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This paper concerns the issue of robust asymptotic stabilization for uncertain time-delay systems with saturating actuators.
Delay-dependent criteria for robust stabilization via linear memoryless state feedback have been obtained. The resulting
upper bound on the delay time is given in terms of the solution to a Riccati equation subject to model transformation.
Finally, examples are presented to show the effectiveness of our result.

Keywords: stability, delay-dependency, time delay system, Riccati equation

1. Introduction

For engineering systems, uncertainty and time delays are
two important issues that designers must confront today
(Kolmanovskii and Nosov, 1986; Su and Huang, 1992).
Uncertainty is often encountered in various dynamical
systems due to modeling misfits, measurement errors, and
linearization and approximations (Liu and Su, 1998; Su
et al., 1991). All actuation and measurement devices are
subject to time delays. Specifically, time delays arise in
control actuation devices (e.g., a transport lag), as well
as computation delays in sensor measurement processing.
On the other hand, time delays often occur in systems such
as transformation and communication ones, chemical and
metallurgical processes, environmental models and power
networks (Tsay and Liu, 1996). Time delays have always
been among the most difficult problems encountered in
process control. In practical applications of feedback con-
trol, time delay arise frequently and can severely degrade
closed-loop system performance and, in some cases, drive
the system to instability (Caoet al., 1998; Liuet al., 2001;
Su and Chu, 1999; Su and Liu, 1996).

Stabilization analysis and synthesis of uncertain time
delay systems with saturating actuators is an important is-
sue addressed by many authors and for which surveys can
be found in several monographs (Han and Mehdi, 1998;
Su et al., 1991; 2001; 2002). Recently, one of the im-
portant issues is to maximize the allowable delay size for
robust stabilization of uncertain time delay systems (Liu
et al., 2001; Suet al., 2001; 2002). Upper bounds on time
delays which guarantee asymptotic stability of saturating
actuator systems via a state feedback control law are given

(Suet al., 1991). A Riccati equation-based global and lo-
cal static, output feedback control design framework for
time-delay systems with saturating actuators was devel-
oped (Tsay and Liu, 1996). Based on a matrix measure,
a matrix norm, and a decomposition technique, stability
criteria are derived by Goubetet al. (1997).

In this paper, we analyze the stabilization and do-
main of attraction for linear time delay systems with ac-
tuator saturation. A less conservative estimate of the do-
main of attraction will be derived based on a Lyapunov-
Razumikhin and Riccati equation (Su and Liu, 1996; Suet
al., 1991). We emphasize that our Riccati equation design
approaches with the relevant decomposition technique are
constructive in nature, rather than existential. The effec-
tiveness of the approach is illustrated by numerical exam-
ples. However, the results of this paper indeed give us
one more choice for the stabilization examination of time
delay systems with actuator saturation. In this paper the
following notation is adopted:

R the real number field,

Rn then-dimensional real vector space,

x a vector,x = [x1 x2 . . . xn]T , xi ∈ R,

AT the transpose of a matrixA,

λi(A) thei-th eigenvalue of a matrixA,

λmax(A) the maximum eigenvalue of a matrixA,

λmin(A) the minimum eigenvalue of a matrixA,

‖A‖ the norm of a matrixA,

defined as‖A‖ =
√

λmax(AT A).
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2. Main Result

Consider a perturbed time-delay system described by the
following differential-difference equation:

ẋ(t) = (A + ∆A)x(t) + (A1 + ∆A1)x(t− τ)

+ (B + ∆B)u(t), (1a)

y(t) = Cx(t), (1b)

x(t) = φ(t), t ∈ [−τ, 0], (1c)

where x(t) ∈ Rn is the state,u(t) ∈ Rm is the con-
trol input, τ is the time delay of the system in the state.
A, A1, and B are real constant matrices of appropri-
ate dimensions. Furthermore,φ(t) is a smooth contin-
uous vector-valued initial function. Besides,∆A, ∆A1

and ∆B are linear parameter uncertainties in the system
model with appropriate dimensions. A different idea ex-
ploited in the literature (Goubetet al., 1997) is to find
some decomposition of the “delayed” termA1 of the
form A1 = A11 + A12 in order to improve the delay
bounds. In this paper, the admissible uncertainties are as-
sumed to be of the form

‖∆A‖ ≤ α, (2a)

‖∆A1‖ ≤ α1, (2b)

‖∆B‖ ≤ β. (2c)

We let

σ =
λmin(D)
2λmax(P )

, (3a)

δ =

√
λmin(P )
λmax(P )

, (3b)

where D = PT B(R−1)T BT P + Q, λmin(A) and
λmax(A) denote the minimum and maximum eigenvalue
of the matrix A, respectively. P and R are symmetric
positive-definite matrices andQ is a symmetric positive-
semidefinite matrix, involved in the following Riccati
equation:

(A+A11)T P+P (A+A11)−PBR−1BT P+Q = 0 (4)

for some square matrixA11 of appropriate dimensions.

It is assumed that(A + A11, B) is stabilizable. Our
problem is to design the state feedback controller

u(t) = −Kx(t), (5)

whereK = R−1BT P , such that the closed-loop system

ẋ(t) = (Ak + ∆Ak)x(t) + (A1 + ∆A1)x(t− τ) (6)

results, whereAk = A−BR−1BT P and∆Ak = ∆A−
∆BR−1BT P .

Without loss of generality, we consider the case
where the initial time is zero and letx(t), where t ≥ 0,
be the solution of (6) through(0, φ). Since x(t) is con-
tinuously differentiable fort ≥ 0, one can write

x(t− τ) = x(t)−
∫ t

t−τ

ẋ(θ) dθ

= x(t)−
∫ t

t−τ

[
(Ak + ∆Ak)x(θ)

+ (A1 + ∆A1)x(θ − τ)
]
dθ. (7)

Applying the decomposition “delayed term”A1 as A1 =
A11 + A12 and substituting (7) into (6), we have

ẋ(t) = (Ak + A11)x(t) + A12x(t− τ) + ∆Akx(t)

+ ∆A1x(t− τ)−A11

[
x(t)− x(t− τ)

]
= (Ak + A11)x(t) + A12x(t− τ) + ∆Akx(t)

+ ∆A1x(t− τ)

−A11

∫ t

t−τ

[
(Ak + ∆Ak)x(θ)

+ (A1 + ∆A1)x(θ − τ)
]
dθ. (8)

Our result is summarized in the following theorem:

Theorem 1. Consider the uncertain time delay system
(1). Suppose that(A + A11, B) is stabilizable and there
exists a positive numberq > 1 such that the system (8) is
asymptotically stable if

τ ≤
σ −

[
α + β ‖K‖+ qδ(‖A12‖+ α1)

]
qδ

[
‖A11Ak‖+ ‖A11A1‖+ ‖A11‖ (α + β ‖K‖+ α1)

]
(9)

is satisfied forτ > 0. Then the uncertain time delay
system (1) is asymptotically stable, that is, the uncertain
parts of the nominal system can be tolerated.

Proof. We consider the system (8) and take the following
positive definite function as our Lyapunov function:

V
[
x(t)

]
= xT (t)Px(t). (10)

Thus

V̇
[
x(t)

]
= ẋT (t)Px(t) + xT (t)Pẋ(t). (11)
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Substituting (8) into (11), we obtain

V̇
[
x(t)

]
=

{
(Ak + A11)x(t) + A12x(t− τ)

+ ∆Akx(t) + ∆A1x(t− τ)

−A11

∫ t

t−τ

[
(Ak + ∆Ak)x(θ)

+ (A1 + ∆A1)x(θ − τ)
]
dθ

}T

Px(t)

+ xT (t)P
{

(Ak + A11)x(t)

+ A12x(t− τ) + ∆Akx(t) + ∆A1x(t− τ)

−A11

∫ t

t−τ

[
(Ak + ∆Ak)x(θ)

+ (A1 + ∆A1)x(θ − τ)
]
dθ

}
≤ xT (t)

[
(Ak + A11)T P + P (Ak + A11)

]
x(t)

+ xT (t)(∆AT
k P + P∆Ak)x(t)

+ xT (t−τ)AT
12Px(t) + xT (t)PA12x(t−τ)

+ xT (t− τ)∆AT
1 Px(t)

+ xT (t)P∆A1x(t− τ)

− 2xT (t)PA11

∫ t

t−τ

[
(Ak + ∆Ak)x(θ)

+ (A1 + ∆A1)x(θ − τ)
]
dθ

≤ xT (t)
[
(Ak + A11)T P + P (Ak + A11)

]
x(t)

+
∥∥xT (t)(∆AT

k P + P∆Ak)x(t)
∥∥

+
∥∥xT (t− τ)AT

12Px(t)
∥∥

+
∥∥xT (t)PA12x(t− τ)

∥∥
+

∥∥xT (t− τ)∆AT
1 Px(t)

∥∥
+

∥∥xT (t)P∆A1x(t− τ)
∥∥

+ 2
∥∥∥xT (t)PA11

∫ t

t−τ

[
(Ak + ∆Ak)x(θ)

+ (A1 + ∆A1)x(θ − τ)
]
dθ

∥∥∥. (12)

Following the Razumikhin-type theorem (Kolmanovskii
and Nosov, 1986), assume that there exists a constantq >
1 such that

V
(
x(t− τ)

)
< q2V

(
x(t)

)
. (13)

Then we have

‖x(t− τ)‖ < qδ ‖x(t)‖ , (14)

where δ is defined in (3b).

Substituting (13) and (14) into (12), we have the fol-
lowing inequality:

V̇
[
x(t)

]
≤ −ω ‖x(t)‖2 , ω ∈ R, (15)

where

ω = λmin(D)− 2
{[

α + β ‖K‖+ qδ
(
‖A12‖+ α1

)]
+ qδτ

[
‖A11Ak‖+ ‖A11A1‖

+ ‖A11‖
(
α + β ‖K‖+ α1

)]}
λmax(P ).

Consequently, we havėV [x(t)] ≤ −ω ‖x(t)‖2 for suffi-
ciently small ω > 0. But ω > 0 if and only if (15) is
satisfied. Hence the system (8) is asymptotically stable,
and therefore (1) yields asymptotical stabilization.

3. Extension to the Stabilitzation of Time–
Delay Systems with Saturating Actuators

We consider the linear uncertain time-delay saturating-
actuator systems described by the differential difference
equation of the form

ẋ(t) = Ax(t) + ∆Ax(t) + A1x(t− τ)

+ ∆A1x(t− τ) + Bus(t) + ∆Bus(t), (16a)

y(t) = Cx(t) + ∆Cx(t), (16b)

us(t) = Sat
[
u(t)

]
. (16c)

The saturation function is defined as follows (Fig. 1):

Sat
[
u(t)

]
=

[
Sat(u1(t)) Sat(u2(t)) . . .Sat(um(t))

]T
,

(17)
and

Sat
(
ui(t)

)
=


uiL if ui < uiL < 0,

ui if uiL ≤ ui ≤ uiH ,

uiH if 0 < uiH < ui.

(18)

For any saturating actuatorSat(ui(t)), which saturates at
uiH or uiL, the following inequality is satisfied (Suet al.,
1991): ∥∥∥∥Sat(u(t))− u(t)

2

∥∥∥∥ ≤ ‖u(t)‖
2

. (19)
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Sat
(
ui(t)

)

Fig. 1. Saturation function.

In this control system,(A,B) is controllable, i.e., the
process statex(t) can be determined on the basis of the
control inputu(s) for s ≤ t.

Substituting (5) into the system of (16), we obtain the
following closed-loop equations:

ẋ(t) = Asx(t) + A1x(t− τ) + ∆Asx(t) + ∆A1x(t− τ)

+ (B + ∆B)
(
us(t)−

u(t)
2

)
, (20a)

y(t) = Cx(t), (20b)

where As = A − BR−1BT P/2 and ∆As = ∆A −
∆BR−1BT P/2.

From (8), we have

ẋ(t) = (As + A11)x(t) + A12x(t− τ) + ∆Asx(t)

+ ∆A1x(t− τ) + (B + ∆B)
(
us(t)−

u(t)
2

)
−A11

∫ t

t−τ

[
(As + ∆As)x(θ)

+ (A1 + ∆A1)x(θ − τ)

+ (B + ∆B)
(
us(θ)−

u(θ)
2

)]
dθ (21)

for some square matrixA11 of appropriate dimensions.
Then the problem is how to choose the control parameters
R, P and Q involved in the following Riccati equation:

(A + A11)T P + P (A + A11)− PBR−1BT P + Q = 0
(22)

such that the closed-loop equation (21) is asymptotically
stable. In other words, parametrical uncertainties can be
tolerated.

Theorem 2. Consider the system (21) and assume that
A + A11 is a Hurwitz stable matrix satisfying

τ <
σs − αs − 0.5(‖B‖+ β)‖K‖ − qδ(‖A12‖+ α1)

qδsς
,

(23)

where ς = ‖A11As‖ + ‖A11A1‖ + ‖A11‖(αs + α1 +
0.5(‖B‖ + β)‖K‖), σs = λmin(D)/2λmax(P ), αs =
α + 0.5β ‖K‖ and D = PT B(R−1)T BT P + Q, τ ≥ 0.
Then the uncertain time-delay saturating actuator sys-
tem (16) is asymptotically stable for any positive number
q > 1, i.e., the uncertain and saturating actuator parts of
the nominal system can be tolerated.

Proof. We consider (21) and take the following positive
definite function as our Lyapunov function (10). Substi-
tuting (18) into (11), we obtain

V̇
[
x(t)

]
=

{
(As + A11)x(t) + A12x(t− τ)

+ ∆Asx(t) + ∆A1x(t− τ)

+ (B + ∆B)(us(t)−
u(t)
2

)

−A11

∫ t

t−τ

[
(As + ∆As)x(θ)

+ (A1 + ∆A1)x(θ − τ)

+ (B + ∆B)
(
us(θ)−

u(θ)
2

)]
dθ

}T

Px(t)

+ xT (t)P
{

(As + A11)x(t) + A12x(t− τ)

+ ∆Asx(t) + ∆A1x(t− τ)

+ (B + ∆B)
(
us(t)−

u(t)
2

)
−A11

∫ t

t−τ

[
(As + ∆As)x(θ)

+ (A1 + ∆A1)x(θ − τ)

+ (B + ∆B)
(
us(θ)−

u(θ)
2

)]
dθ

}
≤ xT (t)

[
(As + A11)T P + P (As + A11)

]
x(t)

+ xT (t)∆AT
s Px(t) + xT (t)P∆Asx(t)

+ xT (t−τ)AT
12Px(t)+xT (t)PA12x(t−τ)

+ xT (t− τ)∆AT
1 Px(t)
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+ xT (t)P∆A1x(t− τ)

+
[
(B + ∆B)(us(t)−

u(t)
2

)]T

Px(t)

+ xT (t)P
[
(B + ∆B)

(
us(t)−

u(t)
2

)]
− 2xT (t)PA11

∫ t

t−τ

[
(As + ∆As)x(θ)

+ (A1 + ∆A1)x(θ − τ)

+ (B + ∆B)
(
us(θ)−

u(θ)
2

)]
dθ. (24)

Applying the Razumikhin-type theorem, we assume
that for any positive numberq > 1, the following inequal-
ity holds:

V
(
x(t− τ)

)
< q2V

(
x(t)

)
. (25)

Thus
‖x(t− τ)‖ < qδs ‖x(t)‖ . (26)

Substituting (25) and (26) into (24), we have

V̇
[
x(t)

]
≤ −ωs ‖x(t)‖2 , ω ∈ R, (27)

where

ωs = λmin(D)− 2
{

α + 0.5
(
‖B‖+ β

)
‖K‖

− qδs

(
‖A12‖+ α1

)
+ qδsτ

[
‖A11As‖+ ‖A11A1‖+ ‖A11‖

(
αs

+ α1 + 0.5
(
‖B‖+ β

)
‖K‖

)]}
λmax(P ).

Based on the results obtained in the proof of Theo-
rem 2, we haveV̇ [x(t)] < 0. Then x(t) → 0 as t →∞
if ωs > 0. But ωs > 0 if and only if (27) holds. This
will guarantee asymptotic stability of the time delay sys-
tem (21). Therefore, the system (21) is asymptotically sta-
ble.

4. Examples

To ilustrate the previous results, we give three examples.

Example 1. We consider the following linear uncertain
time-delay system:

ẋ(t) = (A + ∆A)x(t) + (A1 + ∆A1)x(t− τ)

+
(
B + ∆B(t)

)
u(t), (28)

where

A =

[
0 1
−1 −2

]
, A1 =

[
−2 −1
1 0

]
,

B =

[
1 0
0 1

]
, ∆A = ∆A1 = ∆B =

[
0.1 0
0 0.1

]
.

We now find the range of the time delayτ with the state
feedback controller (5) to guarantee that the above system
is asymptotically stable.

Solution.We set

Q =

[
5 0
0 5

]
, R =

[
0.1 0
0 0.1

]
,

A11 =

[
−1.95 −0.9
0.9 0

]
.

From the Riccati equation, cf. (4),

(A + A11)T P + P (A + A11)− PBR−1BT P + Q = 0,

we get

P =

[
0.5385 0

0 0.5348

]
.

We then find the state feedback controller

K =

[
5.3850 0.0002
0.0002 5.3485

]
,

Ak =

[
−5.3850 0.9998
−1.0002 −7.3485

]
,

α=0.1, λmin(P )=0.5348, ‖A11Ak‖=13.0257,

β=0.1, λmax(P )=0.5385, ‖A11A1‖=3.9679,

σ=7.2986, λmin(D)=7.8606, ‖A12‖=0.1281,

δ=0.9966, ‖K‖= 5.385.

From (9) of Theorem 1, we obtain

0 < τ

≤ σ − [α + β ‖K‖+ (‖A12‖+ α1)qδ]

qδ[‖A11Ak‖+ ‖A11A1‖+ ‖A11‖ (α + β ‖K‖+ α1)]

= 0.3429.

For this example asymptotic stability of the system (28) is
guaranteed for0 ≤ τ ≤ 0.3429. We note that the result in
(Su and Liu, 1996) guarantees robust stabilization of (28)
when 0 ≤ τ ≤ 0.32. This example shows that the method
of this paper is an improvement of this previous result.
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Table 1. Comparison between the result in
this paper and a previous result.

K τ (Suet al., 2002) τ (by our result)

[5.1926, 4.7212] 4.0813 6.3833

[0.2209, 1.3031] 4.4206 8.4388

Example 2. Consider the uncertain time-delay system
with a saturating actuator

ẋ(t) = (A + ∆A)x(t) + (A1 + ∆A1)x(t− τ)

+ B Sat
[
u(t)

]
, (29)

where

A =

[
−2 0
1 −3

]
, A1 =

[
−1 0
−0.8 −1

]
, B =

[
0
1

]
,

∆A =

[
0.2 0
0 0.2

]
, ∆A1 =

[
0.2 0
0 0.2

]
.

Find the range of the delay timeτ by using a state feed-
back controllerK to guarantee that the above system is
asymptotically stable.

Solution.We set

Q =

[
1 0
0 1

]
, R =

[
1 0
0 1

]
, A11 =

[
−1 0
−0.8 −0.8

]
.

We choose a tolerance coefficient of saturationSat[u(t)].
From the Riccati equation (4), we get

P =

[
0.1625 0.0036
0.0036 0.1294

]

and the state feedback controller

K =

[
0.1625 0.0036
0.0036 0.1294

]
.

For this example asymptotic stability of the system (15)
is guaranteed forτ < 0.5522. On the other hand, the
stability criterion in (Liuet al., 2001) gives a bound for
the time delay of 0.3781. On the other hand, the delay
bound for guaranteeing the asymptotic stability of the sys-
tem (29) is τ < 0.2841 (Su and Chu, 1999; Suet al.,
2001). Applying Theorem 1 to this uncertain time-delay
system (29), the maximum time delay for stability,τ , is
found and compared with the result by Suet al. (2002),
cf. Table 1.

As Table 1 indicates, the maximum time delayτ
for stability obtained by our approach is less conservative

than the other result. Hence, for this example, the robust
stability criterion of this paper is less conservative than the
existing results (Su and Chu, 1999; Suet al., 2001; 2002).

Example 3.Consider the following linear time-delay sys-
tem, which suffers from the following parameter perturba-
tions (Caoet al., 1998; Liu and Su, 1998; Su and Huang,
1992):

ẋ(t) = (A + ∆A)x(t) + (A1 + ∆A1)x(t− τ), (30)

where

A =

[
−2 0
0 −1

]
, A1 =

[
−1 0
−1 −1

]
,

∆A =

[
0.3 0
0 0.2

]
, ∆A1 =

[
0.2 0
0 0.3

]
.

We can findτ to guarantee that the system (30) is asymp-
totically stable.

Solution.Let K = 0 and

B1 =

[
−0.9 0
0.9 −0.9

]
.

Applying Theorem 1 to the uncertain time delay system
(30), it is found thatτ < 0.2836. The maximum time
delay for the stabilityτ as estimated by the criteria of
(Caoet al., 1998; Liu and Su, 1998; Su and Huang, 1992)
and the approach in this note is listed in Table 2.

Table 2. Comparison between the proposed and other methods.

Method τ

Su and Huang, 1992 0.1575

Liu and Su, 1998 0.2130

Caoet al., 1998 0.2558

This paper 0.2836

From Table 2, the proposed criteria are less conserva-
tive than those in (Caoet al., 1998; Liu and Su, 1998; Su
and Huang, 1992). Hence, our result gives a less conserva-
tive bound than those obtained by using a delay-dependent
stability criterion (Caoet al., 1998; Liu and Su, 1998; Su
and Huang, 1992).

5. Conclusion

In this paper, the delay-dependent robust stabilization
problem for a class of uncertain linear time-delay systems
containing saturating actuators is considered. The objec-
tive of this paper is to guarantee an allowable bound on a
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delay timeτ such that if the time delay is less than the ob-
tained constant delay bound, the constrained system with
time delay can be tolerated. The analysis and synthesis
problems addressed are used to obtain a delay-dependent
stability criterion and design a memoryless state feedback
control law such that the closed-loop system is asymptoti-
cally stable, along with a sufficient condition for the exis-
tence of such a control law presented in terms of a Riccati
equation with a decomposition technique. Compared with
several existing stability criteria, the allowable bound on
the delay time is significantly improved. The significance
of the obtained results is demonstrated by three illustrative
examples.
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