
Int. J. Appl. Math. Comput. Sci., 2005, Vol. 15, No. 4, 431–446

OBSERVER DESIGN FOR SYSTEMS WITH UNKNOWN INPUTS

STEFEN HUI∗, STANISŁAW H. ŻAK∗∗
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Design procedures are proposed for two different classes of observers for systems with unknown inputs. In the first approach,
the state of the observed system is decomposed into known and unknown components. The unknown component is a
projection, not necessarily orthogonal, of the whole state along the subspace in which the available state component resides.
Then, a dynamical system to estimate the unknown component is constructed. Combining the output of the dynamical
system, which estimates the unknown state component, with the available state information results in an observer that
estimates the whole state. It is shown that some previously proposed observer architectures can be obtained using the
projection operator approach presented in this paper. The second approach combines sliding modes and the second method
of Lyapunov resulting in a nonlinear observer. The nonlinear component of the sliding mode observer forces the observation
error into the sliding mode along a manifold in the observation error space. Design algorithms are given for both types of
observers.
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1. Introduction

Observers use the plant input and output signals to gen-
erate an estimate of the plant’s state, which is then em-
ployed to close the control loop. Observers are utilized
to augment or replace sensors in a control system. The
observer was first proposed and developed by Luenberger
in the early sixties of the last century (Luenberger, 1966;
1971; 1979). Since the early developments, observers for
plants with both known and unknown inputs have been
developed resulting in the so-called unknown input ob-
server (UIO) architectures, such as, for example, those
in (Bhattacharyya, 1978; Chen and Patton, 1999; Chen
et al., 1996; Corless and Tu, 1998; Darouach et al.,
1994; Hostetter and Meditch, 1973; Hou and Müller,
1992; Hou et al., 1999; Hui and Żak, 1993; 2005; Kudva
et al., 1980; Kurek, 1983; Krzemiński and Kaczorek,
2004; Sundareswaran et al., 1977; Wang et al., 1975; Yang
and Wilde, 1988). More recently, observer architectures
utilizing the concept of sliding modes were proposed for
uncertain systems, see, for example, (Edwards and Spur-
geon, 1998; Ha et al., 2003; Hui and Żak, 1990; Koshk-
ouei and Zinober, 2004; Utkin et al., 1999; Walcott and
Żak, 1987; 1988; Walcott et al., 1987; Żak and Walcott,

1990; Żak and Hui, 1993; Żak, 2003; Żak et al., 1993).
Other methods of observer design for linear systems de-
veloped up to 1983 are reported by O’Reilly in (1983).

Observers for systems with unknown inputs play an
essential role in robust model-based fault detection (Chen
and Patton, 1999; Edwards et al., 2000; Edwards and
Spurgeon, 1998; Jiang et al., 2004; Saif and Xiong, 2003).
The basic idea behind the use of observers for fault detec-
tion is to form residuals from the difference between the
actual system outputs and the estimated outputs using an
observer. Once a fault occurs, the residuals are expected
to react by becoming greater than a prespecified thresh-
old. When the system under consideration is subject to
unknown disturbances or unknown inputs, their effect has
to be decoupled from the residuals to avoid false alarms.

In this paper, we present design procedures for full-
and reduced-order observers for systems with unknown
inputs. The unknown input can be a combination of un-
measurable or unmeasured disturbances, unknown control
action, or unmodeled system dynamics. The first design
method uses a projection operator approach to the state
estimation where the state of the system, whose state is
to be estimated, is decomposed into known and unknown
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components. The unknown component is, in general, a
skew projection, that is, not necessarily orthogonal, of the
whole state along the subspace in which the available state
component resides. We then construct a dynamical system
to estimate the unknown component. Finally, we com-
bine the output of the dynamical system, which estimates
the unknown state component, with the available state in-
formation to obtain the observer that estimates the whole
state. In the second design method, we employ a sliding
mode approach combined with the second method of Lya-
punov. We include design algorithms and illustrate the
results with numerical examples.

2. Modeling of Systems with Unknown
Inputs

The class of dynamical systems that we consider is mod-
eled by

ẋ = Ax + Bu, (1)

y = Cx, (2)

where A ∈ R
n×n, the input matrix B ∈ R

n×m and the
output matrix C ∈ Rp×n. We assume that the model
parameters (A, B, C) are known. We further assume
that some or all of the inputs are unknown, and that the
first m1 components of u are known and the remaining
m2 = m − m1 inputs are unknown. We partition the in-
put matrix B corresponding to the known and unknown
inputs as

B =
[

B1 B2

]
,

where B1 ∈ Rn×m1 and B2 ∈ Rn×m2 . Let

u =

[
u1

u2

]
.

Then, the system model (1) can be represented as

ẋ = Ax + B1u1 + B2u2. (3)

The vector function u2 may also model lumped uncer-
tainties or nonlinearities in the plant. We assume that the
pair (A, C) is detectable.

3. A Projection Operator Approach to State
Observation of Systems with Unknown
Inputs

In our discussion in this section, we assume that the ma-
trix B2 has full column rank. We begin our presentation
by noticing that because the system output y is known it
would seem reasonable to decompose the state x as

x = (I − MC)x + MCx

= (I − MC)x + My, (4)

where M is an n × p real matrix, and the unknown part
of the decomposition is (I − MC)x. Let q = (I −
MC)x, then x = q + My, and we have

q̇ = (I − MC)ẋ

= (I − MC)(Ax + B1u1 + B2u2)

= (I − MC)(Ax + B1u1) + (I − MC)B2u2

= (I − MC)(Aq + AMy + B1u1)

+ (I − MC)B2u2.

If M is chosen so that (I − MC)B2 = O, then the
dynamics of q depend only on the known quantities u1

and y:

q̇ = (I − MC)(Aq + AMy + B1u1). (5)

Note that if we start the above dynamical system with the
initial condition q(0) = (I − MC)x(0), then x = q +
MCx = q + My for all t ≥ 0. But since x(0) is
assumed to be unknown,

x̃ = q + My (6)

is only an approximation of x. To improve the conver-
gence rate or to ensure the convergence, we add an extra
term to the right-hand side of (5) to obtain

q̇ = (I − MC)
(
Aq + AMy + B1u1

+ L(y − Cq − CMy)
)

= (I − MC)
(
Aq + AMy + B1u1

+ LC(x − q − My)
)
. (7)

Let e = x − x̃. We will show that

ė = (I − MC)(A − LC)e

and e(t) → 0 as t → ∞ under mild conditions.

Because

rank (MCB2) ≤ rank (CB2) ≤ rank (B2),

the equality (I − MC)B2 = O makes it necessary that

rank (CB2) = rank(B2), (8)

which we assume throughout the paper. This rank condi-
tion also implies that there must be at least as many in-
dependent outputs as unknown inputs for the method to
work.

We will show that, in order to arrive at a reduced-
order observer using the above presented approach, it is
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critical that the term L(y − Cq − CMy) be premulti-
plied by (I−MC), or equivalently, L have (I−MC)
as a left factor. Indeed, let P̃ = I − MC. Then, if
P̃ is a projection, that is, P̃ 2 = P̃ , then the subspace
V = P̃ Rn is invariant under P̃ . It follows that q̇ in (7)
lies in V . If the initial condition q(0) is also in V , then
the trajectories of the system will reside in V for t ≥ 0.
If the term L(y − Cq − CMy) is not premultiplied by
(I −MC) or L does not have (I −MC) as a left fac-
tor, then the trajectory will not stay in V and, in general, it
would not be possible to transform the full-order observer
into a reduced-order one.

The condition q(0) ∈ V alone is not sufficient to
guarantee that the observation error e tends to 0. The
reason is that we do not know x(0) and it is not obvi-
ous how to choose q(0) so that the e(t) converges to 0.
Unless q(0) is chosen appropriately, the observation er-
ror e(t) stays in a hyperplane not containing 0 and thus
e(t) cannot converge to 0.

Another difficulty that must be overcome is the fact
that, for the error dynamics matrix (I−MC)(A−LC)
to be asymptotically stable, it is not sufficient for (A −
LC) to be asymptotically stable. It is possible for a prod-
uct of a projectionmatrix and an asymptotically stable ma-
trix to be unstable as the following simple example shows:

Example 1. Let

P =

[
1 0
0 0

]
and A =

[
1 −3
3 −2

]
.

It is easy to check that A is asymptotically stable while
PA is unstable. Furthermore, the system ẋ = Ax re-
stricted to the range of P is governed by ż = z, which is
also unstable. �

We now analyze the convergence properties of the
proposed full-order observer and then use the results of
our analysis to propose a new type of a reduced-order ob-
server for uncertain systems. Consider the dynamical sys-
tem model given by (6) and (7). We will now show that
x̃ → x as t → ∞. To this end let

e(t) = x(t) − x̃(t)

denote the estimation error. Then, using (I−MC)B2 =
O and y = Cx, we have

de

dt
=

d
dt

(x − x̃) =
d
dt

(x − q − MCx)

=
d
dt

((I − MC)x − q)

= (I − MC)(Ax + B1u1 + B2u2)

− (I − MC)
(
Aq + AMy + B1u1

+ L(y − Cq − CMy)
)

= (I − MC)(Ax + B1u1) + (I − MC)B2u2

− (I − MC)
(
Aq + AMCx + B1u1

+ L(Cx − Cq − CMCx)
)

= (I − MC)(A − LC)(x − q − MCx)

= (I − MC) (A − LC)e. (9)

Our objective is to specify M and L and a set of initial
conditions so that e(t) → 0 as t → ∞. A particular
class of solutions to (I − MC)B2 = O is given by

M = B2

(
(CB2)† + H0

(
Ip − (CB2)(CB2)†

))
,

where the superscript † denotes the Moore-Penrose
pseudo-inverse operation and H0 ∈ Rm2×p is a design
parameter matrix. (See, for example, (Kaczorek, 1998,
Section 1.5) for more information on pseudo-inverse ma-
trices). Because, by assumption, rank (CB2) = rank B2

and B2 has a full rank, we have (CB2)†(CB2) = Im2 .
If CB2 is a square matrix, then CB2 is invertible by
assumption and the above M reduces to B2(CB2)−1.
Furthermore, it is easy to check that for the above class
of M , the product MC is a projection (not necessarily
orthogonal):

(MC)2 = MC.

It follows that
P̃ = I − MC

is also a projection.

To proceed further, we need the following lemma:

Lemma 1. Let P̃ : Rn → Rn be a projection, that
is, P̃ 2 = P̃ , and let rank P̃ = n − m2. Then P̃ has
(n−m2) eigenvalues equal to 1 while the remaining m2

eigenvalues are equal to 0 and there is a basis of Rn in
which the matrix P̃ relative to this basis has the form

P =

[
In−m2 O

O O

]
,

that is, there is an invertible matrix Q whose columns are
eigenvectors of P̃ such that

Q−1P̃Q = P =

[
In−m2 O

O O

]
.

Proof. See (Smith, 1984, pp. 156–158 and pp. 194–195).
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4. Constructing the Full–Order Observer
Using the Projection Operator Approach

We begin this section by introducing the following coor-
dinate transformation:

ẽ = Q−1e, (10)

where the transformation matrix Q is obtained, using
Lemma 1, from the representation of the projection op-
erator P̃ in the form

P̃ = QPQ−1. (11)

Applying the coordinate transformation (10) to the
error equation (9) gives

˙̃e = PQ−1(A − LC)Qẽ

= P
(
Q−1AQ − (Q−1L

)
(CQ)

)
ẽ. (12)

Let

Ã = Q−1AQ =

[
Ã11 Ã12

Ã21 Ã21

]
,

L̃ = Q−1L =

[
L̃1

L̃2

]
,

C̃ = CQ =
[

C̃1 C̃2

]
, (13)

where Ã11 ∈ R(n−m2)×(n−m2), L̃1 ∈ R(n−m2)×p,
C̃1 ∈ Rp×(n−m2), and the remaining block submatrices
are of appropriate dimensions. Using the above notation,
we represent (12) in the form

˙̃e = P
(
Ã − L̃C̃

)
ẽ =

[
In−m2 O

O O

]

×
([

Ã11 Ã12

Ã21 Ã21

]
−
[

L̃1

L̃2

] [
C̃1 C̃2

])
ẽ

=

[
Ã11 − L̃1C̃1 Ã12 − L̃1C̃2

O O

]
ẽ. (14)

Let

ẽ =

[
ẽ1

ẽ2

]
, (15)

where ẽ1 ∈ Rn−m2 . Note that ˙̃e2 = 0. Hence if ẽ2(0) =
0, then ẽ2 = 0 for all t ≥ 0. Thus if ẽ2 = 0, then

˙̃e1 =
(
Ã11 − L̃1C̃1

)
ẽ1,

and so if ẽ2 = 0 and ẽ1 → 0, then ẽ → 0. Obvi-
ously, ẽ1 → 0 for arbitrary ẽ1(0) if and only if the ma-

trix
(
Ã11 − L̃1C̃1

)
is asymptotically stable.

We now give a condition on q(0) that guarantees
that ẽ2 = 0. We have

MC = I − P̃

= Q(I − P )Q−1.

Hence[
0
ẽ2

]
= (In − P )Q−1e = Q−1MCe

= Q−1MC(x − q − MCx)

= Q−1(MCx − MCq − (MC)2x)

= −Q−1MCq. (16)

Therefore ẽ2(0) = 0 if and only if MCq(0) = 0, which
is equivalent to

q(0) = (I − MC)v

for arbitrary v ∈ Rn. In particular, q(0) = 0 satisfies
the above condition.

In summary, we proved the following theorem:

Theorem 1. If the following conditions are satisfied:

1. rank (CB2) = rankB2;

2. the pair (Ã11, C̃1) defined in (13) is detectable;

3. q(0) = (I − MC)v for arbitrary v ∈ Rn,

then there exists a gain matrix L such that the estimation
error, e = x − x̃, of the full-order observer given by

q̇ = (I − MC)(Aq + AMy + B1u1

+ L(y − Cq − CMy)),

x̃ = q + My

converges to 0 as t → ∞.

Theorem 2. The second condition of Theorem 1, which
states that the pair (Ã11, C̃1) defined in (13) is de-
tectable, is equivalent to

rank

[
sIn − A B2

C O

]
= n + m2

for all s such that Re(s) ≥ 0.

Proof. We begin the proof by considering the projection
matrix, P̃ = I − MC, where

M = B2

(
(CB2)† + H0

(
Ip − (CB2)(CB2)†

))
.
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To simplify the further analysis, we let F = (CB2)† +
H0

(
Ip − (CB2)(CB2)†

)
and S = FC. Note that

SB2 = Im2 . (17)

Thus, rankS = m2, and so we can find a full rank n ×
(n − m2) matrix W such that

SW = O. (18)

Combining (17) and (18), we conclude that [W B2]
is invertible. Let

[
W B2

]−1

=

[
W g

N

]
,

where W g is (n − m2) × n and N is m2 × n. Then

N
[

W B2

]
=
[

O Im2

]
= S

[
W B2

]
.

Since [W B2] has a full rank, we conclude that N = S.

Since [
W g

S

] [
W B2

]
= In,

we have

W gW = In−m2 and W gB2 = O.

Let Q =
[

W B2

]
. Then

Q−1P̃ Q =

[
W g

S

]
(In − BS)

[
W B2

]

= In −
[

W gB2S

SB2S

] [
W B2

]

=

[
In−m2 O

O Im2

]

−
[

W gB2SW W gB2SB2

SB2SW SB2SB2

]

=

[
In−m2 O

O Im2

]
−
[

O O

O Im2

]

=

[
In−m2 O

O O

]
. (19)

We now apply the following coordinate transforma-
tion to the system modeled by (1) and (2):[

z

σ

]
=

[
W g

S

]
x = Q−1x.

Then[
ż

σ̇

]
=

[
W gAW W gAB2

SAW SAB2

] [
z

σ

]

+ Q−1B1u1 +

[
O

Im2

]
u2

=

[
Ã11 Ã12

Ã21 Ã22

][
z

σ

]
+ Q−1B1u1

+

[
O

Im2

]
u2,

y =
[

CW CB2

] [ z

σ

]

=
[

C̃1 C̃2

] [ z

σ

]
.

If the trajectory of the system described by the triple
(A, B2, FC) resides in the null space of S, then such a
motion is described by

ż = Ã11z.

It follows from (Żak, 2003, pp. 328, 329) that the poles of
the above system are the zeros of the system described by
the triple (A, B2, FC), which are the complex numbers
s for which the system matrix

[
sIn − A B2

FC O

]

loses its full rank. On the other hand, the zeros of the
triple (A, B2, C) are also the zeros of the squared-down
system (A, B2, FC), that is, the zeros of (A, B2, C)
form a subset of the set of the eigenvalues of Ã11. It is
well known that zeros are invariant with respect to simi-
larity transformations. Therefore,

rank

⎡
⎢⎣ sIn−m2 − Ã11 −Ã12 O

−Ã21 sIm2 − Ã22 Im2

C̃1 C̃2 O

⎤
⎥⎦

= rank

[
sIn−m2 − Ã11

C̃1

]
+ 2m2,

for s ∈ C, which means that the zeros of the system
(A, B2, C) are in the open left-half plane if and only if
the pair (Ã11, C̃1) is detectable.
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5. Reduced–Order Unknown Input
Observer

The error dynamics of the full-order observer that we an-
alyzed above are given by (14):

˙̃e =

[
Ã11 − L̃1C̃1 Ã12 − L̃1C̃2

O O

]
ẽ.

The reader may have noticed that since we choose the ini-
tial condition for q to force ẽ2(t) = 0 for t ≥ 0, the
dynamics of the error are completely determined by the
dynamics of ẽ1, which are given by

˙̃e1 =
(
Ã11 − L̃1C̃1

)
ẽ1, (20)

an (n − m2)-dimensional system. This motivates us to
apply the transformation from e into ẽ to q:

q̃ = Q−1q.

From (7) and I − MC = QPQ−1, we obtain

˙̃q = P
(
Q−1AQq̃ + Q−1AMy + Q−1B1u1

+ Q−1L(y − CQq̃ − CMy)
)

= PQ−1AQq̃ + PQ−1AMy + PQ−1B1u1

+ PQ−1L(y − CQq̃ − CMy)

= P
(
Q−1AQ − Q−1LCQ

)
q̃

+ P
(
Q−1AM + Q−1L − Q−1LCM

)
y

+ PQ−1B1u1. (21)

Using the notation defined in (13), we have

˙̃q = P
(
Ã − L̃C̃

)
q̃ + PQ−1

×
[(

AM + QL̃(Ip − CM)
)
y + B1u1

]
.

Let

q̃ =

[
q̃1

q̃2

]
,

where q̃1 ∈ Rn−m2 and q̃2 ∈ Rm2 . Since

P =

[
In−m2 O

O O

]
,

we have ˙̃q2(t) = 0. Therefore, setting q̃2(0) = 0
ensures that q̃2(t) = 0 for t ≥ 0. We thus can re-
move m2 observer states from observer dynamics. Let

G̃ = AM +QL̃(Ip−CM). Then the resulting reduced-
order observer takes the form

˙̃q1 = (Ã11 − L̃1C̃1)q̃1 +
[

In−m2 Om2

]

× Q−1
(
G̃y + B1u1

)
, q̃1(0) = 0,

x̃ = Q

[
In−m2

Om2×(n−m2)

]
q̃1 + My,

where the vector x̃ is the estimate of the plant state x.

We now summarize the above deliberations in the
form of the following design algorithm:

Reduced-Order Unknown Input Observer
Design Algorithm

For a given quadruple of matrices (A, B1, B2, C), mod-
eling the plant, do as follows:

1. Check that rank (CB2) = rankB2.
If rank (CB2) < rankB2, STOP. The observer
does not exist.

2. Compute

M = B2

(
(CB2)† + H0

(
Ip − (CB2)(CB2)†

))
,

where the superscript † denotes the Moore-Penrose
pseudo-inverse operation and H0 ∈ Rm2×p is a de-
sign parameter matrix.

3. Compute the projector

P̃ = In − MC.

4. Represent P̃ as

P̃ = QPQ−1,

where

P =

[
In−m2 O

O O

]
.

5. Compute

Ã = Q−1AQ =

[
Ã11 Ã12

Ã21 Ã22

]

and C̃ = CQ =
[

C̃1 C̃2

]
,

where Ã11 ∈ R(n−m2)×(n−m2) and C̃1 ∈
Rp×(n−m2)
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6. Check the detectability of the pair (Ã11, C̃1).
If the pair (Ã11, C̃1) is not detectable, STOP. The
observer does not exist.
Note that if the matrix Ã11 is asymptotically stable,
then the pair (Ã11, C̃1) is detectable for an arbitrary
matrix C̃1.

7. If there are eigenvalues of Ã11 that are not asymp-
totically stable, construct L̃1 so that the matrix
(Ã11 − L̃1C̃1) has its eigenvalues in locations as
close to the desired eigenvalues as possible.

8. Form

L̃ =

[
L̃1

Om2×p

]
,

where Om2×p is an m2 × p zero matrix.

9. Compute the matrix

G̃ = AM + QL̃(Ip − CM).

10. Construct the observer

˙̃q1 = (Ã11 − L̃1C̃1)q̃1 +
[

In−m2 Om2

]

× Q−1
(
G̃y + B1u1

)
, q̃1(0) = 0,

x̃ = Q

[
In−m2

Om2×(n−m2)

]
q̃1 + My.

The vector x̃ is the estimate of the state x.

Example 2. We consider the fifth-order lateral axis model
of an L-1011 fixed-wing aircraft, with actuator dynamics
neglected, at cruise flight conditions. This model can be
found in the book (Edwards and Spurgeon, 1998, pp. 122,
123 and 179, 180). We assume that the inputs to the sys-
tem are unknown and there are no known inputs. We have

A=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 −0.1540 −0.0042 1.5400 0.0000
0.0000 0.2490 −1.0000 −5.2000 0.0000
0.0386 −0.9960 −0.0003 −0.1170 0.0000
0.0000 0.5000 0.0000 0.0000 −0.5000

⎤
⎥⎥⎥⎥⎥⎥⎦

and

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0000 0.0000
−0.7440 −0.0320

0.3370 −1.1200
0.0200 0.0000
0.0000 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎣

0 1 0 0 −1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0

⎤
⎥⎥⎥⎦ ,

where u2 =
[

cos(t) sin(t)
]T

. We first check that

rank (CB2) = rankB2. We then compute the matrix
M , where in this example we set H0 = O,

M = B2(CB2)†

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.9993 0.0000 −0.0265 0.0000
0.0000 1.0000 0.0008 0.0000

−0.0265 0.0008 0.0007 0.0000
0.0000 0.0000 0.0000 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then the projector P̃ is

P̃ = I5 − MC

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0007 0.0000 0.0265 0.9993
0.0000 −0.0000 0.0000 −0.0008 0.0000
0.0000 0.0265 −0.0008 0.9993 −0.0265
0.0000 0.0000 0.0000 0.0000 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎦
.

We next compute Q such that

P̃ = QPQ−1 = Q

[
I3 O3×2

OT
3×2 O2×2

]
Q−1.

We have

Q=

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.7072 0.0265 −0.1162 −0.1162
0.0000 0.0000 −0.0008 0.7346 0.7346
0.0000 0.0143 0.9996 0.0036 0.0036
0.0000 0.7068 0.0000 0.0000 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Hence

Ã11 =

⎡
⎢⎣ 0.0000 0.0000 −0.0008

−0.0014 −0.0737 1.0151
0.0386 −0.7058 −0.1322

⎤
⎥⎦

and C̃1 =

⎡
⎢⎢⎢⎣

0.0000 0.0004 0.0265
0.0000 0.0000 −0.0008
0.0000 0.0143 0.9996
1.0000 0.0000 0.0000

⎤
⎥⎥⎥⎦ .

The pair (Ã11, C̃1) is detectable and the eigen-
values of Ã11 are located at 0.0000,−0.1030 +
0.8459j,−0.1030−0.8459j. We select the desired eigen-
values to be located at −3,−4,−5. The gain matrix L̃1

such that eig(Ã11 − L̃1C̃1) = {−3,−4,−5} is

L̃1 =

⎡
⎢⎣ 0.0015 0.0000 0.0577 4.0069

−0.5115 0.0146 −19.2737 −3.2839
0.2139 −0.0061 8.0602 0.7062

⎤
⎥⎦ .
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We obtained the above gain matrix using MAT-
LAB’s command place. We next form the ma-
trix L̃ by adding two zero rows to L̃1 and compute[

I3 O3×2

]
Q−1G̃.

The reduced-order UIO has the form

˙̃q1 = (Ã11 − L̃1C̃1)q̃1 +
[

I3 O3×2

]
Q−1G̃y

=

⎡
⎢⎣ −4.0069 −0.0008 −0.0585

3.2824 0.2021 20.2955
−0.6676 −0.8211 −8.1953

⎤
⎥⎦ q̃1

+

⎡
⎢⎣ 0.0016 1.0000 0.0585 4.0069

−0.6633 −0.2145 −19.2698 −3.2839
−0.7784 0.0017 8.0865 0.7062

⎤
⎥⎦y

x̃ = Q

[
I3

O2×3

]
q̃1 + My

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1.0000 0.0000 0.0000
0.0000 0.7072 0.0265
0.0000 0.0000 −0.0008
0.0000 0.0143 0.9996
0.0000 0.7068 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎦

q̃1

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0000 0.0000 0.0000 0.0000
0.9993 0.0000 −0.0265 0.0000
0.0000 1.0000 0.0008 0.0000

−0.0265 0.0008 0.0007 0.0000
0.0000 0.0000 0.0000 0.0000

⎤
⎥⎥⎥⎥⎥⎥⎦

y.

In Fig. 1, we show plots of system state variables and
their estimates versus time. The initial conditions of the
plant were selected randomly to be equal to

x(0) =
[

0.3420 0.3200 0.0178 −0.287 −0.9497
]T

.

The initial conditions of the observer were set to zero. We
note that the plots of the state variable x3 and its estimate
are undistinguishable because the estimate of x3 is almost
the same as y2, which is equal to x3.

6. Relation with Other Unknown Input
Observer Architectures

In this paper, we concentrated on the analysis and de-
sign of full-order observers that can be used to construct

reduced-order observers. Our analysis can be extended to
cover the case

q̇ = (I − MC)(Aq + AMy + B1u1)
+ L(y − Cq − CMy), (22)

where the term L(y−Cq−CMy) is not premultiplied
by (I − MC). However, this case leads to the observer
analyzed in (Chen et al., 1996; Chen and Patton, 1999)
even though the approach adopted there is quite different.
Indeed, we can equivalently represent the dynamics of the
proposed full-order observer as follows:

q̇ =
(

(I − MC)A − LC
)
q

+
([

(I − MC)A − LC
]
M + L

)
y

+ (I − MC)B1u1

= (TA − LC)q + Ky + TB1u1,

x̃ = q + My,

where, using the notation similar to that in (Chen et al.,
1996; Chen and Patton, 1999),

T = I − MC, K1 = L,

K2 = [TA − LC]M , K = K1 + K2.

In addition to that, the conditions for the existence of the
full-order observer presented in (Chen et al., 1996; Chen
and Patton, 1999) and our observers are equivalent.

The observer given by (22) is also the same as the
one proposed by Yang and Wilde (1988) and further an-
alyzed by Darouach et al. (1994). The connections
are as follows: (i) M is called −E in (Darouach et
al., 1994; Yang and Wilde, 1988), (ii) (I − MC) cor-
responds to P there, (iii) B1 is B and B2 is D
in (Darouach et al., 1994; Yang and Wilde, 1988), iv)
(I − MC)(A − LC) corresponds to N .

We now compare the reduced-order UIO proposed
by Hou and Müller (1992) with our reduced-order UIO.
Somewhat similar approach is proposed by Kudva et al.
(1980). Hou and Müller first transform the system (3) into
the form

ẋ = Ax + B1u1 +

[
O

Im2

]
u2

=

[
A11 A12

A21 A22

] [
x1

x2

]

+

[
B11

B12

]
u1 +

[
O

Im2

]
u2.
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Fig. 1. Plots of xi’s and their estimates versus time for Example 2.

Note that x1 in the new coordinates is independent
of u2 and we have

ẋ1 = A11x1 + A12x2 + B11u1. (23)

Let

y = Cx =
[

C1 C2

] [ x1

x2

]
,

where C2 ∈ Rp×m2 . Because, by assumption,
rank(CB2) = rankB2 = m, the submatrix C2 has a
left inverse, C†

2 . Hence we can compute

x2 = −C†
2C1x1 + C†

2y. (24)

Substituting the above into (23) gives

ẋ1 =
(
A11 − A12C

†
2C1

)
x1 + A12C

†
2y + B11u1.

Hou and Müller (1992) propose now to construct an ob-
server for x1 using only known signals and then substi-
tute the estimate of x1 into (24) to obtain an estimate of

x2. Thus, the resulting architecture of the reduced-order
UIO proposed by Hou and Müller, as well as their ap-
proach, differs from our design. Yet another approach to
constructing reduced-orderUIOs can be found in (Hui and
Żak, 1993).

7. Sliding Mode Observer Design for
Systems with Unknown Inputs

In this approach, we assume that u2 is bounded, that is,
there exists a nonnegative real number, ρ, such that

‖u2(t)‖ ≤ ρ for all t.

Let x̂ be an estimate of x. Let e denote the estimation
error, that is,

e(t) = x̂(t) − x(t).

The observability of (A, C) implies the existence of a
matrix L ∈ Rn×p such that the matrix (A − LC) has
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prescribed (symmetric with respect to the real axis) eigen-
values in the open left-half plane. Because (A − LC) is
asymptotically stable, for any Q = QT > 0, there is a
unique P = P T > 0 such that

(A − LC)T P + P (A − LC) = −Q. (25)

We choose Q, if possible, so that for some F ∈ Rm2×p,

FC = BT
2 P . (26)

We need this technical condition to ensure the realizablity
of the observer.

To proceed, we define the vector function

E (e, η) =

⎧⎪⎨
⎪⎩

η
FCe

‖FCe‖2
for FCe �= 0,

r ∈ Rm2 , ‖r‖2 ≤ η for FCe = 0,

where η ≥ ρ is a design parameter. In the case of single-
input single-output plant, we can write

E(e, η) = η sign (FCe) .

We note that

Ce = C(x̂ − x) = ŷ − y.

The vector function E(e, η) is an essential ingredient of
the sliding mode observer that we present next. When im-
plementing the function E, we use the output measure-
ments ŷ and y, that is, instead of using E(e, η), we uti-
lize

E(ŷ, y, η)

=

⎧⎪⎨
⎪⎩

η
F (ŷ − y)

‖F (ŷ − y)‖2
for F (ŷ − y) �= 0,

r ∈ Rm2 , ‖r‖2 ≤ η for F (ŷ − y) = 0.

Hence for the case of a single-input single-output plant,
we have

E(ŷ, y, η) = η sign (F (ŷ − y)) .

Using arguments similar to those found in (Walcott
and Żak, 1987), we can show that the state x̂ of the dy-
namical system

˙̂x = Ax̂ + B1u1 + L(y − ŷ) − B2E(ŷ, y, η) (27)

for η ≥ ρ is an asymptotic estimate of the state x of the
system described by (1) and (2), that is,

lim
t→∞e(t) = lim

t→∞ (x̂(t) − x(t)) = 0.

To prove the above statement using Lyapunov’s type of
arguments, first represent (27) as

˙̂x = (A − LC) x̂ + Ly + B1u1 − B2E(e, η).

Then construct the differential equation describing the dy-
namics of the estimation error e,

ė = ˙̂x− ẋ = (A − LC)e−B2u2 −B2E(e, η), (28)

and show that

d
dt

(
eT Pe

)
= −eT Qe < 0,

which implies
lim

t→∞ e(t) = 0.

It follows from the above that the estimation error is in-
sensitive to the uncertainty modeled by the term B2u2.
In summary, the design of the observer proposed by Wal-
cott and Żak (1987) for a system modeled by the quadru-
ple (A, B1, B2, C) can be thought of as finding a pair
of matrices (P , F ) satisfying (25) and (26) for some L
and Q. Edwards and Spurgeon (1998) (see also (Saif and
Xiong, 2003)) present necessary and sufficient conditions
for the existence of the above observer, which are

(i) rankB2 = rankCB2 = r;

(ii) the system zeros of the triple (A, B2, C) are in the
open left-hand complex plane, that is,

rank

[
sIn − A B2

C O

]
= n + r

for all s such that Re(s) ≥ 0.

It is interesting to note that the above conditions are
also necessary and sufficient for the existence of the ob-
servers with unknown inputs of (Hui and Żak, 1993) as
well as the unknown input observers (UIOs) analyzed by
us in the previous sections.

8. Sliding Mode Observer Construction

We first present a lemma that will serve us as a platform
for the design of the sliding mode observer for uncertain
systems. The lemma is a minor modification of Lemma 1
of Corless and Tu (1998), who proved it constructively us-
ing a singular value decomposition approach. We offer a
different constructive proof using the Q-R decomposition.

Lemma 2. For a triple (A, B2, C) ∈ Rn×n ×Rn×m2 ×
Rp×n,

rankB2 = rank (CB2) = r, (29)

if and only if there exist nonsingular matrices T and S
such that

TAT−1 =

[
A11 A12

A21 A22

]
, TB2 =

[
B21

O

]
,

SCT−1 =

[
Ir O

O C22

]
, (30)
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where A11 ∈ Rr×r, A22 ∈ R(n−r)×(n−r), B21 ∈
R

r×m2 , rankB21 = r, and C22 ∈ R
(p−r)×(n−r).

Proof. (Necessity) The proof is constructive. Using the
Q-R decomposition applied to B2, we obtain

B2 = QB2RB2 ,

where QB2 ∈ Rn×n is a unitary matrix and the matrix
RB2 ∈ Rn×m2 is upper triangular, where

rankRB2 = r.

Let T1 = Q−1
B2

. Then we obtain

T1B2 =

[
B̃21

O

]
,

where G̃1 ∈ Rr×m2 . We next partition the matrix
CT−1

1 as follows:

CT−1
1 =

[
C̃1 C̃2

]
,

where C̃1 ∈ Rp×r. Note that

CB2 =
(
CT−1

1

)
(T1B2) = C̃1B̃21 .

By the hypothesis of the lemma, rankB2 =
rank (CB2) = r. Hence

rank C̃1 = r.

Applying the Q-R decomposition to C̃1 yields

C̃1 = QC̃1
RC̃1

,

where

RC̃1
=

[
C11

O

]
and detC11 �= 0.

Note that C11 ∈ R
r×r. Let S = Q−1

C̃1
. Then

SCT−1
1 =

[
C11 C12

O C22

]
.

Postmultiplying SCT−1
1 by

T−1
2 =

[
C−1

11 −C−1
11 C12

O In−r

]

gives

SCT−1
1 T−1

2 =

[
C11 C12

O C22

] [
C−1

11 −C−1
11 C12

O In−r

]

=

[
Ir O

O C22

]
.

We then have T = T2T1.

(Sufficiency) By inspection.

Notice that the systems

ẋ = Ax + B2u2,

y = Cx

}

and ˙̃x = TAT−1x̃ + TB2u2,

ỹ = SCT−1x

}

have the same system zeros, that is, their system matri-
ces have the same rank for all s ∈ C, where C is the
set of complex numbers. One can prove the above state-
ment by applying Sylvester’s inequalities (see, for exam-
ple, Gantmacher, (1990, pp. 65, 66)) to the right-hand side
of the following relation between the system matrices of
the above models:[

sIn − TAT−1 TB2

SCT−1 O

]

=

[
T O

O S

] [
sIn − A B2

C O

]

×
[

T−1 O

O Iq

]
. (31)

Lemma 3. Assume that rankB2 = rank (CB2) = r.
Then, the pair (A22, C22) is detectable if and only if

rank

[
sIn − A B2

C O

]
= n + r (32)

for all s such that Re(s) ≥ 0.

Proof. By assumption, rankB2 = rank (CB2) = r.
By Lemma 2, the above condition is equivalent to the ex-
istence of nonsingular matrices T and S such that

TAT−1 =

[
A11 A12

A21 A22

]
, TB2 =

[
B21

O

]
,

SCT−1 =

[
Ir O

O C22

]
,

where B21 ∈ Rr×m2 and rankB21 = r. Then, for any
s ∈ C,

rank

⎡
⎢⎢⎢⎣

sIr − A11 −A12 B21

−A21 sIn−r − A22 O

Ir O O

O C22 O

⎤
⎥⎥⎥⎦

= rank

⎡
⎢⎣ −A12 B21

sIn−r − A22 O

C22 O

⎤
⎥⎦+ r

= rank

[
sIn−r − A22

C22

]
+ 2r.
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It follows from the above that the pair (A22, C22) is de-
tectable if and only if the rank condition (32) holds.

Note that if m2 = p = r, then

rank

[
sIn − A B2

C O

]
= n + r

for all s such that Re(s) ≥ 0 if and only if the matrix
A22 is asymptotically stable.

The following theorem appears in (Corless and Tu
1998, Lem. 3, p. 760). A related result was obtained by
(Edwards and Spurgeon 1998, Prop. 6.2, p. 138). An al-
gorithm for constructing matrices L, F and P that are
essential ingredients of the sliding mode observer for un-
certain systems is contained in the proof of the theorem.

Theorem 3. There exists a triple of matrices (L, F , P ) ∈
Rn×p × Rm2×p × Rn×n such that

(A − LC)T P + P (A − LC) < 0 (33)

and
FC = BT

2 P (34)

if and only if

(i) rankB2 = rank (CB2) = r;

(ii) the system zeros of the triple (A, B2, C) are in the
open left-hand complex plane, that is,

rank

[
sIn − A B2

C O

]
= n + r

for all s such that Re(s) ≥ 0.

Proof. (Sufficiency) We follow the arguments of Corless
and Tu (1998). By Lemma 2, the condition rankB2 =
rank (CB2) = r is equivalent to the existence of nonsin-
gular matrices T and S such that

Â = TAT−1 =

[
A11 A12

A21 A22

]
,

B̂2 = TG =

[
B21

O

]
,

Ĉ = SCT−1 =

[
Ir O

O C22

]
,

where B21 ∈ Rr×m2 and rankB21 = r. Let

P̂ = T−T PT−1, L̂ = TLS−1, and F̂ = FS−1.
(35)

To proceed, note that condition (ii) is equivalent to the
existence of a matrix L22 such that the eigenvalues of
(A22 − L22C22) are all in the open left-half complex
plane. Then, for any symmetric positive definite Q22, the
symmetric solution P22 to the Lyapunov matrix equation,

(A22 − L22C22)T P22 + P22(A22 − L22C22) = −Q22,

is also positive definite. Let

L̂ =

[
κIr O

O L22

]
,

where κ > 0 is a design parameter whose lower bound is
determined in the following deliberations. We have

Â − L̂Ĉ =

[
A11 A12

A21 A22

]

−
[

κIr O

O L22

] [
Ir O

O C22

]

=

[
A11 − κIr A12

A21 A22 − L22C22

]
.

Let

P̂ =

[
Ir O

O P22

]
and Q̂ =

[
Q11 Q12

QT
12 Q22

]
.

Using the above, we obtain

−Q̂ = (Â − L̂Ĉ)T P̂ + P̂ (Â − L̂Ĉ)

=

[
AT

11 − κIr AT
21

AT
12 (A22 − L22C22)T

][
Ir O

O P22

]

+

[
Ir O

O P22

][
A11 − κIr A12

A21 A22 − L22C22

]

=

[
AT

11 − κIr AT
21P22

AT
12 (A22 − L22C22)T P22

]

+

[
A11 − κIr A12

P22A21 P22(A22 − L22C22)

]

=

[
AT

11 + A11 − 2κIr AT
21P22 + A12

AT
12 + P22A21 −Q22

]

=

[
−Q11 −Q12

−QT
12 −Q22

]
, (36)

where

Q22 = −
(
(A22 − L22C22)T P22

+ P22(A22 − L22C22)
)



Observer design for systems with unknown inputs 443

is positive definite by construction. Our goal is to obtain a
lower bound on the parameter κ that would yield a posi-
tive definite Q̂. Using the Schur complement of the pos-
itive definite Q22, we have that Q̂ is positive definite if
and only if

Q11 > Q12Q
−1
22 QT

12.

Employing the above in (36), we obtain

2κIr −
(
AT

11 + A11

)
>
(
AT

21P22 + A12

)
×Q−1

22

(
AT

12 + P22A21

)
.

Hence, Q̂ is positive definite if

κ >
1
2
λmax

(
AT

11 + A11 +
(
AT

21P22 + A12

)
× Q−1

22

(
AT

12 + P22A21

) )
.

Let
F̂ =

[
BT

21
O
]
.

Then, it is easy to see that

(Â − L̂Ĉ)T P̂ + P̂ (Â − L̂Ĉ) < 0 (37)

and
F̂ Ĉ = B̂T

2 P̂ , (38)

which are the conditions (33) and (34) in the new basis.
Hence, the proof of the sufficiency conditions for the ex-
istence of the desired triple of matrices (L, F , P ) is com-
plete.

(Necessity) See (Corless and Tu, 1998, p. 761).

We now summarize the above analysis in the form of
the following design algorithm:

Sliding-Mode Observer Design Algorithm

Given a quadruple of matrices (A, B1, B2, C) modeling
the plant, do the following:

1. Check that the rank condition, rank (CB2) =
rankB2, is satisfied.
If rank (CB2) �= rankB2, the sling-mode observer
cannot be constructed, STOP.

2. Transform the triple (A, C, B2).
Use the method of the proof of Lemma 2 to construct
nonsingular matrices T and S and compute

TAT−1 =

[
A11 A12

A21 A22

]
, TB2 =

[
B21

O

]
,

SCT−1 =

[
Ir O

O C22

]
,

where B21 ∈ Rr×m2 and rankB21 = r.

3. Check the detectability of (A22, C22).
If the pair (A22, C22) is not detectable, the sliding-
mode observer cannot be constructed, STOP.

4. Construct a matrix L22 so that the eigenvalues of
(A22 − L22C22) are in the open left-half plane.

5. Choose a positive definite Q22 ∈ R(n−r)×(n−r) and
solve for positive definite P22 the Lyapunov matrix
equation,

(A22 − L22C22)T P22 + P22(A22 − L22C22)

= −Q22.

6. Choose κ that satisfies the condition

κ >
1
2
λmax

(
AT

11 + A11 +
(
AT

21P22 + A12

)
× Q−1

22

(
AT

12 + P22A21

) )
.

7. Construct

L̂ =

[
κIr O

O L22

]
, F̂ =

[
BT

21
O
]
.

8. Compute

L = T−1L̂S, F = F̂ S.

9. Construct the observer

˙̂x = Ax̂ + B1u1 + L(y − ŷ) − B2E(ŷ, y, η),

where

E(ŷ, y, η)

=

⎧⎪⎨
⎪⎩

η
F (ŷ−y)

‖F (ŷ−y)‖2
for F (ŷ − y) �= 0,

r ∈ R
q, ‖r‖2 ≤ η for F (ŷ − y)= 0.

Example 3. We consider the same fifth-order lateral axis
model of an L-1011 fixed-wing aircraft that we considered
in Example 2. We have rank (CB2) = rankB2. We use
Lemma 2 to compute the transformation matrices T and
S,

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0000 −0.9106 0.4125 0.0245 0.9106
0.0000 −0.4124 −0.9110 0.0103 0.4124

−0.9998 −0.0005 0.0000 −0.0179 0
−0.0179 0.0265 −0.0008 0.9995 0

0 0 0 0 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎦
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and

S =

⎡
⎢⎢⎢⎣

−0.9106 0.4125 0.0245 0.0000
−0.4124 −0.9110 0.0103 0.0000

0.0265 −0.0008 0.9996 0.0000
0.0000 0.0000 0.0000 1.0000

⎤
⎥⎥⎥⎦ .

We next transform the given model into the new co-
ordinates and obtain the pair

A22 =

⎡
⎢⎣ 0.0006 0.0025 0.0178

−0.0368 −0.0993 −0.9971
−0.0002 0.0133 −0.0004

⎤
⎥⎦

and C22 =

[
−0.0179 0.9998 −0.0265
−0.9998 −0.0179 0.0000

]
.

The pair (A22, C22) is detectable and we use MATLAB’s
place function to construct the gain matrix L22, so that
the eigenvalues of the matrix (A22−L22C22) are located
at −3,−4,−5, where

L22 =

⎡
⎢⎣ −0.1441 −4.0022

7.5018 0.0744
−14.9883 −0.4586

⎤
⎥⎦ .

We then solve the Lyapunov matrix equation,

(A22−L22C22)T P22+P22(A22−L22C22) = −I3,

to obtain

P22 =

⎡
⎢⎣ 0.1273 −0.0445 −0.0236

−0.0445 0.9995 0.4735
−0.0236 0.4735 0.3059

⎤
⎥⎦ .

After that we compute

1
2
λmax

(
AT

11 + A11 +
(
AT

21P22 + A12

)
× Q−1

22

(
AT

12 + P22A21

) )
= 12.6790

and select
κ = 13.6790.

Finally we construct

L = T−1L̂S

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0003 0.0000 0.0100 4.0002
13.2773 0.0115 −15.1363 −0.4544
0.0001 13.6790 0.0044 −0.0001

−0.1532 0.0044 7.9048 0.1580
−0.3976 0.0114 −14.9831 −0.4586

⎤
⎥⎥⎥⎥⎥⎥⎦

and

F = F̂S =

[
−0.7440 0.3370 0.0200 0.0000
−0.0320 −1.1200 0.0000 0.0000

]
.

We selected η = 7. We then constructed the observer

˙̂x = Ax̂ + L(y − ŷ) − B2E(ŷ, y, η),

where

E(ŷ, y, η)

=

⎧⎪⎨
⎪⎩

η
F (ŷ − y)

‖F (ŷ − y)‖2 + μ
for F (ŷ − y) �= 0

r ∈ Rq, ‖r‖2 ≤ η for F (ŷ − y) = 0,

where μ = 0.0005. The parameter μ was introduced to
smooth out the discontinuity and facilitate the simulations.
In Fig. 2, we show the plots of system state variables and
their estimates versus time. The initial conditions are the
same as in Example 2. �

For design methods of the Walcott-Żak sliding mode
observer using linear matrix inequalities (LMIs), see
(Choi and Ro, 2005; Xiang et al., 2005).

9. Future Work

The effectiveness of unknown input observers (UIOs) in
real-life applications needs to be investigated. A suc-
cessful application of UIOs to a DC servo motor system
was reported by Chang et al. (1997). On the the other
hand, Millerioux and Daafouz (2004) proposed UIO ar-
chitectures for switched linear discrete systems. Röbe-
nack and Lynch (2004) presented a method of observer
design for a class of nonlinear plants which yields almost
linear observation error dynamics. This method looks like
a promising tool to be used to extend our approach to a
class of nonlinear plants. Another promising application
of the proposed UIOs is in the area of fault detection and
isolation—see, for example, (Edwards et al., 2000) for an
application of sliding mode observers for fault detection
and isolation. In his practical guide for the selection and
installation of observers in control systems, Ellis (2002,
p. 3) writes: “Observers add complexity to the system and
require computational resources. They may be less robust
than physical sensors, especially when plant parameters
change substantially during operation. Still, an observer
applied with skill can bring substantial performance bene-
fits and does so, in many cases, while reducing cost or in-
creasing reliability.” Examples of impressive applications
of nonlinear observers to the control of electric machinery
can be found in (Dawson et al., 1998; Solsona and Valla,
2003; Utkin et al., 1999). The above applications should
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Fig. 2. Plots of xis and their estimates versus time for Example 3.

serve as a motivation to generalize our techniques to non-
linear plants.
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