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A new algorithm for training feedforward multilayer neural networks is proposed. It is based on recursive least squares
procedures and U-D factorization, which is a well-known technique in filter theory. It will be shown that due to the U-D
factorization method, our algorithm requires fewer computations than the classical RLS applied to feedforward multilayer
neural network training.
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1. Introduction

Feedforward multilayer neural networks (FMNNs) are
widely used to solve various problems in system mod-
elling and identification, prediction, nonlinear signal pro-
cessing and pattern classification. In practice, the classi-
cal method for training FMNNs is the back-propagation,
its momentum version and some modifications (Abid,et
al., 2001; Chen, 1992; Joost and Schiffmann, 1998; Ko-
rbicz et al., 1994; Perantonis and Karras, 1995). Since
back-propagation may converge to local minima, in the
past decade several other methods have been proposed for
training FMNN’s. Conjugate gradient-based algorithms
(Bishop, 1995; Moller, 1993), second order-algorithms
(Ampazis and Perantonis, 2002; Bojarczak and Stodol-
ski, 1996; Lera and Pinzolas, 2002), recursive least-
squares methods (Azimi-Sadjadi and Liou, 1992; Bilski
and Rutkowski, 1998; 2003) and extended Kalman fil-
ter (EKF) techniques (Leunget al., 2001; Sumet al.,
1998; 1999; Zhang and Li, 1999) should be mentioned
here. Despite so many techniques, a further improvement
is highly desirable as regards learning accuracy, computa-
tional complexity, numerical stability and generalization
capability.

In this paper a new algorithm for training FMNNs
is proposed. It is based on recursive least squares-
procedures and U-D factorization, which is a well-known
technique in filter theory (Wellstead and Zarrop, 1991). It
will be shown that due to the U-D factorization method,
our algorithm requires fewer computations than the clas-
sical RLS (Rutkowski, 1994; Strobach, 1990) applied to
FMNN training. Moreover, it outperforms the classical

RLS in terms of the convergence rate. In the paper the
algorithm is derived for two different cases: the error is
determined in the linear part of the neurons (Error Trans-
ferred Back – ETB) and, as usual, in back-propagation
neural networks. Simulation results will be given to
demonstrate the efficiency and effectiveness of the pro-
posed learning algorithm. The paper is organized as fol-
lows: In Section 2 the terminology used in the paper is in-
troduced. In Section 3 the UD RLS algorithm for FMNNs
with a linear activation function is derived. In Section 4
the results are easily generalized to FMNNs with non-
linear activation functions. In Section 5 the performance
of the new learning algorithms is investigated on typical
benchmarks.

2. Terminology

In the sequel, the following terminology will be used:

L – the number of layers in the network,

Nk – the number of neurons in thek-th layer, k =
1, . . . , L,

N0 – the numbers of inputs of neural networks,

u = [u1, . . . , uN0 ]
T – the input signal vector of the neural

network,

y
(k)
i – the output signal of thei-th neuron,i = 1, . . . , Nk,

in the k-th layer, k = 1, . . . , L,

y
(k)
i (n) = f

(
s
(k)
i (n)

)
,

y(k) = [y(k)
1 , . . . , y

(k)
Nk

]T – the output signal vector in the
k-th layer, k = 1, . . . , L,
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x
(k)
i – the i-th input,i = 0, . . . , Nk−1, for the k-th layer,

k = 1, . . . , L, where

x
(k)
i =


ui

y
(k−1)
i

+1

for k = 1,

for k = 2, . . . , L,

for i = 0, k = 1, . . . , L,

x(k) = [x(k)
0 , . . . , x

(k)
Nk−1

]T – the input signal vector for
the k-th layer, k = 1, . . . , L,

w
(k)
ij (n) – the weight of thei-th neuron,i = 1, . . . , Nk,

of the k-th layer,k = 1, . . . , L, connecting this neu-
ron with thej-th input x

(k)
j , j = 0, . . . , Nk−1,

w
(k)
i = [w(k)

i0 , . . . , w
(k)
iNk−1

]T – the weight vector of the
i-th neuron,i = 1, . . . , Nk, in the k-th layer,k =
1, . . . , L,

W (k) = [w(k)
1 , . . . ,w

(k)
Nk

] – the weight matrix in thek-th
layer, k = 1, . . . , L,

s
(k)
i (n) =

∑Nk−1
j=0 w

(k)
ij (n) x

(k)
j (n) – the linear output of

the i-th neuron, i = 1, . . . , Nk, in the k-th layer,
k = 1, . . . , L,

s(k) = [s(k)
1 , . . . , s

(k)
Nk

]T – the linear output vector in the
k-th layer, k = 1, . . . , L,

d
(k)
i – the desired output of thei-th neuron, i =

1, . . . , Nk, in the k-th layer, k = 1, . . . , L,

d(k) = [d(k)
1 , . . . , d

(k)
Nk

]T – the desired output vector in the
layer k, k = 1, . . . , L,

b
(k)
i = f−1(d(k)

i ) – the desired linear summation output
of the i-th neuron,i = 1, . . . , Nk, in the k-th layer,
k = 1, . . . , L,

b(k) = [b(k)
1 , . . . , b

(k)
Nk

]T – the desired linear summation
output vector in layerk, k = 1, . . . , L,

ε
(k)
i (n) = d

(k)
i (n)− y

(k)
i (n) – the error of thei-th neu-

ron, i = 1, . . . , Nk, in the k-th layer,k = 1, . . . , L,

ε(k) = [ε(k)
1 , . . . , ε

(k)
Nk

]T – the error signal vector in the
k-th layer, k = 1, . . . , L,

e
(k)
i (n) = b

(k)
i (n)− f−1(y(k)

i (n)) – the error of the lin-
ear part of thei-th neuron, i = 1, . . . , Nk, in the
k-th layer, k = 1, . . . , L,

e(k) = [e(k)
1 , . . . , e

(k)
Nk

]T – the linear error vector in the
k-th layer, k = 1, . . . , L,

λ – the forgetting factor in the RLS algorithm,

µ – the learning coefficient of the back-propagation (BP)
algorithm,

α – the momentum coefficient of the momentum back-
propagation (MBP) algorithm,

δ – a positive constant.

In Fig. 1 a model of thei-th neuron in thek-th layer
is shown.
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Fig. 1. Model of thei-th neuron in thek-th layer.

3. UD RLS for Multilayer Networks with
Linear Activation Functions

In this section it is assumed that the activation function
has the following form:

f1 (s) = a s, a > 0. (1)

The minimization criterion for the multilayer network is

Q (n) =
n∑

t=1

λn−t
NL∑
j=1

ε
(L)
j

2
(t)

=
n∑

t=1

λn−t
NL∑
j=1

[
d
(L)
j (t)−ax(L)T

(t) w
(L)
j (n)

]2

. (2)

The parameterλ allows us to discard the oldest data (see,
e.g., Strobach, 1990). From this criterion, by solving nor-
mal equations, the conventional RLS algorithm (Bilski,
1995) is obtained:

ε
(k)
i (n) = d

(k)
i (n)− ax(k)T

(n) w
(k)
i (n− 1)

= d
(k)
i (n)− y

(k)
i (n) , (3)

g(k) (n) =
aP (k) (n− 1) x(k) (n)

λ + a2x(k)T (n) P (k) (n− 1) x(k) (n)
, (4)

P (k) (n) = λ−1
[
I − ag(k) (n) x(k)T

(n)
]

× P (k) (n− 1) , (5)

w
(k)
i (n) = w

(k)
i (n− 1) + g(k) (n) ε

(k)
i (n) . (6)

Now, the algorithm (3)–(6) can be modified by mak-
ing the assumption that the matrixP is factorized as
the product of upper triangular and diagonal matrices
(Strobach, 1990; Wellstead and Zarrop, 1991). For sim-
plicity, all transformations will be derived for a single net-
work layer, and therefore the layer index(k) is omitted.
The factorization is given as follows:

P (n) = U (n) D (n) UT (n) , (7)
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where

U (n) =



1 u01 (n) u02 (n) · · · u0N0 (n)
0 1 u12 (n) · · · u1N0 (n)

0 0 1
...

...
...

...
... uN0−1 N0 (n)

0 0 0 · · · 1


(8)

and

D (n) =


c0 0 · · · 0
0 c1 · · · 0
...

...
...

...

0 0 · · · cN0

 . (9)

U is a triangular matrix with zeros in bottom elements
and ones on the main diagonal, whereasD is a diagonal
matrix.

Defining

f = UT (n− 1) x (n) , (10)

h = D (n− 1) f , (11)

and denoting the denominator of (4) byβ, we have

β = λ + a2xT (n)P (n− 1)x(n)

= λ + a2xT (n)U(n− 1)D(n− 1)UT (n− 1)x(n)

= λ + a2fT D(n− 1)f = λ + a2fT h, (12)

and Eqns. (4) and (5) can be expressed as

g (n) = aP (n− 1) x (n) β−1

= aU (n− 1) D (n− 1) UT (n− 1) x (n) β−1

= aU (n− 1) D (n− 1) fβ−1

= aU (n− 1) hβ−1 (13)

and

P (n) = λ−1
[
I−a2β−1U (n−1) hxT (n)

]
P (n−1)

= λ−1
[
P (n− 1)

− a2β−1U (n− 1) hxT (n)P (n− 1)
]

= λ−1
[
U (n− 1) D (n− 1) UT (n− 1)

− a2β−1U (n− 1) hxT (n) U (n− 1)

×D (n− 1) UT (n− 1)
]

= λ−1U (n− 1)
[
D (n− 1)

− a2β−1hfT D (n− 1)
]
UT (n− 1)

= λ−1U (n− 1)
[
D (n− 1)− a2β−1hhT

]
×UT (n− 1)

= U (n) D (n) UT (n) . (14)

Hence, through the substitution

ŪD̄ŪT = D (n− 1)− a2β−1hhT , (15)

the following formulae are obtained:

U(n) = U(n− 1)Ū , (16)

D (n) = D̄λ−1, (17)

where

Ū (n) =
[

ū0 ū1 · · · ūN0

]

=



1 ū01 (n) ū02 (n) · · · ū0N0 (n)
0 1 ū12 (n) · · · ū1N0 (n)

0 0 1
...

...
...

...
... ūN0−1N0 (n)

0 0 0 · · · 1


(18)

and

D̄ (n) =


c̄0 0 · · · 0
0 c̄1 · · · 0
...

...
...

...

0 0 · · · c̄N0

 . (19)

The new algorithm is obtained by solving (15)–(17).
Equation (15) can be written in the form

N0∑
i=0

c̄iūiū
T
i =

N0∑
i=0

cieie
T
i − a2β−1hhT , (20)

where ci = ci (n− 1) and ei is the i-th versor. Intro-
ducing the symbols

βN0 = β, βm = λ + a2
m∑

i=0

fihi, (21)

vN0 = h, vm−1 =



vm0

...

vmm−1

0
...

0


, (22)
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Eqn. (20) can be transformed to the form

N0∑
i=0

c̄iūiū
T
i −

N0∑
i=0

cieie
T
i + a2β−1vN0v

T
N0

= 0, (23)

N0−1∑
i=0

c̄iūiū
T
i −

N0−1∑
i=0

cieie
T
i + c̄N0ūN0ū

T
N0

−cN0eN0e
T
N0

+ a2β−1
N0

vN0v
T
N0

= 0, (24)

N0−1∑
i=0

ciuiu
T
i −

N0−1∑
i=0

cieie
T
i + MN0 = 0. (25)

It can be easily noticed that matrices under the summation
sign have zeros in theN0-th row and in theN0-th column.
So, in order to meet (25), an identical situation for the
following matrix MN0 must occur:

MN0 = c̄N0ūN0ū
T
N0
−cN0eN0e

T
N0

+a2β−1
N0

vN0v
T
N0

.
(26)

It can be obtained by setting

ūN0N0 = 1, (27)

c̄N0 = cN0 − a2β−1
N0

v2
N0N0

, (28)

c̄N0 ūiN0 ūN0N0 = −a2β−1
N0

vN0N0vN0i. (29)

From (27) and (29) we thus get

ūiN0 =
−a2vN0N0vN0i

βN0 c̄N0

. (30)

By substituting (27), (28) and (30) into (26), the matrix
MN0 takes the form

MN0 = c̄N0

a4v2
N0N0

c̄2
N0

β2
N0

vN0−1v
T
N0−1+a2β−1

N0
vN0−1v

T
N0−1

=
[
a4v2

N0N0

c̄N0β
2
N0

+
a2

βN0

]
vN0−1v

T
N0−1 (31)

or, after transformations (cf. (21), (22) and (28)),

a4v2
N0N0

c̄N0β
2
N0

+
a2

βN0

= a2
a2v2

N0N0
+ cN0βN0 − a2β−1

N0
v2

N0N0
βN0

c̄N0β
2
N0

= a2 cN0βN0

c̄N0β
2
N0

=a2 cN0

cN0βN0 − a2β−1
N0

v2
N0N0

βN0

= a2 1
βN0 − a2

cN0
v2

N0N0

= a2 1
βN0−1

, (32)

the matrixMN0 can be expressed in the simplified form

MN0 =
a2

βN0−1
vN0−1v

T
N0−1, (33)

and (23) can be written as

N0−1∑
i=1

c̄iūiū
T
i −

N0−1∑
i=1

cieie
T
i +a2β−1

N0−1vN0−1v
T
N0−1 =0.

(34)
Observe that Eqns. (23) and (32) differ from each other
only by the summation range and indices. Repeating the
same arguments for indices changing fromN0 − 1 to 1,
as those in the transformations (23)–(34), it is possible to
calculate all the values ofci and uij .

Equation (30) is transformed using (21), (22) and
(28) as follows:

ūiN0 =
−a2vN0N0vN0i

βN0 c̄N0

=
−a2vN0N0vN0i

βN0

(
cN0 − a2

βN0
v2

N0N0

)
=

−a2vN0N0vN0i

cN0

(
βN0 − a2

cN0
v2

N0N0

)
=
−a2vN0N0vN0i

cN0βN0−1
. (35)

Substituting

µN0 =
−a2vN0N0

cN0βN0−1
=
−a2fN0

βN0−1
, (36)

a simpler form,

ūiN0 = µN0vN0i, (37)

is obtained. The values of the matrixD are calculated as
follows (cf. (21), (22) and (28)):

ci (n) = c̄iλ
−1 =

[
ci −

a2v2
ii

βi

]
λ−1

= ci
1
βi

[
βi −

a2v2
ii

ci

]
λ−1 = ci

βi−1

βiλ
. (38)

The numerator of (4) or (13) takes the following
form:

k (n) = aU (n− 1) h = aU (n− 1) vN0 . (39)

Hence

ki =
N0∑

m=i

uim (n− 1) vN0m

= vN0i +
N0∑

m=i+1

uim (n− 1) vN0m

=
N0−1∑
m=i

uim (n− 1) vN0m + uiN0 (n− 1) vN0N0 (40)
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or, in a recurrent form,

ki,new = ki,old + uiN0 (n− 1) vN0N0 . (41)

The following is calculated from (16):

uij (n) =
j∑

m=i

uim (n− 1) ūmj

= uij (n− 1) +
j−1∑
m=i

uim (n− 1) µjvjm

= uij (n− 1) + µj

j−1∑
m=i

uim (n− 1) vjm

= uij (n− 1) + µjki. (42)

All the transformations that have been carried out
lead to a new UD RLS algorithm for a single layer neu-
ral network. For a multilayer neural network, the learn-
ing algorithm differs only by the index(k), which refers
to the number of thek-th layer. Hence, by analogy, the
corresponding UD RLS algorithm for a multilayer neural
network can be written. First, errors and required values
are calculated for all neurons in the network by using the
backpropagation method. Next, all the weights for sub-
sequent layers are updated using the algorithm (43)–(54).
We have

ε
(k)
i (n) = d

(k)
i (n)− ax(k)T

(n) w
(k)
i (n− 1)

= d
(k)
i (n)− y

(k)
i (n) , (43)

f = U (k)T
(n− 1) x(k) (n) , (44)

h = D(k) (n− 1) f , (45)

β−1 = λ. (46)

For j from 0 to Nk−1 we set

βj = βj−1 + a2fjhj , (47)

c
(k)
j (n) = c

(k)
j (n− 1)

βj−1

βjλ
, (48)

kj = hj , (49)

µj =
−a2fj

βj−1
. (50)

For m from 0 to j − 1(j > 0) we write

u
(k)
mj (n) = u

(k)
mj (n− 1) + µjkm, (51)

km = km + u
(k)
mj (n− 1) kj . (52)

Finally,

g(k) (n) =

[
k0, . . . , kNk−1

]T

βNk−1

, (53)

w
(k)
i (n) = w

(k)
i (n− 1) + g(k) (n) ε

(k)
i (n) . (54)

The initial values of matrices are set as

D(k) (0) = δI, δ > 0,

U (k) (0) = I,
(55)

where δ is a positive constant. The initial values of
weightsw(k)

i (n) are chosen randomly.

4. UD RLS for Multilayer Networks with
Non-Linear Activation Functions

In this section the results of Section 3 are generalized to
the case of non-linear activation functions. The UD RLS
algorithms are derived with the assumption that the errors
are determined in the linear part of the neurons (the al-
gorithm will be called ETB UD RLS, cf. Section 4.1)
and, as usually, in the back-propagation method (cf. Sec-
tion 4.2). A similar algorithm, based on UD factorization
and Kalman filters, was studied in (Zhang and Li, 1999).

4.1. UD RLS with the Error Transferred Back (ETB)
to the Linear Part of the Neuron

For any invertible activation function

yi (n) = f
(
si (n)

)
, (56)

the desired output signal can be transferred back to the
linear part of a neuron and then denoted by

bi (n) = f−1
(
di (n)

)
. (57)

In this case, the minimization criterion for the multilayer
network takes the form

Q (n) =
n∑

t=1

λn−t
NL∑
j=1

e
(L)
j

2
(t)

=
n∑

t=1

λn−t

×
NL∑
j=1

[
b
(L)
j (t)− x(L)T

(t) w
(L)
j (n)

]2

. (58)

The errors of the linear part are determined by

e(k)
p (t) =

Nk+1∑
j=1

w
(k+1)
jp (n)

∂y
(k)
p (t)

∂s
(k)
p (t)

e
(k+1)
j (t) . (59)
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Finally, the ETB UD RLS method is obtained, as ex-
pressed by Eqns. (60) – (71). We compute

ε
(k)
i (n) = b

(k)
i (n)− x(k)T

(n)w
(k)
i (n− 1)

= b
(k)
i (n)− s

(k)
i (n) , (60)

f = U (k)T
(n− 1) x(k) (n) , (61)

h = D(k) (n− 1) f , (62)

β−1 = λ. (63)

For j from 0 to Nk−1 we set

βj = βj−1 + fjhj , (64)

c
(k)
j (n) = c

(k)
j (n− 1)

βj−1

βjλ
, (65)

kj = hj , (66)

µj =
−fj

βj−1
. (67)

For m from 0 to j − 1 (j > 0) we write

u
(k)
mj (n) = u

(k)
mj (n−1) + µjkm, (68)

km = km + u
(k)
mj (n−1) kj . (69)

Finally,

g(k) (n) =

[
k0, . . . , kNk−1

]T

βNk−1

, (70)

w
(k)
i (n) = w

(k)
i (n− 1) + g(k) (n) ε

(k)
i (n) . (71)

The initial values are given by (55).

4.2. UD RLS with the Approximation
of the Activation Function

For any differentiable activation function

yi (n) = f
(
si (n)

)
(72)

and the minimization criterion

Q (n) =
n∑

t=1

λn−j
NL∑
j=1

ε
(L)
j

2
(t)

=
n∑

t=1

λn−t
NL∑
j=1

[
d
(L)
j (t)

− f
(
x(L)T

(t) w
(L)
j (n)

) ]2

, (73)

the conventional RLS algorithm can be modified as previ-
ously, leading to the UD RLS method. We start by setting

ε
(k)
i (n) = d

(k)
i (n)− y

(k)
i (n) , (74)

f
(k)
i = U

(k)
i

T
(n− 1) x(k) (n) , (75)

h
(k)
i = D

(k)
i (n− 1) f

(k)
i , (76)

β
(k)
i −1 = λ. (77)

For j = 0, . . ., Nk−1, we compute

β
(k)
i,j = β

(k)
i,j−1 + f ′

2
(
s
(k)
i (n)

)
f

(k)
i,j h

(k)
i,j , (78)

c
(k)
i,j (n) = c

(k)
i,j (n− 1)

β
(k)
i,j−1

β
(k)
i,j λ

, (79)

k
(k)
i,j = h

(k)
i,j , (80)

µ
(k)
i,j = −f ′2

(
s
(k)
i (n)

) f
(k)
i,j

β
(k)
i,j−1

. (81)

For m = 0, . . . ,j − 1 (j > 0), we set

u
(k)
i,mj (n) = u

(k)
i,mj (n−1) + µ

(k)
i,j k

(k)
i,m, (82)

k
(k)
i,m = k

(k)
i,m + u

(k)
i,mj (n−1) k

(k)
i,j . (83)

Finally,

g
(k)
i (n) =

[
k

(k)
i,0 , . . . , k

(k)
i,Nk−1

]T

βiNk−1

, (84)

w
(k)
i (n) = w

(k)
i (n− 1) + g

(k)
i (n) ε

(k)
i (n) . (85)

The initial values are given by (55).

5. Performance Evaluations

The performance of RLS algorithms was tested on two
typical benchmarks. In all simulations the learning algo-
rithms run 100 times. The results are depicted in tables
with entries showing both the average number of epochs
required to meet a stopping criterion and the percentage
of successful runs. In all these cases the best results are
presented together with the corresponding parameters. In
the case of unsuccessful runs, nothing is shown. In the
tables, as was explained in Section 2, the following nota-
tion is used: λ – forgetting factor in the RLS algorithm,
δ – initialization constant,µ – learning coefficient of the
back-propagation (BP) algorithm,α – momentum coef-
ficient of the momentum back-propagation (MBP) algo-
rithm. The RLS and UD-RLS algorithms were compared
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Table 1. Numerical results, part 1.

Structure 10–4–10 10–5–10 10–6–10

Algorithm

BP 591.79 µ = 0.05 373.3 µ = 0.04 235.02 µ = 0.06

96 100 100

MBP 570.86 µ = 0.03 263.95 µ = 0.01 193.88 µ = 0.01

98 α = 0.35 100 α = 0.85 100 α = 0.85

RLS 323.1 λ = 0.997 223.51 λ = 0.995 177.92 λ = 0.994

93 δ = 10 85 δ = 1 83 δ = 1

UD-RLS 237.82 λ = 0.9992 108.94 λ = 0.9997 149.38 λ = 0.9997

97 δ = 1 100 δ = 0.45 98 δ = 1

Table 2. Numerical results, part 2.

Structure 221 241 261

Algorithm

BP
— —

3513.81 µ = 0.02 181.73 µ = 0.1

31 100

MBP
— —

906.29 µ = 0.15 161.31 µ = 0.1

95 α = 0.25 100 α = 0.25

ETB RLS
— —

367.01 α = 0.97 485.65 α = 0.98

96 δ = 1000 81 δ = 1000

ETB UD-RLS 196.2 α = 0.95 157.19 α = 0.92 164.41 α = 0.95

93 δ = 100 100 δ = 100 100 δ = 1000

Table 3. Numerical results, part 3.

Structure 2221 2441 2661

Algorithm

BP 3644.2 µ = 0.02 272.62 µ = 0.152 146.96 µ = 0.15

10 100 100

MBP 3487.3 µ = 0.01 245.05 µ = 0.09 139.4 µ = 0.1

23 α = 0.25 100 α = 0.55 100 α = 0.35

ETB RLS 198.75 λ = 0.92 212.68 λ = 0.99
— —

8 δ = 100 84 δ = 100

ETB UD-RLS 297.45 δ = 0.97 148.19 λ = 0.995 81.75 λ = 0.99

67 δ = 100 99 δ = 10 100 δ = 10

with the backpropagation (BP) and momentum backprop-
agation (MBP) algorithms.

In the first experiment, a multilayer neural network
was trained to function as a 10–to–10 encoder (see, e.g.,
Karayiannis and Venetsanopoulos, 1993). This problem
was considered in other papers as a benchmark. The 10–
to–10 encoder is implemented by a neural network with
10 inputs and 10 output units trained to map 10 input pat-
terns into the output. In this case 10–4–10, 10–5–10 and
10–6–10 structures with hyperbolic tangent transfer func-
tions were investigated. The results are depicted in Ta-
ble 1. It is easily seen that the performance improves with

an increase in the number of neurons in the hidden layer
and the best results are obtained by the UD-RLS algorithm
followed by the RLS algorithm.

In the second experiment, the nonlinear function

f (x, y) =
(
1 + x−2 + y−1.5

)2

was approximated. By sampling the input rangex, y ∈
[1, 5], 50 input-output patterns were obtained. The re-
sults for the 2–2–1, 2–4–1, 2–6–1 and 2–2–2–1, 2–4–4–1,
2–6–6–1 architectures are shown in Tables 2 and 3, re-
spectively. From these tables it follows that all the algo-
rithms perform better for structures with two hidden lay-
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ers. Moreover, the performance improves with an increase
in the number of neurons in hidden layers. Note that some
simulations were unsuccessful and the best performance
was obtained for the ETB UD-RLS algorithm.

6. Conclusions

The UD RLS algorithm requires a lower number of iter-
ations than the traditional back-propagation one and than
the RLS method applied to FMNN training. Moreover, the
presented algorithms are computationally more efficient
than the classical RLS method. It would be interesting to
compare the computational load required to run learning
algorithms from the RLS family. The appropriate results
are depicted in Tables 4 and 5 for the RLS, and UD RLS
algorithms, respectively.

Table 4. Computational load of the RLS algorithm.

RLS

Linear 2x3 + 10x2 + 16x + 8 + (2x + 2)y

Nonlinear ETB 2x3 + 10x2 + 16x + 8 + (2x + 2)y

Nonlinear (2x3 + 10x3 + 18x + 10)y

Table 5. Computational load of the UD RLS algorithm.

UD RLS

Linear 3x2 + 13x + 9 + (2x + 2)y

Nonlinear ETB 3x2 + 13x + 9 + (2x + 2)y

Nonlinear (3x2 + 15x + 11)y

For simplicity, the results for one layer in a multi-
layer network are presented. In Tables 4 and 5,x and y
denote the numbers of inputs and neurons, respectively. It
can be easily seen that the computational load (the num-
ber of operations, i.e., multiplications, additions and func-
tion value calculations) is smallest for UD RLS algorithms
and largest for RLS algorithms. Moreover, nonlinear ETB
neural networks require the same number of operations as
linear neural networks. The computational burden is sig-
nificantly bigger for nonlinear neural networks. In future
research it would be interesting to determine the structure
and initial weights of the neural network by a combination
of UD RLS learning procedures with genetic algorithms
(Kitano, 1994; Yao, 1999).
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