .
forall z,y € U,

K — HKi cv, (d) a Py-mapping if for all z,y € U, = # v, there
e R exists an index: such thatz; # y; and (z; —
yi)(Fi(z) — Fi(y)) = 0.
where K; = [a;,0;] C [—o0,+00] for every i =
1...,n. In fact, if F' is affine, that is,F'(x) = Az + b, then

_ _ F is a P-mapping F,-mapping) if and only if its Jaco-
Note that K is obviously a nonempty convex and pjan VF(z) = A is a P-matrix (Py-matrix). In the gen-
closed set. If, in addition}; < +oo for i € N, then K eral nonlinear case, if the Jacobi&h () is a P-matrix,
is also a bounded set. First, we recall definitions of severalthen F is a P-mapping, but the reverse assertion is not

properties of matrices, cf. (Fiedler and Ptak, 1962; Ortegatrye in general. At the same timé,] is a P,-mapping if

and Rheinboldt, 1970). and only if its JacobiarV F(z) is a Py-matrix. Next, if
o _ o F is a strict P-mapping, then its Jacobian isf&-matrix
Definition 1. An n x n matrix A is said to be (Facchinei and Kanzow, 1999; Konnov, 2000; Moré and

Rheinboldt, 1973).

We recall an additional relationship betweé&h and
(b) a Py-matrixif it has nonnegative principal minors; strict P-mappings.

(a) a P-matrixif it has positive principal minors;

(c) a Z-matrixif it has nonpositive off-diagonal entries; | emma 1. (Konnov and Volotskaya, 2002, Lem. 3.6)
F:U — R" isa Py,-mapping and: > 0, then F + <1,

(d) an M-matrix if it has nonpositive off-diagonal en- is a strict P-mapping.

tries and its inversed—! exists and has nonnegative
entries; Note that each uniformP-mapping is a strictP-
mapping, but the reverse assertion is not true in gen-
eral. Thus, although most existence and uniqueness re-
It is well known that A is M if and only if A € sults for VIs were established for uniforrf?-mappings
PN Z (Fiedler and Ptak, 1962; Ortega and Rheinboldt, (e.g., see Moré and Rheinboldt, 1973; Ortega and Rhein-

1970). Hence, each/-matrix is a P-matrix, but the re- boldt, 1970), this concept is not convenient for various
verse assertion is not true in general. Tikhonov regularization procedures which involve map-

pings of the formF +¢1,, (Facchinei and Kanzow, 1999;
Facchinei and Pang, 2003). At the same time, such map-
pings are strictP if F' is P, because of Lemma 1, and

(e) an My-matrixf it is both a Py- and a Z-matrix.

The following proposition gives a criterion for a ma-
trix A to be anM - or an My-matrix.
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this fact can serve as a motivation for developing the the- Proposition 5. Suppose that (A1)—(A3) are satisfied, and
ory of VIs with strict P-mappings. Also, this conceptis D in (A3)is bounded. Then

very useful in the investigation of VIs arising from eco- (i) the VI (1) is solvable, and<* C K () D;

nomic applications. Moreover, it appears to be sufficient B

for obtaining existence and uniqueness results. 5”) if, additionally, G is a P-mapping, K* is a single-
on.

Proposition 2. (Facchinei and Kanzow, 1999, Thm. 3.5; . ) ]
Konnov, 2000, Prop. 3)et (A1) and (A2) hold, and let Proof. Since D is bounded, choose a closed Euclidean

G be a strict P-mapping. Then the VI (1) has a unique ball B with the center at 0 such _thatltB 2 D. Then
solution. the VI of the form (1) with the feasible s&& [ K will be

solvable (see, e.g., Facchinei and Pang, 2003, Cor. 2.2.5).
We can even somewhat strengthen this result for Moreover, all these solutions will belong tatB. It fol-
bounded sets. lows now from (Facchinei and Pang, 2003, Prop. 2.2.8)
that the VI (1) is also solvable. The second part of (i)

Proposition 3. (Konnov and Volotskaya, 2002, Cor. 4.3) follows from Lemma 2, whereas (ii) follows from the def-
Let (A1) and (A2) hold. I is a P-mapping andK isa inition of the P-property. ~ m
bounded box-constrained set, then the VI (1) has a unique

solution. The properties above appear to be very useful for reg-

ularization methods.

In the unbounded case we can also replace the strict
P property by a coercivity condition. We can consider a o
somewhat extended version of this condition. 3. Regularization Approach

(A3) Suppose that there exist sels C D C R" such e shall approximate the VI (1) with the following prob-
that, for each pointy € K\ D, there exists a point: € lem: Find z¢ € K such that
DN K such that
(G(x°) +eApzf,z —2%) >0, VeeK, (3
max Gi(y)(y; — xi) > 0. (2)

1=1,...,

wheree > 0 is a parameter, and is a nonempty subset
From the definition we obtain immediately the fol- Of V.

lowing characterization of the solution set: We first consider the convergence of the sequence

{zf} in the bounded case.

Lemma 2. If (A1)—(A3) are satisfied and<(* # §, then

K*CKND. Theorem 1. Suppose that (A1) and (A2) are fulfilled.

Let the problem (3) have a unique solutiari, and let

[ai, ;] € (—o0,+00) for everyi € N. Then the se-

quence{z°*}, where {¢;} \, 0, has some limit points,

and all these points are contained in the solution set of the

VI (1).
Proposition 4. Suppose that (A1)-(A3) are satisfied with @)

D = K*, K* being the solution set of the VI of the ¢

Moreover, it follows that it is possible to describe
changes in the solution set after some reductions of the
feasible set.

Since the sequencégz©} is contained in the

form (1), whereK is replaced by a sefs = [[ K;, K; bounded sef, it has some limit points. If:* is an arbi-
i AT P . S .
is a nonempty convex closed set for each 1, ..., n. If trary limit point of {z°}, then taking the limit in (3) gives

DNK CK CK,thenk* = K K*. (Ca*)z— 2" >0, Ve K,
Proof. Clearly, K (| K* C K*. Suppose that there is a

- ~ > X i.e., z* solvesthe VI (1). =
point y € K*\K*. Theny € K\D. Applying (A3),

we see that there exists a poiate DK C K such We now give additional examples of sufficient condi-
that (2) holds, i.e.y ¢ K*, so we get a contradiction, and tions for the nonemptiness of the solution set of the auxil-
the result follows. = iary VI (3).

If the set D in (A3) is bounded, we obtain a modifi-
cation of the other known coercivity conditions (Facchinei
and Pang, 2003, Vol. 1, pp. 227-293).

Proposition 6. Let (Al) and (A2) hold,G be a Py-
mapping, andL = {1,...,n}. Then the problem (3) has
a unique solution.



admcs a I. Konnov et al.

Proof. Due to Lemma 1 it means thdt + <I,, is a strict where ¢; < Bz
P-mapping. By Proposition 2 it follows that the prob-
lem (3) has a unique solution. = a; =«; If a;>-0c0 and

For an index setl, we shall write xz;, = (z;)icr Bi=p if B;i<+4oo for i=1,....n. (5)
and Qr(x) = V,,G(zr). HenceQn (z) = VG(x).

. From the definition it follows thatx’ C K and that K’
Proposition 7. Let (A1) and (A2) hold,G: be a Py- is bounded. Then we can consider the reduced VI: Find
mapping, and|«;, ;] C (—oo0,+0) for ¢ € N. Sup- # e K such that
pose that, for everyr € K, VG(x) is a Z-matrix and
there isaJ C N such that@;(z) is a P-matrix. If we (G(3),z — ) >0, Voek, (6)
set L = N\J, then VI (3) has a unique solution. -

and the corresponding regularized VI: Finfl € K such

Proof. Without loss of generality we can suppose that that

J=A{l,...,k}. HenceL = {k +1,...,n}. Then

o= (% &),

(G(2°) +eAp2f,x—25) >0, YeeK. (7)

Due to Theorem 1, all the limit points of the sequence
, {z°} will belong to the solution sef’* of the VI (6) un-
where B, is a rectangular matrix which has rows and  der the corresponding assumptions. However, the strict
n — k columns, B; is a rectangular matrix which has inclusion K*( K ¢ K* may prevent convergence to a

n—k rows andk columns, and”};, isan (n—k)x (n—k) solution of the initial problem. We now give two suffi-
matrix. SinceVG(z) is a Z-matrix and by assumption,  cient conditions, which are based on (A3), for such con-
Qs (z) is an M-matrix. Let us consider the mapping : vergence.

V — R", whose components are defined by
Theorem 2. Suppose that (A1)—(A3) are satisfied, where

Gi(z) = { Gi(z) !f L<i<k, D =K*and D C K*( K issuchthatD is nonempty.
Gi(z) +eayz; if k<i<n, If the problem (7) has a unique solutiorf , then the se-
) ) ) quence{z°*}, where {¢;} \, 0, has some limit points
with ¢ > 0. Clearly, its Jacobian and all these points are contained in the solution set of
, the VI (1).
VG(z) = ( QJ(,,x) Bi ) +eAL
By, Cr Proof. Applying Theorem 1 to the VI (6), we see that

{z°*} has some limit points and all these points belong to
K*. Since all the assumptions of Proposition 4 hold, we
obtain K* = K* (| K and the result follows. =

is an M-matrix (Fiedler and Ptak, 1962). By definition,
G is a P-mapping. Due to Proposition 3, it follows that
the problem: Findz* € K such that
- Observe that the solution sek* need not be
(G(z"),z —2") 20, Vrek, bounded in the above theorem. However, we can adjust

has a unique solution. However, this problem is clearly (A3) to such a condition.

equivalent to the VI (3) and the result follows. = o
Theorem 3. Suppose that (A1)—-(A3) are satisfied, where

Let us now turn to the case wheld is an arbitrary D = D and D is bounded. LetX be chosen so that
set satisfying (A2), i.e., it may be unbounded. It is known

(see Facchinei and Kanzow, 1999, Ex. 4.6) that even full >a; if a; > —o0o,
regularization applied to a VI with &, cost mapping >a if a;=—o00

does not guarantee the convergence of the sequitfde vde D ﬂ K, d; <3 ’

to a solution. In (Facchinei and Kanzow, 1999), such = th Pi < +oo,
convergence is proved for complementarity problems with <Bi if Bi=+too,

bounded solution sets. We now consider another approach for i=1,... n.
which is based on introducing an auxiliary bounded VI.

Namely, let us define the set If the problem (7) has a unique solutiosf , then the se-

" quence{z°+}, where {e;} \, 0, has some limit points
K= HK“ K, = [di,ﬁ-] C (00, +00),  (4) flhnedvatll(lt?ese points are contained in the solution set of
i=1 .



On a regularization method for variational inequalities with Py mappings

& c

Proof. Again, applying Theorem 1 to VI (6), we see that Next, as usual, the excess demand mapping is represented
{#**} has some limit points and all these points belong as follows: E(p) = B(p) — S(p), where B and S are

to K*. By Lemma 2,K* C KD C K, and hence
K* C K*. Suppose that there exists a poine K*\ K*.
Since KD C K, we havez € K()D. Moreover,
there is a pointy € K\ K and an index such that

Gi(Z)(yi — ;) < 0.

It follows that eithery; < a; < Z; with a; = —oo or
y; > B; > &; with 8; = +oo sincei € D(\ K. Then
there exists a numbek € (0,1) such thatiy; + (1 —
\)z; € K;, and hence

Gi(@)[Ayi + (1 = Nz — 3] > 0,

ie.,

AGi(T)(y: — %i) > 0,
so we get a contradiction. Therefor&* = K*, and the
result follows. ]

Thus, replacing the unbounded VI (1) with a suitably
bounded VI (6), which has the same solution set, we can

obtain convergence for partial regularization methods.

4. Application to the Walrasian Equilibrium
Model

the demand and supply mappings, respectively. Clearly,
both of these mappings are also single-valued.

Then the problem of finding aequilibrium pricecan
be formulated as the box-constrained VI: Fiptl € K
such that
(G(p*),p—p") 20, VpeK, (10)
where G = —E. We denote byK™* the solution set of
this problem and recall definitions of some known proper-
ties of demand mappings (see, e.g. Nikaido, 1968).

Definition 3. Amapping@ : V — R" is said to

(a) satisfy the gross substitutability property, if
9Q;/0pi > 0, j # i,

(b) be positive homogeneous of the degree, if
Q(ax) = a™Q(x) for every a > 0.

We first consider the following set of assumptions,
which are rather usual (e.g., see Nikaido, 1968).

(B1) The excess demand mappitg : RZ — R" is
continuously differentiable oV = RZ, positive homo-
geneous of the degree 0, and possesses the gross substi-

In this section, we apply the results above to a class of gen-tutability property.

eral economic equilibrium problems. We now consider
a market structure with perfect competition. The model
deals with n commodities. Then, given a price vector
p € R, we can define the valu&(p) of the excess de-
mand mappingEl : R} — R™, which is supposed to be
single valued. Traditionally (see, e.g., Nikaido, 1968), a fance VG(p) is a Z-matrix. Next, sinceG,(p) is ho-

ygctor p* € R™ is sa}id to be an equiliprium price vector mogeneous of the degree 0(zero), it follows from the Euler
if it solves the following complementarity problem: theorem (see, e.g., Nikaido, 1968, Lem. 18.4) that

(p*,E(p*)) =0, n
0G,(p)

or, equivalently, the following VI: Findb* > 0 such that
(=E(*),p—p") 20, . ” :
Applying now Proposition 1, we conclude th&G(p) is
an My-matrix, and hence> is also a P,-mapping and

From the gross substitutability o it follows that

0G;(p)
6pj

<0,

i # 7.

p* =0, E(p) <0,

p; =0 foral i=1,...,n. (11)

Vp > 0. ®)

We denote byFE* the solution set of this problem
and determine our model from this standard one. FirSt, we thus have obtained the fo”owing assertions:
unlike the classical Walrasian models, we suppose that
each price of a commodity which is involved in the market | emma 3. If (B1) holds, thenG is a P,-mapping and
structure has a lower positive bound and may, in principle, VG(p) is an My-matrix for eachp € RZ.
have an upper bound. It follows that the feasible prices are
assumed to be contained in the box-constrained set

K = ﬁK
i=1

K,={teR|0<T <t<7 <400,

izl,...,n}. (9)

On account of (11), the mapping cannot be aP-
mapping. Following the approach of Section 3, we ap-
proximate the VI (10) with the perturbed VI: Fingd € K
such that

(GO°) +eArp®,p—pF) 20, VpeK, (12

wheree > 0 is a small parametet, is a subset ofV.
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If 7,/ < +oo foralli=1,...,n and L = N, then,

We now consider the reduced VI: Finde K such

on account of Lemma 3 and Proposition 6, each perturbedthat

VI (12) has a unique solution. Moreover, by Theorem 1,
{p°} then has some limit points and all these points solve
the VI (9), (10).

However, Lemma 3 and Proposition 7 show that the
partial regularization approach is also applicable to the
initial problem.

Theorem 4. Suppose thatr, < +oco for each i =
1,...,n andthat (B1) holds and that there exists an index
setJ C N such that, for eaclp € K,

Z M<O for: e J.

(13)
JEN\J Op;
Then the problem (12) witlh, = N\J has a unique solu-
tion p°, so that the sequencp®+} with {e;} \, 0 has
some limit points and all these points solve the VI (9), (10).

Proof. Due to Proposition 1, combining (11) and (13), we
conclude thatQ) ;(p) is an M-matrix. The result follows
now from Proposition 7 and Theorem 1. =

The simplest case corresponds to the singleton, i.e.
when J = N\{j}. This means that thg-th column of
the JacobianvVG(p) contains only negative entries with
the exception of the diagonal entry. Thén= {j}, and
we can employ the minimal regularization terms.

wnere

i=1

with 7, < 7 and 7 = 7, if 7, < +oo for i

1,...,n.

Clearly, the VI (14), (15) is an analogue of VI (4)-
(6). Similarly, we can define the regularized VI (7) where
K is defined in (15).

Theorem 5. Suppose that (B1) and (Blare satisfied
and that there exists an index sétC N such that, for
eachp € K, (13) holds. Then the problem (7), (15) with
L = N\J has a unique solution®, so that the sequence
{z%+} with {e,} \, 0 has some limit points, and all these
points are solutions to the VI (9), (10).

Proof. Using an argument similar to that in the proof of
Theorem 4, we see thdt:°+} has some limit points and
‘all these points are solutions to the VI (14), (15). Denote
by K* the solution set of this VI. Sinceé? is positive
homogeneous of the degree B is a nonempty convex
cone due to Proposition 8. Moreovel* | K # () and
the condition (A3) is satisfied for the VI (8), wher® =

Under some additional assumptions, the regulariza- . Hence, it is satisfied for the VI (9), (10) with =

tion approach can be applied to unbounded equilibrium
problems. We introduce the following set of additional
assumptions:

(B1) (a) For eachi = 1,...,n, the functionE; : RZ —
R is bounded from below;

(b) if {px} — p € R}\RZ, then there exists an index
such that lim Ei(p*) = +o0;

(c) (Walras law) for eachp € RZ, we have

(p, E(p)) = 0.

These assumptions are also rather standard. Never-

E* and D = K* and for the VI (14), (15) withD = E*
and D = K*. It follows now from Proposition 4 that
K* = E*ONK and K* = E*(K = K*( K. The
proof is complete. m

The gross substitutability of demand is also one of
the most popular conditions on market structures; see,
e.g., (Nikaido, 1968) and the references therein. This
means that all the commodities in the market substi-
tutablefor consumers in the sense that if the price of the
i-th commodity increases, then the demand of other com-
modities does not decrease. Next, the positive homogene-
ity of the degree O of demand is also rather a standard
condition. It follows usually from the insatiability of con-

theless, they enable us to obtain existence results and thgumers (Manne, 1985; Nikaido, 1968). However, we need

revealed preference property for solutions of the VI (8).

Proposition 8. (see, e.g., Nikaido, 1968, Sections 18.2
and 18.3) If (B1) and (B} are satisfied, then the VI (8) is
solvable. Moreover,

(»*, E(p)) >0,

where p* is a solution to the VI (8) angb is an arbitrary
pointin RZ\E*.

some other assumptions about supply. We will consider
the case where each producer supplies a single commod-
ity. It is possible to consider a more general market struc-
ture where there exist consumers with a single commaodity
demand mapping. Then eac$y may be interpreted as

a partial excess supply mapping for tli¢h commodity
(see Konnov and Volotskaya, 2002). Under these assump-
tions, there is no loss of generality in supposing that the
i-th producer supplies only theth commaodity. Then the
second set of assumptions can be formulated as follows:
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(B2) The demand mapping : RZ — R™ is continu- Due to Proposition 1, we conclude th@t;(p) is an M-
ously differentiable, positive homogeneous of the degreematrix and the result follows now from Proposition 7 and
0, and possesses the gross substitutability property. TheTheorem 1. ]
supply mappingsS; : R. — Ry, i = 1,...,n, are
monotone and continuously differentiable.

Then following the proof of Lemma 3, we see that

B maintains the properties o, and hence the assertion Theorem 7. Suppose that (B2) is satisfied, there exists a

Based on Theorem 3, we can also apply the regular-
ization method in the unbounded case.

of Lemma 3 remains true. bounded set¥ C K such that, for eactp € K\W, we
Lemma 4. If (B2) holds, then—V B(p) and VG(p) are have
Mj-matrices for eachp € R%. _max [Si(pi) — Bi(p)] (pi — ;) > 0. (17)
i=1,...,n
It follows that we can apply the same patrtial regular- ~
ization approach and that Theorem 4 also remains true. Suppose that in (15) is chosen so thati = 1,....n,
Yw e W, w; < 7; if 7, = 400, and there exists an
Corollary 1. Suppose that, < +oco for i =1,...,n index setJ’ C N such that, for eactp € K, (16) holds.
and that (B2) holds and that there exists an index.5et Moreover, there exists an index s¢t C N such that
N such that, for eachp € K, S;(pi) > 0 for p; € [r,,%], i € J . Then the prob-
lem (7), (15) withL = N\J, J = J |JJ~ has a unique
Z 9Bi(p) >0 foriel solution z¢, so that the sequencgz©*} with {ex} \, 0
JeNT Op; has some limit points, and all these points are solutions to

the VI (9), (10).
Then the problem (12) witi. = N\J has a unique so-

lution p®, so that the sequencép®+} with {e;} \, 0 Proof. Following an argument similar to that in Theorem
has some limit points and all these points solve the VI (9), 6, we see that the VI (7), (15) has a unique solution, and
(20). that the sequencéz*+} has some limit points, and all

these points solve the VI (14), (15). Following the proof
The assumptions above can be slightly weakened un-of Theorem 3, we obtaink* = K*, i.e., the assertion is

der additional assumptions abo8it true. -
Theorem 6. Suppose thab—i” <400 fori=1,...,n Condition (17) seems rather natural. It means that
and that (B2) holds, there exists an index sétC N for each price vectorp with sufﬁuently large compo-
such that, for eactp € K nents there exists at least one commodity among the corre-
sponding indices such that its supply exceeds its demand.
0B;(p) R Note that Theorem 7 also states the existence result of the
Z op; >0 forieJ, (16) source equilibrium problem.
JEN\J' J

and that there exists an index séf C N such that g Application to the Oligopolistic
Si(pi) > 0 for pi € [r;,7,], i € J'. Thenthe prob- £ i
| g ilibrium Model
lem (12) withL = N\J, J =J |JJ has a unique so- quilibriu ode
lution p*, so that the sequencfyt } with {e¢} ™\, 0 has In this section, we consider an oligopolistic market struc-
some limit points and all these points solve the VI (9), (10). ture in whichn firms supply a homogeneous product. Let
p(o) denote the inverse demand function, that is, the price

Proof. By Lemma 4,—V B(p) is an Mo-matrix for each 5t which consumers will purchase a quantity If each

p € RZ. With no loss of generality, we suppose that= .t firm suppliesg; units of the product, then the total
{1,....k}. Then supply in the market is defined by
—~ dBi(p) o -
4 op; p;j =0 fori=1,... k. quzqi_
Jj=1 =1
Hence If we denote byf;(g;) the i-th firm’s total cost of supply-
ko0 ing ¢; units of the product, then théth firm’s profit is
3 )y 0 fori=1,...k defined by

= op ei(q) = qip(oq) — fi(ai)- (18)
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As usual, each output level is nonnegative, igg.2> 0 for Proof. For brevity, we sety; =
i =1,...,n. Inaddition to that, we suppose thatitcanbe = —p’(o,). Thus
in principle bounded from above, i.e., there exist numbers

—p'(0q) — qip” (04) and

B € (0, +OO] such thatqi < G; for i = 1,...,n. In 8+ o o1 g (65}

order to define a solution in this market structure, we use Qs B+as as as

the Nash-Cournot equilibrium concept for noncooperative det Qr(q) = . .

games (Okuguchi and Szidarovszky, 1990). .
Qg Qg g 8+ ay

Definition 4. A feasible vector of output levelg* =
(¢7,q5,...,q;) for firms 1,...,n is said to constitute
aNash-Cournot equilibriunsolution for the oligopolistic
market, provided thag® maximizes the profit function
v; of the i-th firm over [0, 5;] given that the other firms
produce quantitieg;, j # ¢, foreachj =1,...,n.

That is, for ¢* = (¢,45,...,q)) to be a Nash-
Cournot equilibrium,g must be an optimal solution to
the problem

(g +07) — fila)}, 19

oDax, — {qip(gi +o7) — fila:)} (19)

where o7 = > ¢} foreachi = 1,...,n. This
J=1,j7#i

problem can be transformed into an equivalent VI of the
form (1) if each profit functiony; in (18) is concave in

¢;. This assumption conforms to the usually accepted eco-
nomic behavior, and implies that (19) is a concave maxi-

mization problem. More precisely, throughout this section
we suppose thahe price functionp(c) is nonincreasing
and twice continuously differentiable and that the indus-
try revenue functiornu(c) = op(o) is concave foro > 0,
fi(g:) is convex and twice continuously differentiable for
i = 1,...,n. These assumptions imply concavity in

of each profit functiong;p(o,) — fi(¢;). Next, we set

V =RY%,

K=]]Ki.K={teR|0<t<p < +oo},
=1
i=1,.. (20)

L.

Under the assumptions above, we can define the single

valued mappingsG' : R}? — R" and F' : R} —
R™ with componentsG,(q) = —p(oq) — ¢:p'(c4) and

Fi(q;) = f,(q:), respectively. Then (see, e.g., Okuguchi

and Szidarovszky, 1990), the problem of finding the Nash-

Cournot equilibrium in the oligopolistic market can be
rewritten as the following VI: Find;* € K such that

(G(¢") + F(g"),qa—q") =0,

This problem is nothing but a VI of the form (1). We
denote byK™* the solution set of the problem (21), (20).

Vge K.  (21)

Lemma 5. There holdsdet Q,(q) = [—(k + 1)p/(0q) —
k
(; a:)p" (0g)](=p' (o))" for L={1,....k}.

for L={1,...,k}.

Adding all the rows to the first one and subtracting
the first column from the others yields

B+3ai 0 0 0
i=1
detQr(g)=| o2 A0 E
A 0 0 ﬁ
k
:ﬁk’—l(ﬁ+2ai) for L={1,...,k}.
i=1
Hence
k
det Qr(q) = [ = (b + 1p'(og) = (D ai)p"(00)]
=1

x (—=p/(o))*~t for L={1,....k}.

Proposition 9. VG(q) is a Py-matrix for everyq € V.

Proof. By assumption,p’(¢) < 0. Fix ¢ € K.

If p'(0,) < 0, then from Lemma 5 it follows that
detQr(q) > 0. Otherwise, if p'(o,) > 0, we

see thatdet Q1 (q) = (—p (04))* L[~k — 1)p'(0q) —

W' (0g) + (X a)p"(oy)]. Sincep (o) < 0, we ob-

i=k+1

tain det Q1 (¢) > 0 and the result follows.

Thus, the problem of finding thidash-Cournot equi-
librium can be approximated with the regularized VI:
Find ¢* € K such that

(G(¢°)+F(¢°) +eALd®,q—q¢°) >0, VqeK, (22)
wheree > 0 is a parameter.
Theorem 8. Suppose thaf3; < +oo for i = 1,...,n

and that there exists an index sgt C N such that
fi (¢;) >0 for ¢; € [0,;] andi € J. Then the problem
(22) with L = N\J has a unique solutior®, so that the
sequence{¢c+} with {ex} \, 0 has some limit points
and all these points solve the VI (21), (20).



On a regularization method for variational inequalities with Py mappings

Proof. By Proposition 9, G is a FPy-mapping. Since
VF(q) + €Ay, is now a diagonal positive definite matrix,
G+ F + A is a P-mapping and the VI (22) has a
unique solution on account of Proposition 3. The result
now follows from Theorem1l. =

By utilizing the additional coercivity condition (Kol-

stad and Mathiesen, 1987, Def. 4), we can apply the samg,,

regularization approach to the VI (21) with the unbounded
feasible setK defined in (20).

Definition 5. An industry output is said to bbounded
if there exists a compact subsét of R’} such that for

g € R\ P we have
Gi(@) + Fi(@) = £;(@) — p(og) — @p (0q) > 0,
i=1,...,n. (23)

Without loss of generality we suppose thate P.
Let us now consider the reduced VI: Finde K such
that

(G +F(@),p—p) >0, VpeK, (24
where
K=]J0,8], 0< B <+oo and §; = 3;
=1
if 3; <+o00 (25)
for i =1,...,n. We denote byK* the solution set of the

VI (24), (25). Similarly, we consider the corresponding
regularized problem: Find® € K such that

Vpe K.
(26)

(G(z°)+ F(2°) + ALz ,p—2°) > 0,

Now we can establish the convergence result for the

regularization method based on the VI (26), (25).

Theorem 9. Suppose that an industry output is bounded
so that Vi 1,....,n, Vp € KNP, pi < B Iif

B; = +o0o, and that there exists an index sétC N such
that f; (¢;) > 0 for ¢; € [0,3] and i € J. Then the
problem (25), (26) withL = N\J has a unigue solution
2z, so that the sequencgz©+ } with {e;} \, 0 has some
limit points and all these points solve the VI (21), (20).

Proof. Again, similarly to the proof of Theorem 8, we

conclude that the VI (25), (26) has a unique solution and

that {z°*} has some limit points so that all these points
solve the VI (24), (25). Since the industry output is
bounded, (23) implies (A3) withD = P and D = {0}.
Applying now an argument similar to that in the proof of
Theorem 3, we obtairkk* = K*, and hence the assertion
is true. [ |

Observe that Theorem 9 also establishes an existenc

result for the VI (21), (20).

G c

In this paper, we have considered partial Browder-
Tikhonov type regularization techniques for variational
inequality problems with aP, cost mapping and a box-
constrained feasible set. We have presented perfectly and
nonperfectly competitive economic equilibrium models
hich are involved in this class of VIs and specialize reg-
ularization methods for these problems.

6. Concluding Remarks

The generalP, properties are not sufficient for pro-
viding rapid convergence of iterative solution methods. If
the cost mapping does not possess strengthdPégpe
properties, it is possible to apply the regularization ap-
proach to these problems and obtain such properties for
perturbed VIs. Therefore, one can solve various economic
equilibrium problems with the help of the usual iterative
methods.
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