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Perspective problems arise in machine vision when using a camera to observe the scene. Essential problems include the
identification of unknown states ahdr unknown parameters from perspective observations. Range identification is used

to estimate the statepositions of a moving object with known motion parameters. Range estimation has been discussed

in the literature using nonlinear observers with full homogeneous observations derived from the image plane. In this paper,
the same range identification problem is discussed with a single homogeneous observation using nonlinear observers. Our
simulation results verify the convergence of the observers when their observability conditions are satisfied.
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1. Introduction Then, a typical PDS will consist of the above linear dy-

) o ) namic system with the following homogeneous output ob-
In 3D motion estimation from image sequences, there aregapations:

basically two sub-categories of identification problems.

One category is to estimate the parameters of the motion i (t) = X()/Z(1t), y2(t) =Y (t)/Z(2). ()
dynamics of a moving object. The other is to recover

the depth information assuming that the motion param- The range identification problem can be described for-
eters are already known. The solutions to the first sub- mally in the framework of PDSs. That is, assuming that
category of problems can be resolved, to the extent possithe motion parameters; ; and b, for i,j = 1,2,3

ble, via algorithms such as nonlinear optimization formu- are known, the range estimation problem is to estimate
lations (Choet al, 2001), linear least squarestal least  the position of an object with an unknown initial con-
squares approximations (Papadimitrigiual, 2000), the  dition from observations on the imaging surface (Chen
application of epipolar constraints (Soagbal, 1996), and Kano, 2002; Dixoet al,, 2003; Jankovic and Ghosh,
and nonlinear observers (Chiusbal., 2002; Ghoslet al,, 1995).

1994; Jankovic and Ghosh, 1995). The second sub- Let

category of problems, which is the main focus of this pa-

per and is referred to as the range identification problem y(t) = [y1(t),y2(t), yg(t)]T
hereafter, can be solved by nonlinear observers applied to .
perspective dynamic systems (PDS), which is a class of = [X(t)/Z(t), Y (t)/Z(t), 1/Z(t)] . (3)

linear systems with homogeneous observation functions. o _
With a stationary camera observing a moving object, The derivative ofy(t) is
we assume that the object follows an affine motion de-

scribed by the following system of ordinary differential 91(t) = a1z + (a11 — as3)yr + a2y — as1y7
equations: —az2y1y2 + (b1 — b3y1)ys,
X X ) Ya2(t) = az3 + a21y1 + (a22 — asz)y2 — az1y1y2
ail a2 a3 1 2
—azays + (b2 — b3y2)ys,
Y(t) | =] a1 a2 a Y(i#) |+ b2 |- 2
Z(t) asi asz ass Z(t) bs y3(t) = —(as1y1 + asayz + ass)ys — bsy3.

) (4)
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Itis based on the above equivalent nonlinear dynamic sys-
tem that nonlinear observers have been desigagglied

to estimateys(t) from y;(¢t) and yo(¢). o [X,Y,Z]"
Assuming that bothy, (¢) and y»(t) are available,

several observers have been desigragplied to the non-

linear dynamics in (4), including the following: >7

e The Identifier-Based Observer (IBO) proposed in
(Jankovic and Ghosh, 1995), which is motivated by v
adaptive control theory.

e The state observer (referred to as the SMO due to its
employment of a sliding mode method) in (Chen and
Kano, 2002), which is a combination of the sliding
mode control method, the adaptive method, and dis-
continuous observer techniques.

Fig. 1. A general planar imaging surface passing through
[0,0, 1] with normal vectorii = [n1, n2, ns]”.

where we further assume that # 0 to emphasize that
the observations are facing toward tie axis. Since the
e The Range Identification Observer (RIO) in (Dixon Pprojection of a 3D poin{X, Y, Z]” can only be observed

et al, 2003), which facilitates a Lyapunov-based up to a homogeneous line as

analysis.

X,=2,X/Z, Y,=2,Y/Z, (6)

e The Linear Approximation-based Observer (LAO)

in (Ma, 2004), which is motivated by the linear from Eqns. (5) and (6), we have

approximation idea proposed in (Hernandszal,

2003; Tomas-Rodriguez and Banks, 2003). Xp=13X/p, Yp=n3Y/p, Zp=m3Z/p, (7)

In this paper, we consider the range identification problem with ,, 2 n X +noY +nzZ.

with a single homogeneou_s observation. That is, we con- Define y, = [yg1, Yg2, Yga: Yga]" as

sider the problem when either, (t) or y»(t) is known,

mstt_aad of both of t_hem._\_Ne §how that with reduc_ed infor- Vo1 = X/ps Yg2 =Y/ ps Yg3 = Z/ps Ygs =1/p. (8)

mation, the range identification task can be achieved, but

in a less appealing manner. The range identification of a PDS with the general pla-
The paper is organized as follows: Section 2 gives Nar imagir!g surface shown in Fig. 1 amounts to estimat-

motivations to study the single observation case. In Sec-'"9 ¥g4 USING (Yg1: Yg2, ygg)._For a conventional camera,

tion 3, the range identification problem with a single ob- 71 = 72 = 0, nz = 1, and this equation reduces to

servation is carried out. Section 4 presents our simulation

results and comparisons between the cases whé Yot 12, Yg2 =Y /2, ygs =1, yga =1/ ©)

and (y1(t),y2(t)) are available. Finally, Section 5 con-

Consider a more special situation, as shown in Fig. 2,
cludes the paper.

when an object is moving on a plar@ O P,, whose pro-
jection on the image plane is a lingp, that has either a
2. Motivation constanty; (t) or a constantys(t). If y»(t) is a constant,

g2 = 0. Then the range identification problem is to iden-
The existing vision devices typically use a photographic tify y(¢) and y3(t) using y(t).! The above discussion
camera or a video camera, in conjunction with an off-the- serves as another motivation for investigating the range
shelf lens, where a 3D point is projected onto a plane per-identification problem for a PDS with a single homoge-
pendicular to the camera’s optical axis. Normally we as- neous observation. In the following sectiong,(t) will
sume a pinhole camera (perspective) model. This camerabe treated as unavailable, not necessarily as a constant.
type projection is a special case of a more general planar  The results presented in this work show that with
imaging surface as shown in Fig. 1, where the plane is reqyced information, the range identification task can be
described by its normal vectai = [n,n2,n5]" and @ performed, but in a less appealing manner. It can be fur-

point on the plane, which is assumed to |90, 1] with- ther concluded that more general 3D imaging surfaces,

out loss of generality. such as the general plane shown in Fig. 1, a sphere or
For any point[X,, Y,, Z,|T onthis plane, where the  an ellipsoid, can be more desirable as far as range iden-

subscriptp denotes the projection, we have tification is concerned, since they can provide additional

n1Xp +n2Y, +n3(Z, — 1) =0, (5) 1 The case of estimating; (t) and y3(t) from y2(t) is similar.
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o 3.1. Direct Application of an IBO
2 » X CameraFrame

/ Range identification with a single homogeneous observa-
]

tion can be solved by a direct application of the IBO ob-
server, which has been applied to estimgt€t) when
both y;(¢) and y2(t) are available (Jankovic and Ghosh,
1995). Consider the following class of nonlinear systems:

Image Plane

Object Moving on

aPlane
P, @1 = w! (z1,u)@s + o1, ),
Pl :tQ = 9(151»1327'“)7 (10)
A4
Z Yy = Iy,

where 1, x2, u, and y are, in general, vectors. Here
x, denotes the system states that are available from the
output y; x2 denotes the states of the system to be es-
homogeneous output(s), instead Bf= 1 as in the case  timated. Comparing the above system (10) with our per-
of a camera. spective system (4), it is clear thai(t) = 1. Further,
when bothy; and y, are available in (4)z; and x5 in
(10)are2x1 and1x1 vectors, respectively. When either
y1 Or yo is available in (4),z; and x5 in (10) become
1x1 and2 x 1, respectively. The matrixo” (z,,u) and

the vectorg(x, 2, u) in (10) are, in general, nonlinear

In the case of a single homogeneous observation usingUnctions of their parameters.
only y1(t), the range identification task can be solved by ) N
a direct application of an IBO since the IBO observer is An identifier-based observer (IBO) for the system
designed for a class of nonlinear systems in the form of (10) can be designed as
(10) below. Further, based on a resemblance in the con-
structions of the IBO and the SMO for the case of fully
homogeneous observations (with bath(t) and y2(t)), 2
a modified SMO is used for the single observation case.

Applying the idea of constructing an RIO to the o z(t])

; . S . . Tt ) =M-——,

case with a single observation is not as straightforward (it ¢ 2 (t)]|
might not be as appropriate either) as extending the idea (12)
of the IBO and the SMO. In an RIO, assuming thatand where the sequence of is defined via
y» are both availablef; and f» are first estimated to ap-

Fig. 2. Illustration of a PDS with a single
observation function.

3. Nonlinear Observers for PDS with
a Single Homogeneous Observation

1= GA(CCl — (f?l) + U/T(mlg ’Uf):ﬁQ + ¢($1,'U,),

&

9 = —GQw(wl,u)P(asl — 131) +g(x1,:i2,u),

8

proximatefl = (bl — b3y1) Y3 and f2 = (bl — b3y2) Y3, t; = min {t :t>t;; and ||3A5(t)|| > ’7]\/[}7 (12)
respectively. Then, the estimate gf, denoted byys, is o . o .
computed by (Dixoret al,, 2003): and the matrixP is a positive definite solution of the Lya-
punov equationA” P + PA = —Q. In (12),M is an as-
9 2+ f3 sumed upper bound for the state estimpdgt)||, and v
Ys = (by — b3y1)? + (bg — bzya)?’ is a fixed constant. The quanti in (11) is a constant

. . scalar gain. From (11) and (12), the states of the observer
Since f; and f, are estimated independently of each are kept bounded, i.e||&(t)|| < vM, where~ is a con-
other, we can let stant with~y > 1. Notice that the matrix4 in (11) is not
A the 3 x 3 parameter matrix in (1).
9 1 : : .
Y3 = 77 g The assumptions of the IBO include (Jankovic and
(b1 — b3y1)

Ghosh, 1995) the following:
for the single case when only; is available. However,
estimatingy, from y; and g3 might not be straightfor-
ward. Further, it is obvious that when the denominators in
the above two equations are small, the estimation errors of
ys and possiblyys can be too conservative. Due to the Denote by the setQ = {2 € R" : [[z(t)]| < M.
above reasons, extending the idea of the RIO to a single For a fixed constanty > 1, write ., = {2 € R" :
case is not further pursued. (0] < vM). ’ K

Assumption 1. Assumptions of the IBO

e x(t) are bounded. That is, there exists a constant
M > 0 such that|lz(¢)|| < M for everyt > 0.
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e The functiong(x1, x2, u) satisfies the following lo- . . b —b
cal Lipschitz condition inQ2, with respect tox, [ Nol_gal || T ] i3
(Khalil, 2002): Uo e by — b3ys
n aiz + (a11 — as3)yr + a2y
llg(x1, 2, u) — g(x1, 22, u)|| < [|22 — 22, ass + az1y1 + (a22 — as3)ys
(13) 11?4 a
where o is a positive constant. _ | @s1¥1 T a32y1Y2
as1y1y2 + asays

IBO :<¢:
e The matrixw(z, u) is piecewise smooth, uniformly V% [¥3 = -G { br—bsyr b2 = bsys }
bounded together with its first time derivative, and

(15)

there exist positive constant$ and p such that we xP | | = (as1y1+ asays+ ass)
have €2
t+p XQS - bS?J%»
[ e@tunar = a o
: ale) = v L)

(Gl ¥

This assumption is an observability assumption. It re- and

sembles the persistence-of-excitation condition, but is

351 = GAey + [a12 — azay1, b1 — bayi]
stronger.
U2
U3

X + [a13 +(a11 —ass)yr — as1yi]

The three assumptions in Assumption 1 are strict yet

reasonable assumptions, referring to the practical system 5 _
for estimating the 3D states of a point from the observa- [ v 1 — @2 | 2Tl o
tions of its perspective projections. The first two assump- v, Y3 b1 — b3y

tions are standard ones in the control area that guaran-
tee the local existence and unigueness of a state equation 4
(Khalil, 2002). For the third assumption, we shall later see
that, for the case of using botjy and y, to estimateys,

«
—(az19y1 + az292 + as3)fs — bsg3 ] ’

(14) is equivalent ta(b; — bsy1)? + (ba — bsys)? > &2 for Gt = M g(t;)
somee > 0. For € # 0, the above expression defines the ’ oI
complement of a circle on the screen of the camera with (16)

the center at(b, /b3, by /b3) and radiuss/b3. The point ~ where

(b1/bs,ba/b3) is called the focus of expression (FOE). It ~ . .
is a well-known fact that the range of a feature point at G = ags + agiy1 + (ag2 — ass)f2 — az1y192
the FOE cannot be determined. Thus, the above sufficient
condition for observability is also necessary for practical
purposes (Jankovic and Ghosh, 1995). The first assump-
tion requires the 3D point not to become infinitely close under the corresponding observability conditions

to the center of projection of the camera due to the issue

of the FOE. The second assumption requires the 3D point, Amin{w([y1(t), y2(£)]7) w” ([y1(t), y2(1)]7)} > & > 0,

—az293 + (b2 — b392) i,

and also its 2D projection on the imaging surface of the a7

camera, to follow a unique trajectory for a certain initial and

state and a certain set of affine motion parameters. Amin{w(y1 (8) wT (y1(£)} > > 0, (18)
Define where \in denotes the smallest eigenvalue of a matrix.

The sequence of; is defined in (12). From (15) and (16),
it can be observed that the states of the observers are kept
bounded.

2 - . s -
The variable) has been used extensively in this paper in different
The constructed IBO observers for the cases when places. Here\ denotes an eigenvalue selector. In Eqns. (21) and

(y1(t),y=(t)) are available and when only; (¢) is avail- (23), A\; (@ = 1,2) denote design parameters. Besides, in (24),
able, take the following forms (Met al., 2004; Ma, 2004): denotes the design parameter in general.

er =y — Y1, €2 =Y2—TY2, €3=1y3—Ys.
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The two observability conditions in (17) and (18) are where «, a;, and as are positive constants antj for
of the same complexity. Specifically, they are 1 = 1,2 are design parameters. Furthermoke(0) and

2(0) can be any positive constants.
(b1 — b3y1)® + (b — byy2)® > 0, 2(0) yP

AInin {

with @ = a19 — a32Y1 andb = by — bgyl. The above two
conditions are equivalent to

When only y;(t) is available, the following ob-
a ab ] } >0 server, which is based on a modification of the SMO and

ab b2 (19) a resemblance between the SMO and the IBO, can also be

used for the state estimation 9f(¢) and ys(¢):

;\1(t)61

Y = m + [a12 — az2y1, by — b3y1]
(b1 — bsy1)® + (b — bgy2)® > 0, o
(b1 = b3y1)” + (@12 — agoyn)* > 0. (20) X [%2 + [a13 + (a11 — ass)yr — as1yi]
Y3
A detailed proof of the IBO in the general form was pro- ) .
vided in (Jankovic and Ghosh, 1995). For the readability g2 | a1z —aszay1 | Ai(t)er
of the paper, a sketched proof of the IBO is given in Ap- Sl;/{o: gs | @ by — bsyr le1| + 81 (23)
pendix. The proof of the IBO is not our main contribution.
N a
3.2. Direct Modification of the SMO —(as1y1 + as2f2 + ass)fs — bsy3 |’
The following SMO observer proposed in (Chen and o g(t)
Kano, 2002) has been applied to the state estimation of gt = MHQ(;)W
(4) when bothy, (t) and y»(¢) are available under As- ¢
sumption 1: where
, Ai(b)es N R R
??1 | Jal+a by — bsyy & = agz + az1y1 + (a2 — as3)f2 — az1y1fe
(P Aa(t)es by — b3y —az293 + (b2 — b3fa) .
lea| + 02

The sequence of; in (21) and (23) is similar to that
defined in (12). Again, the states of the observers (21)
] and (23) are kept bounded. The modified SMO observer

J aiz + (a1 — as3)yi + ai2y2
3
ags + a1y + (aze — asz)ys

2
a + aza? . . o
- [ S sy SMO in (23) achieves an extremely similar performance

SMO : as1y1yz + as2y3 Y1 ]
Y1+y2 A (H)er to IBO using properly chosen observer parameters, as
Y1
. will be seen in Section 4.
Yz = a [by — b3y1, ba — b3ya] ‘§1| o . . . .
2(t)es The original SMO observer is designed to estimate
le2| + d2 y3(t) usingy; (¢) andyz(t), and its proof was focused on
—(az1y1 + as2y2 + ass)fs — bsi3, the specific system (4) instead of the more general nonlin-
ear systems in (10). In the following, an alternative proof
g = M 9(t;) of the SMO for the nonlinear system (10) is provided.
' 15N
(21)

where §; (i = 1,2) are design parameters. Hehe(t) 3.3. Extended Proof of the SMO
(i = 1,2) are adaptively updated by
In this section, we provide an alternative proof of the SMO

. 2aq |er|, iffer] > 261, for nonlinear systems in the form of (10) under Assump-
A(t) = tion 1. First, consider the following error dynamics:
0, otherwise,
é1 = —\sgn(ey) +wh (1, u)ey,

) 2z |ea], if |ea] > 202, és = —alw(xy, u)sgn(e 24
Salt) = 22) 2 (x1,u)sgn(er) (24)

0, otherwise, + g(@1, @2, u) — g1, 22, u0),
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with e; = 1 — &1, e = 2 — &5 andsgn(+) giving the have

sign of its argument.Assume now thét s s
/ Vidr < — [A/ lex()|*dr
t t

t+6
er/t ||wT(T)62(T)|2dT]

_ t+45
S—P/ lex(r)|2dr
t

g(x1, T2, u) — g(x1, 2, u) = 0. (25)

The system (24) becomes

é; = —Asgn(ey) + wT(acl,u)eg,
(26)
S — , t+6
ér = —alw(xz1,u)sgn(er). —|—07ﬁ/ llea(r)||2dr
t
First, it can be shown thaie;,e, and é; are =-(Nel+apfed) < -AVi, (29

bounded. For exampleg; = x; — ¢, is bounded due _ _

to the boundedness of the state estimate(by assump- ~ Where A = min(A, a8). According to Theorem 4.5 in
tion) and &,. The boundedness c, can be seen from  (Khalil, 2002), the system (26) is exponentially stable due
the third equation in (21) and (23), where the states of the to (28) and (29).

observers are kept bounded. Similarkg is bounded. Now, consider Eqn. (24). Following the converse
Then, from (24),é; is bounded due to the boundedness theorem (Khalil, 2002), there exists another Lyapunov
of ey, e andw’ (z,u) (by the third proviso in Assump-  function V, and four positive constants; for i =

tion 1). 1,2,3,4 such that
Let Vi = 1(e? + €3). Then .
cillel? < Va < ezllel’,  Vele) < —cslel?,
. T . T. )%
Vi=elélt+eyé H@eQ < cqlle], (30)
= —el'Msgn(er) + el wley — ael Awsgn(e;) _ _
T . . T where e = [e],el]”, and ||V2](26) denotes the time
= Mei || +ew(e1 +a(ér —w'ey)) derivative of V, calculated along the trajectory of the sys-

tem (26). Discarding the assumption gfx;, z2, u) —
g(x1,Z2,u) = 0 as stated in (25) and using; as the
Lyapunov function for the system (24), we can obtain

“Alel | - allwTes|* + ez w(er + aéy). (27)

Sinceey, €1, es, andw are boundedel w(e; + aé;)

. . d
are bounded. By choosing and A\ large enough,V; Val(a) = a‘/ﬂ@ﬁ)

can be made
oV,
. - a0 (g($17w27u)_g(w175€27u))5
Vi < =Mled|)? — allwes|? <0, (28) ‘ Oe (31)
< —csllel? + cilleflaolzs — @]
\ 2
where A and a are two constants different from and < —(es — caao)]le]7,

«, respectively. The selection of the design parameter

A s depenc'ien.t.on the initial condition Of. the SySte.”?-. It local Lipschitz condition (13) as stated in Assumption 1.
should be significantly larger than a function of the initial - : L .

. Va|(24y can be made a negative definite function by choos-
condition of the system. Further, because of (14), we can.
ing c3 > cyap, SO that the system (24) becomes exponen-

tially stable.

- i el . .
3 More precisely, sgn(e;) should be understood as Replacmg)\sg_n(el) by )\\?1\+51 in (24), we arrive
[sgn(e1), sgn(es), . .. sgn(em)]T  assuming that the vec- at the error dynamics when using the SMO observer. Fol-
tor ey isanm x 1 vector. Thatis,.e; = [e1, ez, ..., em]T. lowing the same procedures from Eqns. (24) to (27), in

4 This assumption will be relieved later when deriving (31). (27), the first element becomesi e?ﬁ. Again, by
1 1

where the functiory(x1, z2, ) is assumed to satisfy the
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choosinga and ) large enough, Egn. (28) can be made 4. Simulation Results
true. The following proof remains the same as those from

Egns. (28)to (31). m The observeriBO and SMO are implemented via Mat-
. lab S|mulat|ons Flrst we show an example of simulation
Remark 1. - is introduced to replacegn(e1) o results using the first example in (Chen and Kano, 2002),
reduce the chattering and the singularity effect becausewhere the target is assumed to move according to the fol-
e(t) might be zero. Besides, wheh — 0, |e1|+61 — lowing affine motion:
sgn(ey). : -
X(t) 02 04 —0.6
Y(t) | =] 01 -02 03
3.4. PDS with an Alternative Output Definition 2(t) 03 —04 04 -
X(t) 0.5
Besides definingy(t) as in (3), we can also let x| Y@ |+ 025 |,
. Z(t) 0.3 |
y(t) = [yl(t)va(t)ayii(t)]
— T
= [X(@)/Y (1), 2(t)/Y (1), 1/Y(#)]". (32) (X0, Yo, Zo) = (1,1.5,2.5),
The derivative ofy(t) then becomes yo = (Xo/Z0,Y0/Z0,1/Z0). (35)

In all the simulations, the output is corrupted with uni-
form noise bounded by-10~2. Here y), is chosen to be
(0,0,0). The observer parameters &re:

Y1 = a11y1 + a12 + ai13ye
—(a21y1 + age + a3y2)y1
+(b1 — bay1)ys,

in = a31y1 + sz -+ Gzl (33) ¢ IBO: G=10,A=1,P=—1/2,M = 10,7 = 1.
—(a21y1 + az + az3y2)ys e SMO: a = 5,7 (0) = 1,01 = 10,6, = 0.2,
+(bs — bay2)ys, M= 10,y = 1.

Uz = —(az21y1 + a2 + azsy2)ys — bays.

| State Estimation of ¥1

The PDS system in (33) can be understood as the
PDS in (4) goes through another perspective projection,
which might be called a “chained perspective projection”,
when only X (t)/Y (t) = % is measurable. In
comparison, the PDS in (4) uses the two coordinates of a

Staie Estirlnation Iof Y2 I I I I — truel
projected point on the image plane as the measurements 41 ---- via B0 H
: : H H — via SMO
while the chained PDS system in (33) requires only a ;| 1
slope. The system (33) can also be understood as a re-

. . . D 1 1 1 1 1 1 1 Il 1
sult from a camera facing towards thé axis, instead of o 2 4 6 8 0 12 14 B 18 2N

. . . . . 145 T T T T T T T T T

the Z axis as in (4). Due to thl_s, the resulting PDS_ in State Estimation of s — e
(33) is equivalent to (4) by switching orders of the motion 't o via !SBI\?O i
parameters as 05k — =
b TR

lal, ;=| as1 asz az |, [b;=1] bz |. (34) ) o _
Fig. 3. State estimation ofy2,y3) using y1
a1 Q23 Q22 by

for the motion dynamics in (35).

We thus show that, sticking to the perspective projection, State estimation using only; via IBO and SMO

different output definitions result in perspective dynamics

systems in a similar form. Thus, in Section 4, simulation

results for the PDS in (4) are only presented without loss

of generality. 5 For the cases with a single homogeneous function and with both
(y1,92).

are presented in Fig. 3, where the true state trajectorles
are plotted in solid lines and the estimates are represented
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by dotted and dashed lines for the IBO and SMO, re-
spectively. It can be observed that the state estimation of
(y2,y3) canbe achieved and the performancé®© and

Y1

SMO are extremely close.
Y1

Figure 4 shows a comparison betweél?ro and
Yity2

IBO for y3. The simulation time is set to be 80 sec-
Y1
onds to clearly show the error convergence. It is obvious
that Il%rO generally outperformdBO, during the tran-
Yi1TYy2 Y1
sient period, but both converge to the true value. A sim-
ulation comparison betwe&Sﬂ\J/gO and SMO is not pro-
Y1 ry2 Y1
vided due the similar performance of the SMO with the

IBO.
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Fig. 4. Estimation error comparison betweeH%rO and
YiTYy2

IBO for the motion dynamics in (35).
Y1

Other examples of simulation results are presented in
Figs. 5 and 6 for the following affine motion:

X (t) —0.2 04 —06 ]
Yt) | =| 01 —-02 03

Z(t) -04 04 —04 |
X (t) 0.5

x| Y@ [+ ] 025 |,

Z(t) 0.3 |

(X0, Yo, Zo) = (1,1.5,2.5),

Yo = (Xo/Zo,Y0/Z0,1/Zp).  (36)
Remark 2. Range identification with general 3D planar
imaging surfaces:It has been shown in the above sim-
ulations that state estimation using and y> generally

L. Maetal.
ns T T T T T T T T T
— true
---- wia IBO
OF State Estimation of #1 — wia SMO
05 s . s s s s . K
2 4 5] 3 10 12 14 16 18 20
145 T T T T T T
— true
1+ - via IBO g
08 State Estimation of %2 — wia SMO
D 1 1 1 1 1 1 1 1 1
0 2 4 5] 3 10 12 14 16 18 20
— true
via IBO
05 State Estimation of us — wia SMO |
/ 1 1 1 1 1 1 1 1 1
0

Fig. 5. State estimation ofy2,ys) using y1 for
the motion dynamics in (36).

error of state estimation y,

10 20 30 40 50 60 70 80

Fig. 6. Estimation error comparison betwedﬂB+O and
Yi1TYy2

IBO for the motion dynamics in (36).
Y1

outperforms the situation when using only a single obser-
vation. Motivated by these results, it is straightforward
to ask: if using full homogeneous observations is “better”
(in the sense of the state estimation accuracy) than using
partial observations, will a general planar imaging surface
as shown in Fig. 1 outperform the traditional camera-type
imaging surfacef, = 1)? We believe that the answer
is “yes” intuitively, because when using a general planar
imaging surface and considering the nonlinear system in
(10), x; becomes & x 1 vector, compared to the x 1
vector as in the case af,, = 1. However, it is obvious
that this benefit is achieved at the cost of more complex
imaging systems.
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5. Concluding Remarks

For a perspective dynamic system (PDS) with a single ho-
mogeneous observation function, the range identification

&

Morgan A.P. and Narendra K.S. (1977Pn the stability of
nonautonomous differential equatiotis= (A + B(t))z
with skew symmetric matrix3(t). — SIAM J. Contr.,
Vol. 15, No. 1, pp. 163-176.

problem is discussed using nonlinear observers previouslypapadimitriou T., Diamantaras K.l., Strintzis M.G. and Roume-

used for the full observation case. Our simulation results
show that the convergence speed of the observer for the
single observation case is slower than those with full ob-
servations. However, both the observers have similar per-

liotis M. (2000): Robust estimation of rigid-body 3-D mo-
tion parameters based on point correspondeneeslEEE
Trans. Circ. Syst. Video Technol., Vol. 10, No. 4, pp. 541—
549,

formance. This study also shows that a more general 3DSoatto S., Frezza R. and Perona P. (198Bjtion estimation via

imaging surface can be more desirable since it can provide

more homogeneous output(s).
The sensitivity of the state estimation of a PDS with

respect to motion parameters is not investigated in this pa-

per. However, it would not be surprising that the effect

can be slightly more severe for the single case than that

with full observations.
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Appendix

Sketched Proof of the IBO(Jankovic and Ghosh, 1995)

Consider the following differential equation for the esti-
mation error from (10) and (11):

é1 GA61 —|—’UJT(.’131,’LL)€2,

é2 _sz(wlau)Pel —|—g(w1,ac27'u,) - 9(3317@2,711)-

Define a linear change of the coordinates- T'e via

|

where n; and ny, correspond to the dimensions af;
and x,, respectively. It can be verified that the error dy-
namics in the new staté can be written in the following
form:

&1 = G(A&G + v (H)€2),
52 = GU}(t)PSl + G_Q(g(mlva’u) - g(wlai27u))a

0
G2,

G-I,
0

T

37)

where w(t) is considered a function of time since, (t)
and u(t) are fixed functions of time known at every time
instant. Assume thay(x, z2,u) — g(x1,@2,u) = 0,
and define the new time coordinate wWa= Gt. The dif-
ferential equation (37) becomes

©1_ag+ 0" (),

ds = w(S)Pgl,

(38)

wherew(s) = w(G~'s). The above system is in the form

perspective dynamic system with single homogeneous ob-Satisfied by the error differential equation in the parameter

servation—- Proc. IEEE Int. ConfRobot. and Automat.,
New Orleans, pp. 5207-5211.

identification problem considered in (Morgan and Naren-
dra, 1977), and it can be shown that the above system is
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exponentially stable from Assumption 1. For the system Discarding the assumption thatg(xq,x2,u)
given by (38), it can be verified that the proof of Theo- ¢(x1,#2,u) = 0, the error dynamics i and s is
rem 2 in (Morgan and Narendra, 1977) guarantees the ex-given by

istence of a Lyapunov functiof; (£) and three positive

constantsd;, i = 1,2, 3 such that

dé

= A& + 0" (s)&a, (40)
di[1€(s)* < Va(€) < dall€(s)]1%, ds
d€2 - -3 N
%‘/1(5”(38) <0, Fal w(s) P& + G2 (g(m1, T2, u) — g(@1, &2, 10)).
Using the functionV;(&, s) as the Lyapunov candidate
P d 2 for the above system, we can obtain
Evl(f)\(ss) dr < —d3[|€(s) I,

d
: _ o _ —Va(¢, < (—ec3+G7H 2,
where Vi (£)|(ss) means that the time derivative f is ds 2(6:5)laoy < (s cacto) [I€]

calculated along the trajectory of the system (38). Fol- . ) . .
lowing the converse theorem in (Khalil, 2002), there ex- 't IS 0bvious thatVx(¢, s)|9) can be made a negative
ist another Lyapunov functio¥; (¢, s) and four positive definite function by choosingx > csap/cs. For such a

constantsc;, i — 1,2, 3,4 such that choice of G, the sy;tem (40) _becomes exponentially sta-
ble. Because the linear relationship betwegmnd e, it
c||€(s)]1? < Va(€, s) < eal|€(s))?, can be cor_1c|ude_d thai converges to zero exponentially
) , between discontinuities.
Vo(€, s < —cs||&(s)]%, ]
2(& )l sl Received: 23 August 2004
OV, (€, s) Revised: 10 November 2004
H o | = callg()ll- (39) Re-revised: 10 January 2005




