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CONTROL OF A TEAM OF MOBILE ROBOTS BASED ON NON-COOPERATIVE
EQUILIBRIA WITH PARTIAL COORDINATION
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In this work we present an application of the concept of non-cooperative game equilibria to the design of a collision free
movement of a team of mobile robots in a dynamic environment. We propose the solution to the problem of feasible control
synthesis, based on a partially centralized sensory system. The control strategy based on the concept of non-cooperative
game equilibria is well known in the literature. It is highly efficient through phases where the solution is unique. However,
even in simple navigation problems, it happens that multiple equilibria occur, which incurs a problem for control synthesis
and may lead to erroneous results. In this paper we present a solution to this problem based on the partial centralization
idea. The coordinator module is incorporated into the system and becomes active when multiple equilibria are detected. The
coordination method includes a “fair arbiter” for the selection of an appropriate equilibrium solution. Simulation studies of
the proposed methodology were carried out for 2, 3 and 5 robots, and their results are presented.
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1. Introduction

In recent years a lot of attention has been paid to the prob-
lem of multiple robot motion planning. One of the tools
for modeling and solving the problem of interactions be-
tween robots that share a common workspace is game the-
ory. In the context of the application of game theory to
mobile robot motion planning, several approaches have
been reported in the literature. Golfarelli (1998) presents
the collision avoidance problem faced by a population of
“self-interested” interacting agents as a 2-player repeated
game. He uses the criterion based on the “maxi-max” con-
cept. The study by Li and Payandeh (2001) addresses the
problem of planning motions of two robotic agents that
perform cleaning up and collection tasks. In this study
a multi-stage zero-sum game is proposed to model and
solve the problem. A zero-sum game and the concept of
a saddle point solution are proposed as a tool for sensor-
based motion planning for mobile robots by Esposito and
Kumar (2000). LaValle (1994; 2000) gives a method for
analyzing and selecting time-optimal navigation strategies
for n robots whose configurations are constrained to lie on
a C-space road map. He uses the maximal Nash equilib-
ria concept to find favorable strategies for each robot. The
work by Chitsazet al. (2004) presents an algorithm that
computes a complete set of Pareto-optimal coordination
strategies for two translating polygonal robots on a plane.

Of course, game theory is not the only method of co-
ordination for multiple robots. There are at least two re-
cent works advocating other approaches which are worth
mentioning. The first one, by Belta and Kumar (2004),
deals with the problem of generating optimal smooth tra-
jectories for a group of fully mobile robots. They intro-
duce a geometrical approach to control the motion of a
rigid formation of a team of robots. In turn, Gerkey and
Mataric (2002) present a method of dynamic task allo-
cation for a group of mobile robots based on an auction
method. Using this method, different types of cooperative
behavior of a team of robots can be obtained.

Considering the game theoretical approach, the pa-
pers referenced above give a quite exhaustive range of
game theory based approaches to multiple robot agent
control. They show the advantages of this approach,
which are (a) the avoidance of the computational explo-
sion related to a full search of the configuration space and
(b) a good intuition support coming from analogies to con-
flicting behavior in many areas. However, all the previous
studies lack the treatment of one, but very important, as-
pect of this approach: the existence of multiple solutions
to game problems. The existence of multiple solutions
is common even for rather simple problems. Simulations
show that the choice of a game equilibrium in such a situ-
ation is very important for the quality of the overall solu-
tion.



K. Skrzypczyk90

In this paper we propose a solution to the multiple
equilibria problem based on the idea of partial coordina-
tion. The coordinator module is added to the navigation
system and it becomes active when multiple equilibria are
reported by moving robot agents. For the coordinator we
will also interchangeably use the term arbiter. Apart from
choosing the best one from among several equilibria, the
arbiter is also to tackle the situation when no equilibria
exist.

The partially centralized design allows for efficient
and collision free control for robot motion. We present a
series of simulations that prove the effectiveness of our ap-
proach. We investigate the influence of primary algorithm
parameters on two differential drive vehicles.

2. Problem Formulation

The analyzed problem involves planning and controlling
robot motions from their initial locations to their target lo-
cations while avoiding environmental obstacles. From the
perspective of fast reactive control, the problem reduces to
finding at each time moment (with the resolution of∆t) a
set of controls that, when applied to robots, push them to-
wards their goal locations. We consider the control ofN
mobile robots sharing the same workspaceW with M
moving obstacles inside. We make the following assump-
tions:

• The position and orientation vectorp of each robot
is known at each time momenttn, n = 1, 2, . . . .

• The coordinates of goal locations are known.

• The obstacles can be described by convex polygons,
and the position of the center of mass of each obsta-
cle is known.

• The robot actions (controls) are synchronized with
the incoming sensory information.

Denote the state of thei-th robot by

pi = [xi yi Θi] , i = 1, 2, . . . , N. (1)

The target location of the robot is denoted by

gi = [xg,i yg,i] , i = 1, 2, . . . , N. (2)

It is assumed that the sensory system supplies information
about the location and heading of each team mate. As
for the obstacles, it can supply only the location of each
obstacle. Therefore, the heading of each obstacle must be
extracted from information about the current and previous
positions. Denote the state of thei-th obstacle by

bj =
[
xj yj Θ̂j

]
, j = 1, 2, . . . ,M. (3)

The heading of the obstaclêΘj is estimated as follows:

Θ̂j = arctan
(

xj(tn)− xj(tn−1)
yj(tn)− yj(tn−1)

)
, (4)

where tn and tn−1 denote the current and previous time
moments, respectively. In what follows, we shall consider
the control of models of small, disk-shaped laboratory
mobile robots. The diameter of their driving platforms
is about 5 cm. The robots are differential drive vehicles
which move by changing the velocities of the right and
left wheels. For the purpose of our method, we define the
control of thei-th robot as

ui = [ωi vi], i = 1, 2, . . . , N, (5)

whereωi and vi are respectively angular and linear ve-
locities of the i-th robot, related to the velocities of the
left and the right wheel by the formula[

vL

vR

]
=

[
1 L/2
1 −L/2

][
v

ω

]
. (6)

HerevL andvR are linear velocities of the left and the
right wheel, respectively, andL is the distance between
the wheels.

With the above notation, the problem can be formu-
lated as follows: At each discrete time moment (t = n∆t
for n = 0, 1, 2, . . . ), for each robot find controlui, i =
1, 2, . . . , N , which, applied to it, will lead to both a col-
lision free and a goal oriented movement. We denote the
set of controls generated at the moment of timetn by

S(tn) = {u10, u20, . . . , uN0}. (7)

3. Collision Free Control and Game Theory

The problem of the coordination of multiple robots that
share a common workspace can be perceived as a conflict
situation between individual agents-robots. Each robot
has its individual independent goal related to a point-to-
point navigational task. The fact that robots share the
workspace implies the necessity to analyze interactions
between the robots. The existence of mobile obstacles
inside the workspace makes the problem more complex.
A convenient framework for modeling and solving prob-
lems of the conflict is game theory. In order to properly
apply game theory to our problem, several issues have to
be taken into account. These are listed below:

1. First, the interests (goals) of individual agents are not
necessarily antagonistic. In other words, not every
set of controls applied to the robots leads to a colli-
sion. Therefore, the game associated with robot con-
trol is a non-zero sum one.
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2. Although the overall process of control is in prin-
ciple dynamic, we understand it as a sequence of
static problems. This assumption makes it numeri-
cally tractable.

3. In order to allow using algorithms for solving games
for equilibria, we assume finite sets of discrete levels
for possible control actions.

4. Problem Modeling

In this section we design a model of the decision mak-
ing process in two stages: First, we have to obtain finite
element sets of decisions which could be adopted by par-
ticular agents. Next, loss functions associated with each
of the agents are defined.

4.1. Discretization of the Control Space

Discretize first both the angular and linear velocities:

Ωi =
[
ω1

i , ω2
i , . . . ωKi

i

]
, i = 1, 2, . . . , N, (8)

Vi =
[
v1

i , v2
i , . . . , vLi

i

]
, i = 1, 2, . . . , N, (9)

where Ki and Li are respectively the numbers of
distcretization levels for the angular and linear velocities
of the i-th robot.

The set of possible controls of thei-th robot is de-
fined as the Cartesian product

Ui = Ωi × Vi,

Ui = (ωi, vi) : ωi ∈ Ωi ∩ vi ∈ Vi. (10)

It is easy to notice that this method of discretization leads
to large decision (control) sets and, in consequence, to a
large problem size. Therefore, we propose a method based
on using only one control variable, i.e., the angular veloc-
ity. We have

Ui =
{
(ωi, vi) : ωi ∈ Ωi ∩ vi = f(dT , dmin)

}
, (11)

where f(dT , dmin) is a heuristic function used for deter-
mining a proper value of the linear velocity of the robot.
Thus the size of the decision setUi is equal toKi. In
order to define the formula of the heuristic function, we
applied the following rules:
• The i-th robot moves at the velocityvi,opt when its

distance to the nearest objectLmin,i is greater than
some tresholdLR0.

• The velocity is decreased when the nearest object is
closer thanLR0.

• In proximity to the target the velocity is successively
decreased to allow the so-called “soft landing” on the
target location.

The heuristics above is encapsulated in the following ex-
pression:

vi =
1
2
vi,optwT (1 + wR) , (12)

wherewT and wR are respectively the coefficients of the
influence of the target point and a nearest object

wT =
1

1 + e−α(LT,i−LT0 )
,

wR =
1

1 + e−β(Lmin,i−LR0 )
, (13)

with LT,i meaning the distance of thei-th robot to the
target point. The coefficientsα and β in (13) determine
the sensitivity of the weighting factors in the neighbor-
hood of the threshold distancesL0 andLR0, respectively.

4.2. Loss Function

In this section we model loss functions associated with
each of the agents. The loss of an agent is influenced by
decisions made by other team mates and locations of ob-
stacles. Therefore we write the loss function the ofi-th
robot as

Ii (d1, d2, . . . , dN )

= fi (d1, d2, . . . , dN , b1, b2, . . . bM ) (14)

for i = 1, 2, . . . , N , wheredi ∈ {1, 2, . . . ,Ki, } denotes
the decision of thei-th agent that consists in selecting the
di-th element from the decision setUi defined by (11). To
construct the function, we make use of the potential field
method (Koren and Borenstein, 1991; Ge and Cui, 2002).
We fill the robot’s workspace with an artificial potential
field in which the robot is attracted to its target position
and repulsed away from the obstacles. We compute the
attractive and repulsive forces for thei-th robot as func-
tions of decisions adopted by other robots. The attractive
force applied to thei-th robot depends on a relative dis-
tance between the robot and its target. The value of the
attractive force that would be applied to the robot as a re-
sult of its actiondi is given by

|Fa,i(di)| = ka
1

L̂2
g,i (di)

. (15)

The direction of the force is interpreted in Fig. 1. The
coefficientka in the above equation constitutes a gain that
adjusts the influence of the attractive component to the
resultant virtual force affecting the robot. In (15),̂Lg,i

is the predicted distance between thei-th robot and its
target location. It is computed as follows:

L̂g,i(di) =

√(
xg,i − x̂di

i

)2

+
(
yg,i − ŷdi

i

)2

, (16)
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where

x̂di
i = xi + v

tn−1
i To cos(Θi + ω

tn−1
i To)

+vi(∆t− To) cos(Θi + ω
tn−1
i To

+ωdi
i (∆t− To)),

ŷdi
i = xi + v

tn−1
i To sin(Θi + ω

tn−1
i To)

+vi(∆t− To) sin(Θi + ω
tn−1
i To

+ωdi
i (∆t− To)),

(17)

where ωdi
i denotes the angular velocity applied to the

robot as a result of the decisiondi and vi is the linear
velocity of the robot set according to (12). We assume
that there exists a delay in the system between the moment
of receiving the sensory information and that of making a
decision. Therefore we introduce to the model the time
of delay T0 which is the worst-case estimate of the time
of computing and sending the information. The quantities
ω

tn−1
i andv

tn−1
i are previous controls applied to thei-th

robot that still have an effect on the robot by the timeT0.

The repulsive force is a vector sum of forces gener-
ated by other team mates and obstacles:

Fr,i(d1, . . . , dN )

=
N∑

j=1
j 6=i

Fr,i,j (di, dj) +
M∑

j=1

Fb,i,j(di) (18)

for i = 1, 2, . . . , N , where Fr,i,j(di, dj) is a predicted
repulsive force generated by thej-th robot that affects the
i-th robot. Similarly, the force generated by thej-th ob-
stacle applied to thei-th robot is denoted byFb,i,j(di).
The forceFr,i,j(di, dj) is computed as follows:

|Fr,i,j(di, dj)| =


kr

(
1

L̂ij(di, dj)
− 1

L0

)2

if L̂ij(di, dj) < L0,

0 otherwise,

(19)

where L0 is a limit distance of the influence of virtual
forces andL̂i,j (di, dj) is the predicted distance between
the i-th and j-th robots after applying by them their ac-
tions di and dj . We compute it from

L̂i,j(di, dj) =

√(
x̂di

i − x̂
dj

j

)2

+
(
ŷdi

i − ŷ
dj

j

)2

.

(20)

The robot locations(x̂di
i , ŷdi

i ) and (x̂dj

j , ŷ
dj

j ) are de-
termined from (17). Similarly, we determine the force

Fb,i,j(di):

|Fb,i,j(di)| =


krb

(
1

L̂ij(di)
− 1

L0

)2

if L̂ij(di) < L0,

0 otherwise,
(21)

where L̂i,j(di) is the predicted distance of thei-th robot
from the j-th obstacle after time∆t:

L̂ij(di) =

√(
x̂di

i − x̂o,j

)2

+
(
ŷdi

i − ŷo.j

)2

. (22)

The estimated location of thej-th obstacle is deter-
mined from the current statebj and the previous state

b
tn−1
j of the obstacle:

x̂b,j = 2xb,j − x
tn−1
b,j ,

ŷb,j = 2yb,j − y
tn−1
b,j .

(23)

The coefficientskr in (19) andkrb in (21) are gains that
adjust the influence of repulsive components of the resul-
tant force applied to the robot. Finally, the force that in-
fluences thei-th robot is the vector sum of attractive and
repulsive forces:

Fi = Fa,i + Fr,i. (24)

The geometrical interpretation of the forces that influence
the robot is presented in Fig. 1.

Fig. 1. Geometrical interpretation of virtual
forces applied to a robot.

The virtual force applied to the robot moving in a
given direction can be considered as a measure of safety.
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Fig. 2. Interpretation of the loss function.

The greater the force applied along a given direction,
the greater the safety of the movement in this direction.
Therefore, we employ the projection of the force vector
(Fig. 2) onto the direction of the predicted movement of
the robot to define the cost function of thei-th robot.
Since we want to minimize the cost function, we deter-
mine it as follows:

Ii (d1, di, . . . , dN ) = − |Fi| cos
(
arg (Fi)− Θ̂di

i

)
,

(25)
where

Θ̂di
i = Θi + ω

tn−1
i T0 + ωdi

i (∆t− T0) . (26)

The potential field method in the form presented
above has one serious drawback–it is prone to local min-
ima. In such cases the value of the resultant virtual force
is equal to zero and the solution is not determined. In our
problem virtual forces are generated by moving objects
and they are functions of possible actions of individual
robotic agents. That makes the possibility that a given
robot is trapped in a local minimum very small, so it is
neglected in our deliberations.

5. Problem Solution

The key issue in the presented problem is to find, at each
time moment t = n∆t, n = 1, 2, . . . , a set of deci-
sions (7) which, when applied to robots, lead to a collision
free, goal oriented navigation. Since we assume that the
robots cannot communicate with one another within the
period of time∆t, it seems reasonable to pose the prob-
lem as a non-cooperative one. The well-known concept

of the solution is the Nash equilibrium (Basar and Olsder,
1982) defined by the following set of inequalities:

I1 (d10, d20, . . . , dN0) ≤ I1 (d1, d20, . . . , dN0) ,

I2 (d10, d20, . . . , dN0) ≤ I2 (d10, d2, . . . , dN0) ,

... (27)

IN (d10, d20, . . . , dN0) ≤ IN (d10, d20, . . . , dN ) .

5.1. Partial Coordination

A problem occurs when (a) there are multiple Nash equi-
libria, and (b) there is no Nash equilibrium point. Accord-
ing to the author’s experience coming from many simu-
lation studies, the situation (b) happens extremely rarely.
Navigation problems must be specially constructed in or-
der to encounter (b). Nevertheless, to make the control
system complete, one can provide a solution to (b) by us-
ing the so-calledmin–max (safety) strategy (Basar and
Olsder, 1982):

d10 = min
d1

max
d2,...,dN

I1 (d10, d2, . . . , dN ) ,

... (28)

dN0 = min
dN

max
d1,...,dN−1

IN (d1, d2, . . . , dN0) .

The case (a) occurs very often in practical problems
and we have to choose the most appropriate equilibrium.
In some cases we can use the theorem of equilibrium ad-
missibility (Basar and Olsder, 1982). However, this the-
orem needs the assumption about equilibria comparabil-
ity, which is rarely fulfilled in practice. In general, the
problem of selecting a proper equilibrium is very complex
(Maynard, 1982; Harsnyi, 1998; Masterson, 2000).

Here we propose to introduce an arbiter module
which aims at selecting the most proper of multiple so-
lutions. The block diagram of the system with the arbiter
module is presented in Fig. 3.

Decision-making 

process 

model 

Nash  
equilibrium 

Min-max 
  

Non-cooperative 
solution 

Selection criteria 
robot 1 

robot 2 

robot N 

Arbiter 

world 

Sensors 

Position 
S1 

S2 

S 

pi oj 
Ii 

u1 

u2 

uN 

Fig. 3. Control system diagram.

Based on the sensory information provided to the
system at successive time moments, the states of the
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robots and obstacles are extracted. Next, the decision-
making problem is modeled according to the rules pre-
sented in Section 4. The solution is computed based on
the Nash equilibrium (27) or themin–max concept (27).
The diagram of the algorithm of the arbitration process is
presented in Fig. 4.

SN=φ 

Y 

N 
Select SN 

Select SM 

S={Si} 
i=1,2, ...P 

P=1 

T 

{ }10 20 0, ,...,i i i
i NS d d d=

i=1 

( )
1,2,..
min ( )i

i P
i C S

=
=

10 20 0
1 21 2, , , ,..., ,

i i i
Nd d d

NNU v v vω ω ω� �� � � � � �= � �� � � � � �
	 
 	 
 	 
� �

SN,SM,C 

Fig. 4. Algorithm for the arbitration process.

The input data for the arbiter module are sets of solu-
tions SN computed according to (27) and solutionsSM

computed according to (28):

SN = {dn
i0}, SM = {dm

i0}, n = 1, 2, . . . , PN ,

m = 1, 2, . . . , PM , i = 1, 2, . . . N.

Additionally, the selection criterion is provided as a per-
formance indexC. If the set SN is not empty, then it
is selected as a preferable one(S = SN ). If there are
no Nash equilibria (the setSN is empty), the arbiter
switches tomin–max solutions S = SM . The next
step is to check if the solution is uniqe(P = PN or
P = PM = 1). If it is, the control of robots is performed
according to

U =
{(

ω
dn
10

1 , v1

)
,
(
ω

dn
20

2 , v2

)
, . . . ,

(
ω

dn
N0

N , vN

)}
,

(29)
where n = PN = 1 or n = m = PM = 1. Otherwise
(P ≤ 1), and the arbiter has to choose between multiple
solutions. We introduce additional selection criteria stated
as a performance indexC(Sn) whereSn = {dk

io}, i =
1, 2, . . . , N, k = 1, 2, . . . P, and Sn ⊂ S. The crite-
rion is the minimal total cost for all robots and a uniform
distribution of costs among the robots:

C (Sn) =
N∑

i=1

(
Ii (Sn) +

∣∣Ii (Sn)− Ī
∣∣),

Ī =
1
N

N∑
i=1

Ii (Sn).
(30)

On that basis the arbiter chooses a solutionS∗ = Sn that

minimizes the indexC(Sn):

S∗ = Sn = min
n=1,2,...,P

(C (Sn)) . (31)

Finally, the robot control is determined from (29).

The solution method presented in this section allows
us to generate a unique control of robots and provides
both collision free and goal oriented navigation of mul-
tiple robots. Unfortunately, the solution we obtain may
not be globally optimal. Morover, it is hard to prove its
optimality at all. This is caused by the fact that the solu-
tion is influenced by a number of parameters. Addition-
ally, there is no explicit optimization criterion stated and
the optimality of the solution can be considered in many
ways. On the other hand, the generated trajectories (sev-
eral of them are presented in the next section) are smooth
and collision free, and in this sense the solution can be
considered as satisfactory.

6. Simulation Studies

6.1. Influence of the Time of Delay

In this section we investigate the influence of including the
time of delay in the process of modeling on the resulting
trajectories. The first experiment shows the effect of mod-
eling without considering the time of delay (cf. Fig. 5(a)).
We assume that there exists a delay in the system which is
simulated and it can be expressed as

T true
0 =

1
2
T0 (1 + δt) , δt ∈ [0, 1] ,

where T0 denotes a maximal analysed time of the de-
lay in the system andδt is a normally distributed ran-
dom variable. The simulations were made for 5 values of
T0 = 0, 0.3∆t, 0.6∆t, 0.9∆t and ∆t = 0.1 [s].

We applied five-element decision setsU1 = U2 =
{(−225, vi), (−112.5, vi), (0, vi), (112.5, vi), (225, vi)},
where vi is determined in accordance with
(12). The preferable linear velocities are set as
v1,opt = v2,opt = 25 [cm/s].

The unmodeled delay has a great influence on the
system performance. If the delay time isT true

0 > 0.9∆t
versus the modeled timeT0 = 0, then the robots are not
able to reach their targets (Fig. 5(a)). If we introduce the
knowledge of the true delay (the worst-case estimation
of the time of delay) to the trajectory design, i.e., we set
T0 = T true

0 = 0.9∆t, the robots will reach their targets
(Fig. 5(b)). DecreasingT0 = T true

0 results in shorter and
smoother trajectories.
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Fig. 5. Comparison of simulation results made for
two robots in the case when T0 was not
modeled (a) and when it was (b).

6.2. Enlargement of Decision Sets

Now we examine the influence of the size of decision sets
on the control process. We check the system for up to 17
possible decisions. The rest of the parameters are identi-
cal to those of the previous section. Figure 6 presents the
comparison of the trajectories obtained with the use of 2,
5, 9 and 17-element decision sets.

The trajectories in Fig. 6 do not differ very much.
Therefore, in order to evaluate the quality of the obtained
trajectories, we use the following performance index:

Ji =
1
H

H∑
n=1

(ui(tn)− ui(tn−1))
2

for i = 1, 2, . . . , N , whereH is the simulation horizon,
and ui(tn) and ui(tn−1) denote successive controls ap-
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Fig. 6. Result of enlarging the size of decision sets.
Simulations were carried out for 3, 5, 9 and
17 possible decisions.

plied to thei-th robot. In Fig. 7(a) the dependence of the
Ji values on the number of possible robots decisions ob-
tained for Robot 1 is presented. Increasing the number of
decisions does not improve the control quality very much.
On the other hand, the computation time increases much
more than the indexJ decreases Fig. 7(b). Therefore, it
is possible to set the number of decisions to a reasonably
small value and obtain good control quality.

6.3. Experiments with Moving Obstacles

Now we want to show how the system works in the pres-
ence of moving obstacles and for a larger number of con-
trolled robots. Figures 8 and 9(a) present the execu-
tion of collision free navigation tasks for 3 and 5 robots,
respectively. In both cases two moving obstacles were
introduced, denoted byo1 and o2. The decision sets
U1, . . . , U5, as well as the rest of the parameters, are
the same as before. The velocities of the obstacles are
vo1 = vo2 = 20 [cm/s] and∆t = 0.2 [s]. In order to show
that the obtained trajectories are really collision free, the
time plot of the distance from the closest object was made
for each robot, cf. Fig. 9(b). We can see that the minimal
distance is not smaller than 13 cm which, in comparison
with the size of the simulated robots (r = 5 cm), provides
the safety of the trajectories.

7. Conclusion

In this paper a methodology based on non-cooperative
games in a normal form was used for motion planning
of a team of autonomous mobile robots that operate in a
dynamic environment. The idea of the artificial potential
field was applied to model the game between individual
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Fig. 7. Comparison of the control quality for Robot 1
defined by the performance indexJ1 (a) and
the computation time (b).
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Fig. 9. Collision free trajectories obtained in simulations
for 5 robots and 2 obstacles (a), and the evolution
of the distance from the nearest object (b).

agents. The solution of the game based on an equilibrium
concept was applied. The solution of the non-cooperative
problem might not be unique. Therefore, a method of de-
termining the unique solution that is further used to con-
trol a robot is needed. We proposed an approach based
on partial coordination. The arbiter module was included
to choose from among multiple solutions the one which
gives a “fair” (uniform) distribution of costs. The simula-
tions that were carried out prove the effectiveness of the
presented approach. Moreover, the time of computing the
solution is small enough to consider the method as a real-
time control one and there is ongoing research devoted to
the application of the elaborated approach to a laboratory
setup consisting of two mobile robots.
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