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Since the huge database of patent documents is continuously increasing, the issue of classifying, updating and retrieving
patent documents turned into an acute necessity. Therefore, we investigate the efficiency of applying Latent Semantic
Indexing, an automatic indexing method of information retrieval, to some classes of patent documents from the United
States Patent Classification System. We present some experiments that provide the optimal number of dimensions for the
Latent Semantic Space and we compare the performance of Latent Semantic Indexing (LSI) to the Vector Space Model
(VSM) technique applied to real life text documents, namely, patent documents. However, we do not strongly recommend
the LSI as an improved alternative method to the VSM, since the results are not significantly better.
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1. Introduction

Latent Semantic Indexing (LSI) (Deerwester et al., 1990)
is a mathematical approach to information retrieval that
attempts to model the underlying structure of term asso-
ciations by transforming the traditional representation of
documents as vectors of weighted term frequencies into a
new coordinate space where both documents and terms are
represented as linear combinations of implicit semantic
factors. Although it was originally applied in the context
of information retrieval, since then it has been success-
fully applied to a wide variety of text-based tasks (Lan-
dauer et al., 1998). The use of LSI for text retrieval has
been proposed in several works, the improvement of both
retrieval precision and recall being emphasized (Berry et
al., 1995; Deerwester et al., 1990; Dumais, 1991; Hull,
1994; Landauer et al., 1998). LSI turned out to improve
also text categorization (Dumais, 1995) and word sense
discrimination (Schütze, 1998).

These studies of LSI mostly used standard text col-
lections in information retrieval, some of them having
simplified document models. For most of them, LSI
proved to be a promising approach to automatic index-
ing. The purpose of this paper is to investigate the use of
LSI on some real-life text documents, namely, patent doc-
uments. Our motivation came from the continuous growth
of patent document databases in recent years, an increase
which requires the development of new and efficient meth-
ods of classifying and retrieving patent documents.

One such a vast database of patents is the United
States Patent Classification System (UPSTO) Patent Full-
Text Database, covering US patents issued from 1790 to
the present. It contains patents classified accordingly to
their claims in 450 main classes and about 15000 sub-
classes. We applied LSI on ten of the main classes of
patents belonging to the UPSTO.

Our work using databases of patent documents is mo-
tivated by the following facts: First, the huge amount of
information which is suitable for the methods we used
and, on the other hand, the existence of an a-priori clas-
sification made by experts (patent attorneys). Thus we
could use the information given there in order to verify
the results provided by our program. In this way we relate
our results to raw data unlike was usually made in the past
in the literature, where standard information retrieval test
collections (MED, CISI, TIME, etc.) were used.

Encouraged by the positive results reported so far in
the literature (average improvements up to 30% brought
by using LSI instead of the VSM), the idea of applying
LSI to patent classification came naturally. Unfortunately,
the results we obtained turned out to be not as good as
expected. We wonder about the cause of this fact: the
inefficiency of LSI or the special structure of the standard
information retrieval test collections (MED, CISI, TIME,
etc.), on which its success was highlighted.

This paper is organized as follows: In Section 2 we
start with a brief overview of LSI and continue in the next
section with the presentation of the patent documents col-
lection used in our experiments, the preprocessing we per-
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formed with the text data and the way we implemented
LSI. In Section 4 we examine the results of our experi-
ments, and we conclude in Section 5.

2. Latent Semantic Indexing

Latent Semantic Indexing (Deerwester et al., 1990) is
a statistical technique which tries to surpass some lim-
itations imposed by the traditional Vector Space Model
(VSM) (Salton, 1971). In the VSM, which uses the
so-called bag-of-words representation of documents, the
collection of text documents is represented by a terms-
documents matrix A = [aij ] ∈ R

t×d, where each entry
aij corresponds to the number of times the term i ap-
pears in the document j. Here t is the number of terms
and d the number of documents in the collection. There-
fore, a document becomes a column vector and a query
of a user can be represented as a vector of the same di-
mension. The similarity between the user’s query vector
and a document vector in the collection is measured as the
cosine of the angle between the two vectors. A list of doc-
uments ranked in decreasing order of similarity is returned
to the user for each query. The VSM considers the terms
in documents as being independent from each other, an as-
sumption which is never satisfied by the human language.
An idea can be expressed in many ways (synonymy) and,
moreover, many words may have multiple meanings (pol-
ysemy).

Latent Semantic Indexing is a variant of the VSM
that exploits the dependencies between words by assum-
ing that there is some underlying or “latent” structure in
word usage across documents and this structure can be
revealed statistically. LSI is a method for dimension-
ality reduction because it transforms the original terms-
documents vector space into a new coordinate system of
conceptual topics, a lower dimensional space that cap-
tures the implicit higher-order structure in the association
of terms with documents (Deerwester et al., 1990). Both
sets of documents and terms will be projected onto this
new low-dimensional space spanned by the true factors or
concepts, instead of representing documents as vectors of
independent words. In order to obtain the space of con-
cepts, i.e., the space of true representation of words and
documents, LSI uses a truncated Singular Value Decom-
position (SVD) applied to the terms-documents matrix A
described above.

Given a t× d matrix A, where m = min(t, d), the
singular value decomposition of A is defined as

A = USV T , (1)

where U is a t × m orthonormal matrix (UT U = Im)
whose columns define the left singular vectors, V is a
d×m orthonormal matrix (V T V = Im) whose columns

define the right singular vectors, and S is a m×m diag-
onal matrix containing the singular values of A decreas-
ingly ordered along its diagonal: σ1 ≥ σ2 ≥ · · · ≥ σr >
σr+1 = · · · = σm = 0, where r = rank(A). This de-
composition is unique up to making the same permuta-
tions of columns of U , elements of S and columns of V
(rows of V T ).

To reduce the noise and redundancy, LSI, taking as
the input the terms-documents matrix described above,
uses a truncation of SVD which consists in retaining only
the largest k singular values and deleting the remaining
ones which are smaller and thus considered unimportant.
We remove also from U and V the columns correspond-
ing to the small singular values and get

Ak = UkSkV T
k ,

where Sk is a k × k diagonal matrix containing the
largest k singular values as entries, Uk is a t× k matrix
of the corresponding left singular vectors as columns, and
Vk is a d×k matrix whose columns are the corresponding
right singular vectors.

According to the following result, due to Eckart and
Young (Hull, 1994), the matrix Ak may also be inter-
preted as an approximation of the original matrix A.

Theorem 1. Ak is the best approximation of A by a
matrix of rank k and the error is

‖A−Ak‖F = min
rank(B)≤k

‖A−B‖F

=
√

σ2
k+1 + · · ·+ σ2

min(t,d).

The subscript F denotes the Frobenius norm, de-
fined for a matrix A = (aij) ∈ R

t×d as

‖A‖F =

√√√√
t∑

i=1

d∑
j=1

a2
ij .

The choice of k is a critical problem. While a too
drastic reduction of dimensionality may lead to a loss of
valuable information about the collection, problems like
the difficulty of handling the dimensionality and, as is ob-
served empirically, a poorer performance may also occur
when a too high dimensionality is chosen. The appropri-
ate value of k depends on the text collection and it can
be detected only empirically. From what was reported in
the literature, we can conclude that the optimal value of k
lies between 50 and 350.

For processing a user’s query Q, query-document
comparisons for every document in the collection are car-
ried out, i.e., comparisons between the query vector and
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each column of the matrix Ak. If ej denotes the j-th
canonical vector of the dimension d, then Akej will be
the j-th column of the matrix Ak and one may compute
the cosines of the angles θj , j = 1, . . . , d, between the
query vector and the columns of the matrix Ak,

cos θj =
(Akej)T Q

‖Akej‖2‖Q‖2 =
eT

j VkSk(UT
k Q)

‖SkV T
k ej‖2‖Q‖2 ,

for j = 1, . . . , d. Here we used the fact that the multipli-
cation of a vector by an orthonormal matrix does not alter
the Euclidean norm of the vector. Setting rj := SkV T

k ej ,
we have

‖Ukrj‖2 =
√

(Ukrj)T Ukrj =
√

rT
j UT

k Ukrj

=
√

rT
j Ikrj =

√
rT
j rj = ‖rj‖2.

Documents ranked by their similarity to the query are re-
turned to the user.

It is important for the LSI method that the derived
Ak matrix does not reconstruct exactly the original term
document matrix A, since we assumed A to be unreli-
able. Deerwester et al. (1990) claim that the truncated
SVD, in one sense, captures most of the important un-
derlying structure in the association of terms and docu-
ments, but at the same time it removes the noise or vari-
ability in word-usage that diminish the performance of the
Vector Space Model. Intuitively, since the number of di-
mensions k is much smaller than the number of terms
t, it is expected that terms which occur in similar docu-
ments will be near each other in the k-dimensional factor
space even if they never co-occur in the same document.
This means that some documents which do not share any
words in common with a user’s query may, however, be
near it in the k-dimensional space. Although the logic
of this claim seems clear, it has not been directly verified,
though in (Jessup and Martin, 2001) it was shown that LSI
can overcome the broader problem of term mismatch be-
tween query and relevant documents. With regard to the
other gain of LSI over literally matching terms in docu-
ments with those of a query, polysemy, this should arise
from dimensionality reduction, by removing the rare and
less important usages of certain terms. Since the LSI term
vector is the weighted average of the different meanings
of the term, when the real meaning differs from the av-
erage meaning, LSI might actually reduce the quality of
retrieval. SVD of the term similarity matrix is proposed in
(Schütze, 1992) in order to directly determine the sense of
a particular word.

One might expect that using a low-rank dimension-
ality representation could reduce substantially storage re-
quirements, while in reality the opposite is true (Hull,
1994). We can no longer take advantage of the sparsity

of the original very sparse vector representation since the
matrices in (1) are not sparse anymore. The LSI values
are real numbers while the original term frequencies are
integers. Although SVD is a one-time expense, Kolda
and O’Leary (1998) suggested an LSI approach based
on semi-discrete matrix decomposition. This approach,
which demands a much smaller storage space, produces
results comparable with those reported for LSI based on
SVD.

A specific source of LSI’s discriminative power is
not exactly clear. As an explanation for the performance
of LSI Theorem 1 was often cited. But this result can
only provide an explanation for the fact that LSI does
not decrease the performance obtained with the traditional
VSM, but does not justify the improvement in precision
and recall noticed when LSI was applied to some collec-
tions of text documents. Research has been conducted
to provide theoretical foundations for the improved per-
formance observed empirically. The results include the
following: a theoretical interpretation of LSI in relation
to the Bayesian regression model (Story, 1996), Multidi-
mensional Scaling (Bartell et al., 1992), a similarity-based
probabilistic model (Ding, 1999), a corpus model for
which, under certain conditions, LSI succeeds in captur-
ing the underlying semantics (Papadimitriou et al., 1998),
and a method of selecting the number of dimensions found
on a subspace-based model and the minimal description
length (Zha et al., 1998).

3. Methodology

The collection of text documents we used in our study was
taken from the United States Patent Classification System
(USPTO). Our investigations were focused on patent doc-
uments which were classified in (UPSTO, 2005) in the
following ten main US classes (left – US class number,
right – class name):
307 Electrical transmission or interconnected systems
323 Power supply or regulation systems
329 Demodulators
330 Amplifiers
331 Oscillators
332 Modulators
338 Electrical resistors
343 Radio wave antenna
703 Structural design, modelling, simulation and

emulation
706 Artificial intelligence.

For each of these classes, the list of terms and the
list of patent documents were extracted, together with the
frequency of the appearance of each word in each docu-
ment. Following the suggestions given in the literature in
order to improve retrieval, but at the same time to improve
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computation time and storage requirements, we decided
to perform some pre-processing of our text data. The first
pre-processing step we proceed with is the elimination of
one-letter words, digits and ‘_’, ‘-’ and ‘” characters (‘t2o’
became ‘to’, ‘user’s’ became ‘users’). To avoid index-
ing uninteresting terms for our retrieval, the next step in-
cludes the removal of the so-called stopwords (e.g. ‘and’,
‘but’, ‘or’) by using the SMART-stoplist of 571 stopwords
(SMART, 2005). The last step of pre-processing concerns
stemming. Some authors suggest that morphologically re-
lated words belonging to the same root (sharing a com-
mon ‘stem’) may be treated alike, for example, ‘decom-
pose’, ‘decomposed’, ‘decomposing’, ‘decomposes’ and
‘decomposition’. Although recent research (Hull, 1996)
shows that ‘some of the stemming is almost always bene-
ficial but the average absolute improvement due to stem-
ming is small, ranging from 1 to 3’, we applied the classic
stemming algorithm proposed by Porter (PorterStemmer,
2005) also from the storage interests.

After all of the above is done, and the number of
terms to be indexed is reduced by about 40%, we are ready
for constructing the terms-documents matrix correspond-
ing to each class (i.e., corresponding to the words and
patent documents belonging to each of the classes stud-
ied). No term weighting is used for the entries of the
terms-documents matrix.

Deciding whether or not a document is relevant is a
very subjective matter, because it depends ultimately on
the user to decide if the returned documents are pertinent
or not to his or her goal. Usually, a standard information
retrieval test collection (MED, CISI, TIME, etc.) contains
a collection of articles, a set of queries and a list of docu-
ments for each query indicating its relevant documents. In
the semantic space the cosines between the query vector
and the document vectors are computed and those docu-
ments for which the cosine with the query is greater than
a given threshold are returned. Using this last list of rele-
vant documents available, the efficiency of LSI to the re-
spective test collection can be analyzed. In our case, the
information we had for evaluating the performance of LSI
was not a list of relevant documents (similar patents) cor-
responding to each of the patent documents, and rather
a set of document-class pairs, showing which patent in
which class (main and/or subclass) is classified in USPTO.
We decided to exploit this information in the form of a
classes-documents matrix B = [bij ] ∈ R

c×d, where each
entry (bij) was 1 when the j-th document was classified
in the i-th class and 0 otherwise. Here c is the number of
classes and d the number of documents.

Before computing the classes-documents matrix,
there were two things to notice about the data we had,
which gave us the classification of patents into classes.
The first remark is that one patent document could be clas-
sified in more than just one class or subclass. The second

remark is connected with the structure of the US classi-
fication system of patents. We observed that among the
list of the classes and subclasses associated with every
patent, one could encounter the following situation: the
list of classes in which the document was classified in-
cluded both a class and some of its subclasses. Since we
decided that in the classes-documents matrix the classes
would be treated like independent of each other, this cre-
ated the need for transforming the information data re-
garding the classification of patents (because we cannot
consider, for instance, the main class 307 and its subclass
307/149 as two different classes).

For this purpose, we stored the US classification sys-
tem for patents in a tree structure where a node stands for
a class and its corresponding direct subclasses are added
as its children in the tree. Then, based on the structure of
the tree, if one document is classified both in a “parent”
class and in some of its “children” or “grand-children”
subclasses, then we retain only the “parent” class, as-
suming that the information about “children” subclasses
is already contained in the “parent” subclass (i.e., when
a patent is classified in the class 307, in 307/154 and in
307/155, where 307/154 is a subclass of 307 and 307/155
is a subclass of 307/154, then we consider the patent as
being classified in the class 307).

After processing these transformations applied to the
classes-documents information data, the number of sub-
classes where the documents are classified decreases con-
sistently for each of the ten classes. For example, for the
US class 307, from the original 186 subclasses in which
the patents of the class were classified, after the transfor-
mation mentioned above, we obtained in the end only 26
subclasses (all of them of level 2 in the tree, which means
direct subclasses of the main class 307). The classes-
documents matrix for each class were created from the
transformed data information, and Table 1 shows the di-

Table 1. Matrix dimensions.

US class No. of
documents

No. of
words

No. of
subclasses

307 4592 15077 26

323 3924 12148 22

329 730 5621 7

330 6097 14702 50

331 4255 13403 60

332 687 5808 8

338 2242 11384 46

343 6369 17135 3

703 2772 21552 6

706 2255 20934 10
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mensions of both the terms-documents matrix A and the
classes-documents matrix B obtained for each of the ten
investigated classes.

In order to analyze the effectiveness of applying LSI
to patent documents and to compare the retrieval results
with the US classification system for patents, considering
consequently each document as being a query, we com-
puted the matrix X of similarity scores between the doc-
uments derived from the LSI approach by X = AT

k Ak,
where the columns of Ak had been preliminarily normal-
ized. The matrix X has the entry (xij) being the cosine
of the angle between the vectors corresponding to the pro-
jection of the documents di and dj , respectively, onto the
latent semantic space.

To evaluate the retrieval results, we used two mea-
sures. The first one is a widely used measure of perfor-
mance for retrieval systems, consisting in determining two
values: precision and recall. Typically, for an information
retrieval system, the precision relative to a query is defined
as

p =
number of relevant documents retrieved

number of all documents retrieved

and is a measure of accuracy, while the recall relative to
the query is defined as

r =
number of relevant documents retrieved

number of all relevant documents
,

being a measure of completeness. First, we explain the
significance of “documents retrieved” and “relevant doc-
uments” in our experiments. For a certain document
dj , j = 1, . . . , d (seen as a query), we extract from the
matrix B the corresponding ranked list of relevant doc-
uments (referred to in the definition of recall as “all rel-
evant documents”) as being the list of documents which
co-occur with dj in at least one class. The list of “all
documents retrieved” by our retrieval system LSI is the
ranked list obtained for the document dj after computing
the cosines of the angles between the document vector dj

and all other documents.

In order to detect which of the retrieved documents
are also relevant for our document dj , the list of retrieved
documents (obtained from LSI) is compared with the list
of relevant documents (obtained from the matrix B). The
next step is to compute the values of precision at levels
of recall 0.1, 0.2, . . . , 0.9, which constitutes a standard
technique in the literature for evaluating a retrieval sys-
tem. As an example, at the given level of recall 0.5 we
have already obtained n5, say, relevant documents which
represent 50% of the entire list of relevant documents (ac-
tually, we obtained the first half of the list of documents
obtained from B). At the level of recall 0.5, the precision
will be then the ratio between n5 and the number of doc-
uments, l5, say, in the list returned by LSI, chosen so that

all the n5 relevant documents are contained in the first
l5 elements of the ranked list of retrieved documents. In
this way we compute the precision at recall 0.5 for every
document dj , j = 1, . . . , d, and then, to obtain a global
characterization of our retrieval system, we compute the
mean value of precisions at recall 0.5 for all the docu-
ments. As the last step, we calculate the average precision
characterizing our LSI retrieval system as the mean value
of precisions at levels of recall 0.1, 0.2, . . . , 0.9.

The second measure used the co-occurences of doc-
uments based on the classes-documents matrix. The sim-
ilarity matrix Y = BT B delivers us the co-occurences
of the vector columns in B based on the given UPSTO
classification. We wanted to compare the similarity ma-
trix X derived from LSI with this similarity matrix Y
in order to see if the LSI derived classification is a conve-
nient approximation of the original UPSTO classification.
To this end, we computed the value of the norm

∥∥∥∥
X

‖X‖F −
Y

‖Y ‖F

∥∥∥∥
F

, (2)

where ‖ · ‖F denotes the Frobenius norm defined in Sec-
tion 2. We looked for its minimum as a function of k, the
number of singular values.

We summarize the methods described above in the
following algorithms:

Algorithm 1. Computation of the average precision:

Input

A =
(
A(i, j)

)
i=1,t

j=1,d

– (t× d) matrix of terms
and documents

B =
(
B(l, j)

)
l=1,c

j=1,d

– (c× d) matrix of classes
and documents

Output

AvP =
(
AvP (j, k)

)
– matrix of average precisions

for j = 1, . . . , d and
k = 5, . . . , 500

Loop

for j = 1, . . . , d

• B(j) ← 1
‖B(j)‖B(j); normalization of the

column B(j) of B

• rB(j)← B(j)T B; rB(j) is the vector of rel-
evance for the document dj

• nB(j) ← number of the strictly positive en-
tries of the vector rB(j); nB(j) is the num-
ber of all relevant documents for the document-
query dj

end for j
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for k = 5, . . . , 500

• perform SVD: A = USV T

• compute Ak = UkSkV T
k by retaining the

largest k singular values

• for j = 1, . . . , d

• Ak(j) ← 1
‖Ak(j)‖Ak(j), j = 1, . . . , d;

normalization of each column Ak(j) of Ak

• rAk(j)← Ak(j)T Ak

• nAkrel(j) ← number of the strictly
positive entries of the vector rAk(j);
nAkrel(j) is the number of all documents
retrieved for the document-query dj

• nAkrelret(j) ← number of documents
di, i = 1, . . . , d, for which the cosine with
the vector dj is positive both in rB(j)
and in rAk(j); nAkrelret(j) is the num-
ber of relevant documents retrieved for the
document-query dj

• for s = 1, . . . , 9
compute precision p(s, j) at levels of
recall 0.s

end for s

AvP (j, k)← 1
9

9∑
s=1

p(s, j); AvP (j, k) is

the mean average precision

end for j

end for k

return the matrix AvP with the entries AvP (j, k)

Algorithm 2. Computation of the norm in (2):

Input

A =
(
A(i, j)

)
i=1,t

j=1,d

– (t× d) matrix of terms
and documents

B =
(
B(l, j)

)
l=1,c

j=1,d

– (c× d) matrix of classes
and documents

Output

f(k), value of the norm in (2),
for k = 5, . . . , 500

Loop

Y ← BT B; Y is the similarity matrix

for k = 5, . . . , 500

• perform SVD: A = USV T

• compute Ak = UkSkV T
k by retaining the

largest k singular values

• compute the matrix X = AT
k Ak

• compute the Frobenius norm

f(k) =
∥∥∥∥

X

‖X‖F −
Y

‖Y ‖F

∥∥∥∥
F

end for k

The truncated SVD was computed in our experi-
ments with the ARPACK++ software package (ARPACK,
2005), and we developed C++ software for the compu-
tation of similarity matrices and calculation of the two
measures described above. The computer we used was
an 1.60 GHz Intel(R) Pentium 4 CPU machine with
1.048.048 KB RAM.

4. Results and Discussion

Our major interest was to compare the performance of the
traditional VSM with the retrieval performance of LSI,
separately, for each of the ten classes and for different val-
ues of k (all our experiments were conducted for a range
of values of k going from 40 to 500). Various results have
been reported until now in the literature regarding the im-
provement in performance over the VSM, an average im-
provement of 30% being sometimes indicated. Although
there is no evidence in the published literature that LSI can
reliably be expected to deliver such a performance on any
given collection (Deerwester et al., 1990; Dumais, 1991;
1995), it is rather the LSI model that can almost always
match the VSM, sometimes slightly outperforming it.

Any two systems that provide document retrieval can
be compared by plotting their respective precision-recall
curves on the same plot. In general, systems with higher
precision across a wide range of recall values are superior,
i.e., the higher the curve, the better. Our results confirm
the claim that LSI can almost always match the VSM (see
Figs. 1 and 2), sometimes slightly improving it, since from
the total number of ten classes we noticed that LSI has
slightly improved the VSM over seven of the classes (an
average improvement of 5%), and has slightly harmed the
retrieval result for one class (US class 330) with an aver-
age damage of 3% until the choice for k for the respective
class reached the value 500. For other two classes LSI has
performed slightly better for values of k less than 100
for one class (US class 703) and k = 200 for the other
(US class 329), and then worsened the retrieval for values
greater than k = 100 and k = 200, respectively. We add
as a remark that for most of the seven classes, a slightly
improved performance of LSI over the VSM was observed
for any value of k, and two from these two classes (US
classes 338 and 706) verified the assertion that LSI im-
proves precision at higher levels of recall.
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Fig. 1. LSI vs the VSM for the US class 331.

Fig. 2. LSI vs the VSM for the US class 706.

Another interesting aspect was determining the op-
timal value of singular values k which should be used
in the truncation of SVD for obtaining the best results.
Therefore, we plotted the average precision as a function
of the number k of singular values for each of the ten
classes. We expected to obtain the optimal values of k
to lie between 100 and 300, as is reported in the litera-
ture, although in (Jessup and Martin, 2001) it was indi-
cated that even for standard test collections for informa-
tion retrieval like MED (a collection of a set of Medline
articles on various medical topics (MED, 2005)) or TIME
(a collection of articles from TIME magazine from 1963
(TIME, 2005)), a reasonable performance can be obtained
only for k = 50 for MED and for TIME in the range from
50 to 300, although the best performance is observed for
dense or nearly dense matrices. Analyzing the plots, cf.
Figs. 3, 5 and 7, we deduce that in our experiments and
for our patent documents, a value of 80 singular values
kept while truncating SVD suffices to assure us a good re-
trieval. For the classes we examined the average precision
tends to decrease very slowly after reaching a maximum
around 80–100 for some classes, or another tendency no-

ticed in the plots was that for some other classes the values
of average precision strongly increase till k = 80–100 and
then continue to increase further, although very slowly.
Hence, we conclude that setting k = 80 is a reasonable
choice for our collection of patent documents.

This conclusion is strengthened by another measure
we decided to use, that is, computing the similarities of
vector documents in the classes-documents matrix, based
on their co-occurence in the same classes. We were in-
terested in seeing how good “approximation” of the simi-
larity matrix obtained from classification the LSI derived
similarity matrix is. We calculated the expression in (2)
for k ranging across the same values as in the experi-
ments evaluating the average precision described above.
Plotting the values obtained as a function of k, we no-
tice that for each class the behaviour of the norm values
in (2) mirrors the plot (with respect to the horizontal co-
ordinate axis) of the corresponding class in the average
precision experiments, as can be seen in Figs. 3–8. This
“mirroring” appears since for the average precision exper-
iments we were interested in maximizing the average pre-
cision, while in these experiments we were searching for
a minimum of the norm values. Thus, using two different
measures to evaluate the performance of LSI, we came to
the same conclusion, namely, that the best choice for the
value of k, the number of singular values in the truncation
of SVD, is about k = 80.

5. Conclusions

We presented an empirical study of an unsupervised
method for information retrieval, LSI based on SVD, a
method which was mostly studied using some standard
test collections in information retrieval. To the best of our
knowledge, the performance of LSI has been studied on
standard text collections which are often used in informa-
tion retrieval, but we investigated the effectiveness of LSI
in text retrieval by applying this method of automatic in-
dexing to a special kind of real life documents, namely,
patent documents. Since the documents had already been
classified in the UPSTO, instead of the typical list with
documents relevant to a given query, we used a classes-
documents matrix specifying for each document in which
class it had been classified (a matrix which is generally
needed in supervised methods for classification). Based
on this information regarding the classification of docu-
ments into classes, we constructed the corresponding lists
of relevant documents for the set of queries (which, in
our case, is actually the set of documents), and proceeded
to analyze typical evaluation measures: precision and re-
call. On the other hand, we also evaluated the extent to
which the similarities between the documents in the latent
semantic space approximate the co-occurences of docu-
ments in the same class in the USPTO classification.
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Fig. 3. Average precision for the US class 323.

Fig. 4. Values of the norm in (2) for the US class 323.

Fig. 5. Average precision for the US class 330.

Fig. 6. Values of the norm in (2) for the US class 330.

Fig. 7. Average precision for the US class 331.

Fig. 8. Values of the norm in (2) for the US class 331.
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Thus, we provided results using two different mea-
sures which produced the same behaviour for each of the
classes investigated: although LSI improves very slightly
on the VSM, the power of this tool for information re-
trieval is proved once again by applying it to patent doc-
uments and by managing with good performance to re-
discover the previously made classification of these docu-
ments. We found that for the patent document collection
used it is enough to use a number of 80 factors which span
the latent semantic space (i.e., the number of singular val-
ues retained in the truncation of SVD), and this number is
sufficient for acquiring satisfactory results in the retrieval
process based on the LSI technique. As most of the re-
searchers (including its inventors), we do not strongly rec-
ommend the LSI as an improved alternative and being far
superior to the VSM. Although we obtained slightly better
results than the VSM for some classes, the improvement
in retrieval performance was modest.

Another method of information retrieval which may
be applied in patent classification is with probabilistic la-
tent semantic indexing (cf. Fuhr, 1989; 1992). This, how-
ever, is the subject of future research.
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