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DELAY-DEPENDENT ASYMPTOTIC STABILITZATION FOR UNCERTAIN
TIME-DELAY SYSTEMS WITH SATURATING ACTUATORS
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This paper concerns the issue of robust asymptotic stabilization for uncertain time-delay systems with saturating actuators.
Delay-dependent criteria for robust stabilization via linear memoryless state feedback have been obtained. The resulting
upper bound on the delay time is given in terms of the solution to a Riccati equation subject to model transformation.
Finally, examples are presented to show the effectiveness of our result.
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1. Introduction (Suet al, 1991). A Riccati equation-based global and lo-
cal static, output feedback control design framework for

For engineering systems, uncertainty and time delays aretime-delay systems with saturating actuators was devel-

two important issues that designers must confront todayoped (Tsay and Liu, 1996). Based on a matrix measure,

(Kolmanovskii and Nosov, 1986; Su and Huang, 1992). a matrix norm, and a decomposition technique, stability

Uncertainty is often encountered in various dynamical criteria are derived by Goubet al. (1997).

systems due to modeling misfits, measurement errors, and | this paper, we analyze the stabilization and do-

linearization and approximations (Liu and Su, 1998; SU main of attraction for linear time delay systems with ac-
etal, 1991). All actuation and measurement devices are y,a1or saturation. A less conservative estimate of the do-
subject to time delays. Specifically, time delays arise in i of attraction will be derived based on a Lyapunov-
control actuation devices (e.g., a transport lag), as well g4, mikhin and Riccati equation (Su and Liu, 1996g8u
as computation delays in sensor measurement processin%u_, 1991). We emphasize that our Riccati equation design

On the other hand, time delays often occur in systems such, g4 ches with the relevant decomposition technique are
as transformation and communication ones, chemical and.,stryctive in nature, rather than existential. The effec-

metallurgical processes, environmental models and powereness of the approach is illustrated by numerical exam-
networks (Tsay and Liu, 1996). Time delays have always pies  However, the results of this paper indeed give us
been among the most difficult problems encountered in 5ne more choice for the stabilization examination of time

process control. In practical applications of feedback con- delay systems with actuator saturation. In this paper the
trol, time delay arise frequently and can severely degradefollowing notation is adopted:

closed-loop system performance and, in some cases, drive
the system to instability (Caet al, 1998; Liuet al,, 2001; R the real number field,
Su and Chu, 1999; Su and Liu, 1996).

Stabilization analysis and synthesis of uncertain time
delay systems with saturating actuators is an important is-
sue addressed by many authors and for which surveys can A” the transpose of a matrit,
be found in several monographs (Han and Mehdi, 1998; Ai(A)
Suet al, 1991; 2001; 2002). Recently, one of the im-
portant issues is to maximize the allowable delay size for Amax(4) the maximum eigenvalue of a matik
robust stabilization of uncertain time delay systems (Liu Amin(A)  the minimum eigenvalue of a matri,
etal, 2001; Swet al,, 2001; 2002). Upper bounds on time
delays which guarantee asymptotic stability of saturating
actuator systems via a state feedback control law are given defined ad|A|| = v/ Amax (AT A).

R™ then-dimensional real vector space,

x avectory = [z 2 ... z,)7, 7; €R,

thei-th eigenvalue of a matri¥,

[|A]l the norm of a matrix4,
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2. Main Result

results, whered, = A—BR!BTP and A4, = AA—
ABR'BTP,

Consider a perturbed time-delay system described by the

following differential-difference equation:

B(t) = (A+ AA)z(t) + (A1 + AAa(t — 7)

+ (B + AB)u(t), (1a)
y(t) = Cx(t), (1b)
x(t) = ¢(t), te[-7,0], (1c)

where z(t) € R™ is the state,u(t) € R™ is the con-
trol input, 7 is the time delay of the system in the state.
A, Ay, and B are real constant matrices of appropri-
ate dimensions. Furthermore,t) is a smooth contin-
uous vector-valued initial function. BesideaA, AA;

Without loss of generality, we consider the case
where the initial time is zero and let(t), wheret¢ > 0,
be the solution of (6) througli0, ¢). Since x(t) is con-
tinuously differentiable fort > 0, one can write

t

x(t—71)=2a(t) — / x(0)do

t—7

x(t) — /;T

+ (A1 + AA (6 — 7)] d6.

[(Ar + AAg)z(6)

()

Applying the decomposition “delayed term¥; as A; =

and AB are linear parameter uncertainties in the system A4;; + A2 and substituting (7) into (6), we have

model with appropriate dimensions. A different idea ex-
ploited in the literature (Goubetdt al, 1997) is to find
some decomposition of the “delayed” term; of the
form A; = Ay + Ajo in order to improve the delay

bounds. In this paper, the admissible uncertainties are as-

sumed to be of the form

|A4) < a, (22)
[AA: ] < ax, (2b)
|AB|| < 6. (2c)
We let
o — Amin (D) 7 (3a)
2Amax (P)

where D = PTB(R"YHTBTP + Q, Amin(A) and

Amax(A) denote the minimum and maximum eigenvalue .

of the matrix A, respectively. P and R are symmetric

positive-definite matrices an@ is a symmetric positive-

semidefinite matrix, involved in the following Riccati
equation:

(A+A1) T P+P(A+A1)-PBR'BTP+Q =0 (4)

for some square matrixl;; of appropriate dimensions.

Itis assumed thatA + A;1, B) is stabilizable. Our
problem is to design the state feedback controller

u(t) = —Ku(t), ®)
where K = R~' BT P, such that the closed-loop system
2(t) = (Ak + AAg)z(t) + (A1 + AAy )zt — 1) (6)

() = (Ag + A11)x(t) + Aroz(t — 7) + AAgz(t)
+ AAz(t — 1) — Ay [2(t) — x(t — 7)]
= (Ap + A1)x(t) + Ao (t — 7) + AApz(t)
+ AAyz(t —7)

— A11 /7 [(Ak —+ AAk):r(H)

+ (A1 4+ AAyz(0 — 7)] db. (8)

Our result is summarized in the following theorem:

Theorem 1. Consider the uncertain time delay system
(1). Suppose thatA + Ay, B) is stabilizable and there
exists a positive number > 1 such that the system (8) is
asymptotically stable if

< o — [a+BIK| + ¢d(| A + on)]
= @[ | A Akl + A1 Al + [[Aua ]| (a + B || K| + oa)]

9)

is satisfied forr > 0. Then the uncertain time delay
system (1) is asymptotically stable, that is, the uncertain
parts of the nominal system can be tolerated.

Proof. We consider the system (8) and take the following
positive definite function as our Lyapunov function:

Viz(t)] = T (t)Px(t). (10)
Thus

V()] =27 (t)Px(t) + 27 (t)Pi(t).  (11)
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Substituting (8) into (11), we obtain Then we have
Viet)] = {(Ak + Ap)z(t) + Apa(t — 1) |z(t —7)[| < qgd[lz(t)], (14)
+ Adya(t) + AAyz(t — 1) where§ is defined in (3b).
. Substituting (13) and (14) into (12), we have the fol-
_ An/ [(Ak + AAL)z(0) lowing inequality:
t—1 .
Viz(t)] < —wlz@)*, weR, (15)

+ (A1 + AA (0 - 7)] d‘)}TP‘”(t) where

+ .rT(t)P{(Ak + A1)z (t)

+ Appx(t — 1) + AAga(t) + AAjz(t — 1)

o = (D) = 2{ [+ K] +45( el + )]

t + 07| 1A Ael + [ A A
— A / [(Ak + AAg)x(0)
t—T1
Al o+ 81 + 1)) Pnas(P).
+(Ay + AAy)z(0 — 7)] de}
. Consequently, we have’[z(t)] < —w ||z(t)|]* for suffi-
(Ag + A1) P+ P(Ag + An)]a(t) ciently smallw > 0. But w > 0 if and only if (15) is
satisfied. Hence the system (8) is asymptotically stable,

T
t)(AAL P+ PAAL)x(t) and therefore (1) yields asymptotical stabilization. m

t —7)AA] Px(t) 3. Extension to the Stabilitzation of Time—

@[
al(
2T (t—1) AL Px(t) + 27 (t) P Ao (t—7)
al(
Y Delay Systems with Saturating Actuators

t)YPAAz(t — )
‘ We consider the linear uncertain time-delay saturating-
_ QxT(t)PAH/ [(Ag + AAR)z(0) actuator systems described by the differential difference
t—7 equation of the form

+ (A1 + Ady)z(0 — 7)) df #(t) = Az(t) + AAz(t) + Azt — 1)
< a"(t)[(Ax + An)" P + P(Ax + Ann)](t) + AAz(t — 7) + Buy(t) + ABuy(t), (16a)
+ [T (1) (AAT P + PAAL)x(t)) y(t) = Ca(t) + ACx(t), (16b)
+ ||z (t — 1) Al Px(t) | us(t) = Sat [u(t)]. (16c)
+ ||2" () PArga(t — 7)|| The saturation function is defined as follows (Fig. 1):
+ |27 (¢ — 7)AAT Pa(t)| Sat [u(t)] = [Sat(us(t)) Sat(us(t)) .. . Sat(um(t))]
+ |2 () PAA2(t — 7)|| and 17
+ 2” (t)P Ay, /t [(A), + AAg)z(6) wi, i w <wig <0,
b= Sat (ui(t)) = wi if wip <w <wpg,  (18)
+(Ay + AA (0 — 7)] d@H. (12) wig if 0 < wig < ui.

Following the Razumikhin-type theorem (Kolmanovskii For any saturating actuat®at(u;(t)), which saturates at
and Nosov, 1986), assume that there exists a congtant  u;z or w1, the following inequality is satisfied (Sat al,
1 such that 1991):

V(z(t—1)) <V (z(). (13) ‘

Sat(u(t)) — US)H < w (19)
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Fig. 1. Saturation function.

In this control system,(A, B) is controllable, i.e., the
process state:(t) can be determined on the basis of the
control inputu(s) for s < t.

Substituting (5) into the system of (16), we obtain the
following closed-loop equations:

(t) = Agx(t) + Arx(t — 7) + AAzz(t) + AAx(t —7)
+(B+AB) (us(t) - @) (20a)
y(t) = Cx(t), (20b)

where A, = A — BR™'BTP/2 and AA, = AA —
ABR-'BTP/2.

From (8), we have

#(t) = (As + Arn)a(t) + Appa(t — 7) + Adua(t)
+ Adyz(t — 1)+ (B + AB) (us(t) - @)
[ [+ ane0)

+ (A + AAz(0 - 7)
+ (B+AB)(us(9) - “(29))] a9 1)

for some square matrixd;; of appropriate dimensions.

Then the problem is how to choose the control parameters

R, P and @ involved in the following Riccati equation:

PBR'BTP+Q =0
(22)

(A4+A)TP+P(A+ Ay) —

such that the closed-loop equation (21) is asymptotically
stable. In other words, parametrical uncertainties can be

tolerated.

Theorem 2. Consider the system (21) and assume that
A+ Ay is a Hurwitz stable matrix satisfying

o5 — a5 — 0.5(||B|[ + B) [ K] — ¢6([|Ar2ll + 1)
T < q5§ )

(23)

where ¢ = [|[Ap Al + A1 As]] + [[Awnl(as + 1 +
0.5(1B[l + BIIK), o5 = Amin(D)/2Amax(P), as =
a+0.56| K| and D= PTB(R")TBTP+Q, 1 > 0.
Then the uncertain time-delay saturating actuator sys-
tem (16) is asymptotically stable for any positive number
g > 1, i.e., the uncertain and saturating actuator parts of
the nominal system can be tolerated.

Proof. We consider (21) and take the following positive
definite function as our Lyapunov function (10). Substi-
tuting (18) into (11), we obtain

V[J’J(t)] = {(AS + All)l‘(t) + A12$(t — T)
+ AAx(t) + AAz(t — 1)

+ (B + AB)(us(t

AL /t (A, + 24,)2(6)
+ (Al + AAl).’E(g — ’7')

+(B+AB) (us(Q) - @)} dG}TP:c(t)

+ xT@)p{(As + Au)a(t) + Ausar(t — 7)
+ AAgx(t) + AAdz(t — 1)

u(2t))

+(B+AB) (us(t)

— An /tt [(As + AAg)z(0)

+ (Al =+ AAl)J?(H — T)

)]

+(B+AB) (us(e) -

(As + A1) P+ P(A, + App)]x(t)

t—T) Al Pa(t)+

@

2T () AAT Px(t) 4 2T (t) PA A x(t)
( (t)PA12$(t—T)
al(

t —17)AAT Pa(t)
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+ 2T (t)PAA 2 (t —T) where
u(t)\1" 0 1 —2 -1
+ B+ A - )| Pe) a=| 2 L a= ] 7
u(t)
+2T(t)P|(B + AB)(us(t) — —=
[ ( 2)} B=| ' Y| aa=aa=ap="" |

. 0 1 0 0.1
— 2 T(1)PAy, / [(As + AA)z(9) , _ _

T We now find the range of the time delay with the state

feedback controller (5) to guarantee that the above system

+ (A1 + A4y (0 — ) is asymptotically stable.

+(B+ AB) (us(é’) _ @)} 6. (24)  Solution.We set
. L 5 0 0.1 O
Applying the Razumikhin-type theorem, we assume Q= , R= )
. L 0 5 0 0.1
that for any positive numbey > 1, the following inequal-
ity holds: L0509
V(z(t—1)) <@V (x(t)). (25) Ay = [ T e ] .
0.9 0
Thus From the Riccati equation, cf. (4)
ot = ) < qds ()] (26) auation. ¢ )
T -1 pT _
Substituting (25) and (26) into (24), we have (A+An)" P+ P(A+An) - PBRTB P+Q=0,
. we get
VIz®)] < —ws |z@®)]?, weR, 27 i ]
[2()] < —wi =@, w (27) o [oms o
where - 0 05348 |’

We then find the state feedback controller
o0 = Auin(D) = 2+ 05(18] + ) | K1 : :
K- 5.3850 0.0002

— 65 (| Ar2] + 1) | 0.0002 5.3485 |

+q657[||A11AS||+||A11A1||+HAHH(as 4, | 53850 0.9008
—~1.0002 —7.3485 |’

+ a1 +05(181 + ) 1K1)] P mas(P).
a=0.1, (P)=0.5348, || A11Ax||=13.0257,

)\min P):
Based on the results obtained in the proof of Theo- 5=0.1, Amax (P)=0.5385, || A11A;||=3.9679,
rem 2, we haveV [z(t)] < 0. Thenz(t) — 0 ast — o N (D) =

if w, > 0. But w, > 0 if and only if (27) holds. This 7= 7-2986, Auwin(D)=7.8606,  [lA1z]=0.1281,
will guarantee asymptotic stability of the time delay sys- §=0.9966, | K||= 5.385.

tem (21). Therefore, the system (21) is asymptotically sta-

ble. ]

From (9) of Theorem 1, we obtain

0<r

4. Examples o — a4 B K|+ (J|Ai2] + a1)gd]

<
= @[ A Agl + [[A11 Al + [[An || (e + B K| + a1)]
= 0.3429.

To ilustrate the previous results, we give three examples.

Example 1. We consider the following linear uncertain

time-delay system: For this example asymptotic stability of the system (28) is

guaranteed fof) < 7 < 0.3429. We note that the resultin
#(t) = (A+ AA)x(t) + (A1 + AAx(t — 1) (Su and Liu, 1996) guarantees robust stabilization of (28)
when 0 < 7 < 0.32. This example shows that the method
+ (B + AB(t))u(t), (28) of this paper is an improvement of this previous result.



than the other result. Hence, for this example, the robust
stability criterion of this paper is less conservative than the
existing results (Su and Chu, 1999; &ual, 2001; 2002).

Table 1. Comparison between the result in
this paper and a previous result.

’ K ‘T (Suetal, 2002)\ 7 (by our resultj _ o _

[5.1926, 4.7212] 4.0813 63833 Examplg 3.Consider the foIIowmg linear time-delay sys-
tem, which suffers from the following parameter perturba-

[0.2209, 1.3031] 4.4206 8.4388 tions (Caocet al,, 1998; Liu and Su, 1998; Su and Huang,

1992):

Example 2. Consider the uncertain time-delay system i(t) = (A+ AA)z(t) + (A + AAz(t — 1), (30)
with a saturating actuator

where
z(t) = (A4+ AA)x(t) + (AL + AAx(t — 1)
A_| 20 L] Lo
+ B Sat [u(t)], (29) =10 1| 1 11|
where 03 O 02 0
2 0 1 0 0 Ad=1 02]’ A=t 031’
A= ) Al = ] ) B= l ‘| ’ . ’
1 -3 —0.8 —1 1 _ _
We can findr to guarantee that the system (30) is asymp-
e 02 0 a 02 0 totically stable.
o 0 02|’ 1= 0 02|’ Solution.Let K =0 and

Find the range of the delay time by using a state feed-
back controller K to guarantee that the above system is
asymptotically stable.

By =

-09 0
0.9 —09 |
Applying Theorem 1 to the uncertain time delay system

(30), it is found thatr < 0.2836. The maximum time
0 [ 1 O] [ 1 O] [ 1 0 ] delay for the stabilityr as estimated by the criteria of
= 5 = 5 11 — .

Solution.We set

01 01 (Caoet al,, 1998; Liu and Su, 1998; Su and Huang, 1992)

—08 —08 and the approach in this note is listed in Table 2.

We choose a tolerance coefficient of saturatfain|u(t)].
From the Riccati equation (4), we get Table 2. Comparison between the proposed and other methods.

Method \ T ‘

Su and Huang, 1992 0.1575
Liuand Su, 1998 | 0.2130

p_ | 01625 0.0036
| 0.0036 0.1294

and the state feedback controller Caoetal, 1008 02558
0.1625 0.0036 This paper 0.2836
| 0.0036 0.1204 |-

From Table 2, the proposed criteria are less conserva-

For this example asymptotic stability of the system (15) tive than those in (Caet al, 1998; Liu and Su, 1998; Su
is guaranteed forr < 0.5522. On the other hand, the and Huang, 1992). Hence, our result gives a less conserva-
stability criterion in (Liuet al, 2001) gives a bound for  tive bound than those obtained by using a delay-dependent
the time delay of 0.3781. On the other hand, the delay stability criterion (Cacet al,, 1998; Liu and Su, 1998; Su
bound for guaranteeing the asymptotic stability of the sys- and Huang, 1992).
tem (29) isT < 0.2841 (Su and Chu, 1999; Set al,
2001). Applying Theorem 1 to this uncertain time-delay .
system (29), the maximum time delay for stability, is 5. Conclusion
found and compared with the result by 8ual. (2002), | this paper, the delay-dependent robust stabilization
cf. Table 1. problem for a class of uncertain linear time-delay systems

As Table 1 indicates, the maximum time delay containing saturating actuators is considered. The objec-
for stability obtained by our approach is less conservative tive of this paper is to guarantee an allowable bound on a
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tained constant delay bound, the constrained system with  delay systems with delay-dependereeSyst. Contr. Lett.,
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