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This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR.
It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then
rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation
of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The
novelty of the learning algorithm consists in the application of a deterministic annealing optimization method. It leads to an
improvement in the neuro-fuzzy modelling performance. To show the validity of the introduced method, two examples of
application concerning chaotic time series prediction and system identification problems are provided.
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1. Introduction

When we create a model of a real process using only pre-
cise information, we frequently encounter a lot of unsolv-
able difficulties due to the highly complex nature of the
world. On the other hand, humans have already used im-
precise information in the form of linguistic terms of the
natural language to describe all phenomena for thousands
of years. This observation resulted in a novel way of
characterizing nonprobabilistic uncertainties: fuzzy sets
(Zadeh, 1965). Fuzzy set theory is a mathematical tool
which incorporates vague information, expressed in a nat-
ural, humancomprehensible form to describe complex real
world processes. A fundamental of fuzzy systems is a
set of conditional if-then statements (rule base) with lin-
guistically interpreted propositions. The ability to define
fuzzy sets in premise and conclusion parts of fuzzy if-then
rules is crucial for the use of fuzzy systems. Fuzzy mod-
elling is an important tool in diverse areas, including var-
ious engineering fields, such as automatic control, signal
processing, time-series prediction, identification, pattern
recognition, information retrieval, data mining, consumer
electronics, etc.

Methods of the extraction of fuzzy if-then statements
can be broadly categorized into two families (Czogała
and Łęski, 1999): (i) those determined from the knowl-
edge of a human expert, or (ii) those obtained automat-
ically from numerical data which describe input/output
system characteristics. Methods from the first family have

some disadvantages: the appointed rule set is often in-
complete, subjective, or even contradictory. However,
they reveal high effectiveness, particularly in automatic
control problems (Mamdani, 1974; 1976; 1977; Mamdani
and Assilian, 1975). Early methods from the second fam-
ily still require information from a human expert (Kosko,
1987; Yager and Filev, 1984; Zadeh, 1971). Succeeding
procedures can be characterized by either the necessity of
applying heuristic procedures (Zadeh, 1973) or limited ap-
plicability (Pedrycz, 1984b). A true breakthrough in au-
tomatic knowledge acquisition is the invention of meth-
ods which use the learning capability of artificial neural
networks. The integration of neural networks and fuzzy
models leads to the so-called neuro-fuzzy systems. Sys-
tems of this kind are usually represented as multilayer
feedforward neural networks (Cho and Wang, 1996; Czo-
gała and Łęski, 1999; Jang, 1993; Jang and Sun, 1995; Mi-
tra and Pal, 1995; Rutkowska, 2001). Radial basis func-
tion networks constitute an important class of feedfor-
ward neural networks with one hidden layer. They have
some useful properties that make them particularly inter-
esting for the extraction of fuzzy if-then rules (Cho and
Wang, 1996; Czogała and Łęski, 1996; 1999; Jang and
Sun, 1995; Yen et al., 1998). Radial basis function net-
works are functionally equivalent to fuzzy systems (Jang
and Sun, 1993). This equivalence resulted in the construc-
tion of the Takagi-Sugeno-Kang (TSK) type of the Adap-
tive Network based Fuzzy Inference System (ANNFIS)
(Jang and Sun, 1993; 1995). The way of improving the
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interpretability of TSK fuzzy models by combining global
and local learning was presented by Yen et al. (1998). A
similar approach was described by (Rao et al., 1997; Rao
and Rose, 1999; Rose, 1991; 1998). They proposed an
algorithm based on a deterministic annealing (DA) opti-
mization method that avoids many local minima on a cost
surface during the estimation process of parameters of ra-
dial functions.

Fuzzy systems can be divided into two main classes.
The first group (fuzzy systems based on the Mamdani as
well as the logical approach) is based on conditional if-
then statements whose antecedents and consequents uti-
lize fuzzy sets. The second group (Takagi-Sugeno-Kang
type systems) use a rule structure that has fuzzy an-
tecedent and functional consequent parts. Both of them
can be obtained as a particular case of the Artificial Neu-
ral Network Based Fuzzy Inference System (ANNBFIS),
with parameterized consequents of fuzzy if-then rules
(Czogała and Łęski, 1996). The equivalence of approx-
imate reasoning results using logical and conjunctive in-
terpretations of if-then rules which occurs under some re-
spective circumstances was shown in a series of works by
Czogała and Łęski (1999; 2001). This observation led to
a more generalized structure of ANNBFIS–ANBLIR (Ar-
tificial neural Network Based on Logical Interpretation of
fuzzy if-then Rules), a computationally effective system
with parameterized consequents based on both conjunc-
tive and logical interpretations of fuzzy rules (Czogała
and Łęski, 1999). The ANBLIR system can be success-
fully applied to solve many practical problems such as
classification, control, digital channel equalization, pat-
tern recognition, prediction, signal compression and sys-
tem identification (Czogała and Łęski, 1999). Originally,
its learning procedure was based on a hybrid method
which uses a combination of the steepest-descent and
least-squares methods (Czogała and Łęski, 1999). How-
ever, it may lead to a local minimum in the case of a mul-
timodal criterion function.

In this paper a modification of the ANBLIR learning
algorithm is presented. It consists in the application of
a deterministic annealing method adopted to the neuro-
fuzzy system with parameterized consequents. To show
the validity of the proposed method, the described neuro-
fuzzy system is applied to the prediction of a chaotic time
series generated through the solution of the Mackey-Glass
equation (Schuster, 1984) and to the system identification
problem based on Box and Jenkins’ data (1976).

The remainder of this article is as follows: In Sec-
tion 2, the structure of a neuro-fuzzy system based on log-
ical as well as conjunctive interpretation of if-then rules is
presented. Section 3 introduces a new learning algorithm
based on the deterministic annealing method adopted to
the neuro-fuzzy modeling problem. In Section 4, a learn-
ing algorithm that combines the deterministic annealing

approach and the least-squares method is outlined. Sec-
tion 5 presents an initialization procedure for the learning
algorithm based on fuzzy clustering of training data. Ex-
amples of applications of the new learning algorithm are
provided in Section 6. Section 7 concludes the paper and
points out future directions.

2. Neuro–Fuzzy System with Parameterized
Consequents

A fuzzy system with parameterized consequents generates
inference results based on fuzzy if-then rules. Every fuzzy
conditional statement from a rule base may be written in
the following form (Czogała and Łęski, 1999):

R(i) : if
t

and
j=1

(
Xj is A

(i)
j

)
then Y is B(i) (y, θ) , (1)

i = 1, . . . , I , where I denotes the number of fuzzy if-then
rules, t is the number of inputs, Xj are input linguistic
variables of the fuzzy system, Y is an output linguistic
variable of the system, A

(i)
j and B(i) (y, θ) are linguis-

tic values (terms) of fuzzy sets in antecedents and conse-
quents, respectively, and θ is a set of parameters which
define the consequence fuzzy set.

During the inference process, crisp numerical data
from a training set are mapped to fuzzy sets using sin-
gleton fuzzifiers. Then the i-th if-then rule has the form
(Czogała and Łęski, 1999):

R(i) : if
t

and
j=1

(
x0j is A

(i)
j

)
then Y is B(i) (y, x0) , (2)

where x0j is the j-th element of the input vector of fuzzy
singletons x0 = [x01, x02, . . . , x0t].

If we assume that fuzzy sets of linguistic values in
rule antecedents have Gaussian membership functions,
then we can evaluate the grade of membership for the i-th
rule and j-th input x0j based on the following formula
(Czogała and Łęski, 1999):

A
(i)
j (x0j) = exp

⎡
⎣−1

2

(
x0j − c

(i)
j

s
(i)
j

)2
⎤
⎦ , (3)

where c
(i)
j and s

(i)
j for i = 1, 2, . . . , I and j =

1, 2, . . . , t are membership function parameters, centre
and dispersion, respectively.

From the membership functions of premise compo-
nents, we can get a firing strength of rules:

F (i) (x0) = A
(i)
1 (x01)∧A

(i)
2 (x02)∧· · ·∧A

(i)
t (x0t) , (4)

where ∧ stands for the t-norm, which represents the ex-
plicit connective ‘and’ of multi-input rule predicates.
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Assuming the t-norm ∧ to be the algebraic product,
we get the firing strength of the i-th rule in the form

F (i) (x0) =
t∏

j=1

A
(i)
j (x0j)

= exp

⎡
⎣−1

2

t∑
j=1

(x0j−c
(i)
j

s
(i)
j

)2

⎤
⎦ . (5)

i = 1, . . . , I .

During the next stage of fuzzy inference, we eval-
uate the resulting conclusions of each rule. The kind of
executed operations depends on the chosen way of inter-
preting if-then rules. We can introduce the general form
of the conclusion membership function before aggrega-
tion as follows (Czogała and Łęski, 1999):

B(i)′ (y, x0) = Ψ
[
F (i) (x0) , B(i) (y, x0)

]
. (6)

We can apply different classes of membership func-
tions of fuzzy sets in consequents, including the most fre-
quently used ones, such as triangular, trapezoidal or Gaus-
sian. In what follows, we assume symmetric triangular
membership functions. This choice is dictated by the com-
putational effectiveness of the system. A symmetric trian-
gular membership function can be defined using two pa-
rameters: the width of the triangle base w(i) and the lo-
cation of the centre of gravity y(i) (x0) determined by a
linear combination of fuzzy system inputs:

y(i) (x0) = p
(i)
0 +p

(i)
1 x01 + · · ·+p

(i)
t x0t = p(i)T x′

0. (7)

The above dependence defines the so-called moving
(parameterized) consequent (Czogała and Łęski, 1996;
1999).

The membership function of the resulting conclu-
sions for the i-th rule after the inference process, but be-
fore aggregation, can be written as

B(i)′ (y, x0) = Φ
[
F (i) (x0) , w(i), y(i) (x0)

]
, (8)

where Φ stands for the fuzzy implication (for a logical
interpretation of if-then rules) or the t-norm (for a con-
junctive interpretation of if-then rules).

The output fuzzy set is derived from the aggregation
process:

B′ (y) =
I⊕

i=1

B(i)′ (y, x0) , (9)

where
⊕

denotes the aggregation operation.

The resulting fuzzy set has a non-informative part,
i.e., there are elements of the fuzzy set y ∈ Y whose
membership values are equal in the whole space Y.

Therefore, the following modified indexed centre of grav-
ity defuzzifier (MICOG) has to be used (Czogała and
Łęski, 1999):

y0 =

∫
y (B′ (y)− α) dy∫
(B′ (y)− α) dy

, (10)

where y0 denotes the crisp output value, and α ∈ [0, 1]
describes the interdeterminancy that goes together with
information. If we assume additionally the normalized
arithmetic mean as the aggregation

I⊕
i=1

B(i)′ (y, x0) =
1
I

I∑
i=1

B(i)′ (y, x0) , (11)

then the final crisp output value of the fuzzy system can
be evaluated from the formula

y0 =

∫
y

I

I∑
i=1

(
B(i)′ (y, x0)− αi

)
dy

∫
1
I

I∑
i=1

(
B(i)′ (y, x0)− αi

)
dy

=

I∑
i=1

∫
y
(
B(i)′ (y, x0)− αi

)
dy

I∑
i=1

∫ (
B(i)′ (y, x0)− αi

)
dy

. (12)

The location of the modified indexed centre of grav-
ity for each fuzzy rule is defined as

y(i) (x0) =

∫
y
(
B(i)′ (y, x0)− αi

)
dy∫ (

B(i)′ (y, x0)− αi

)
dy

. (13)

Combining (12) and (13) yields

y0 =

I∑
i=1

[∫ (
B(i)′ (y, x0)− αi

)
dy

]
y(i) (x0)

I∑
i=1

∫ (
B(i)′ (y, x0)− αi

)
dy

. (14)

The integral
∫ (

B(i)′ (y, x0)− αi

)
dy defines the area

under the curve corresponding to the membership func-
tion of the consequent of the i-th rule after removing the
non-informative part. For a symmetric triangular function,
it is a function of the firing strength of the rule F (i) (x0)
and width of the triangle base w(i):∫ (

B(i)′ (y, x0)− αi

)
dy = g

(
F (i) (x0) , w(i)

)
.

(15)
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Finally, the crisp output value of the fuzzy system
takes the form

y0 =
I∑

i=1

G(i) (x0) y(i) (x0) , (16)

where

G(i) (x0) =
g
(
F (i) (x0) , w(i)

)
I∑

k=1

g
(
F (k) (x0) , w(k)

) . (17)

The function g
(
F (i) (x0) , w(i)

)
depends on the

fuzzy implication we use. The respective formulae for
selected fuzzy implications are included in Table 1. For
notational simplicity, we write B � B(i) (y, x0) , F �
F (i) (x0) and w � w(i).

It was proved (Czogała and Łęski, 1999; 2001) that
the neuro-fuzzy system with parameterized consequents
based on Łukasiewicz and Reichenbach implications pro-
duces inference results equivalent to the inference ob-
tained from Mamdani and Larsen fuzzy relations, respec-
tively.

To establish a rule base of the fuzzy system with pa-
rameterized consequents, the following set of unknown
parameters has to be estimated:

• centres of Gaussian membership functions of fuzzy
sets from premises: c

(i)
j for i = 1, 2, . . . , I and j =

1, 2, . . . , t,

• dispersions of Gaussian membership functions of
fuzzy sets from premises: s

(i)
j for i = 1, 2, . . . , I

and j = 1, 2, . . . , t,

• parameters determining the locations of fuzzy sets
from consequents: p

(i)
j for i = 1, 2, . . . , I and

j = 0, 1, 2, . . . , t,

• parameters determining the widths of fuzzy sets from
consequents: w(i) for i = 1, 2, . . . , I .

The number of rules I is also unknown. We assume
that it is pre-set arbitrarily. The number of antecedents
t is defined by the size of the input training vector di-
rectly. The described fuzzy system with parameterized
consequents can be treated as a radial basis function neu-
ral network (Czogała and Łęski, 1999). Consequently, the
unknown neuro-fuzzy system parameters can be estimated
using learning algorithms of neural networks.

Several solutions to this problem have been intro-
duced in the literature (Czogała and Łęski, 1996; 1999;
Łęski, 2003). In this work, a new learning procedure
which combines deterministic annealing and least-squares
methods is presented.

In the following, we assume that we have N exam-
ples of input vectors x0 (n) ∈ Rt and the same number of
known output values t0 (n) ∈ R. They form the so-called
training set:

Tr(N) = {x0 (n) , t0 (n)} , n = 1, 2, . . . , N. (18)

3. Deterministic Annealing

Our goal is the extraction of the set of fuzzy if-then rules
that represent the knowledge of the phenomenon under
consideration. The extraction process consists in estimat-
ing membership function parameters of both antecedents
and consequents. To solve this task, we use a supervised
learning algorithm based on the minimization of the fol-
lowing error (cost) function measured over the training
set:

E =
N∑

n=1

d (t0 (n)− y0 (n)) , (19)

where d (·) is a distortion measure.

To increase the ability of avoiding many local min-
ima that trap descent methods, we employ the technique
of deterministic annealing (Rose, 1991; 1998; Rao et al.,
1997; Rao and Rose, 1999) adapted to the neuro-fuzzy
system with learning parameterized consequents. How-
ever, it is not guaranteed that a global optimum of the cost
will be found (Rao and Rose, 1999).

The deterministic annealing method was proposed by
Rose in his Ph.D. dissertation (Rose, 1991). Its extensions
to clustering, classification, regression and parsimonious
modelling were described in (Rao and Rose, 1999; Rao et
al., 1997; Rose, 1998). The deterministic annealing is a
simulated annealing (Kirkpatrick et al., 1983; Metropo-
lis et al., 1953) based method, which replaces compu-
tationally intensive stochastic simulations by straightfor-
ward deterministic optimization of the modelled system
error energy (Rao et al., 1997). The algorithm reduces
to the minimization of the cost function while simultane-
ously controlling the entropy level of the current solution.

From (17) we see that

I∑
i=1

G(i) (x0) = 1. (20)

Equation (16) defines the neuro-fuzzy system as a mixture
of experts (models). Its global output is expressed as a lin-
ear combination of I outputs y(i) (x0) of local models,
each represented by a single fuzzy conditional statement.
The weight G(i) (x0) may be interpreted as the possibil-
ity of associating the i-th local model with input data x0.
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Table 1. Function g
“
F (i) (x0) , w(i)

”
for selected fuzzy implications.

Fuzzy implication

Ψ [F, B]
α g (F, w)

Fodor(
1,

max (1 − F, B) ,

if F ≤ B

otherwise
1 − F

8<
:

w

2

`
1 − 2F + 2F 2

´
,

wF (1 − F ) ,

F ≥ 1

2

F <
1

2

Gödel(
1,

B,

if F ≤ B

otherwise
0

w

2

`
2 − 2F + F 2

´

Gougen

min

„
B

F
, 1

«
, F �= 0 0

w

2
(2 − F )

Kleene-Dienes

max(1 − F, B) 1 − F
w

2
F 2

Łukasiewicz

min(1 − F + B, 1) 1 − F
w

2
F (2 − F )

Reichenbach

1 − F + FB 1 − F
w

2
F

Rescher(
1,

0,

if F ≤ B

otherwise
0 w (1 − F )

Zadeh

max{1 − F, min(F, B)} 1 − F

8<
:

w

2
(2F − 1) ,

0,

F ≥ 1

2

F <
1

2

For every local model we have to determine a set of its
parameters

p(i)=
[
p
(i)
0 , p

(i)
1 , . . . , p

(i)
t

]T

, (21)

as well as assignments G(i) (x0) that minimize the crite-
rion (19). Deterministic annealing is a method that mini-
mizes the squared-error cost

E =
N∑

n=1

En =
N∑

n=1

1
2

(t0 (n)− y0 (n))2 , (22)

where N is the size of the training set.

In practice, we look for the following set of opti-
mum values of the membership function parameters of
antecedents and parameterized consequents:

ζ(i) =
[
c
(i)
j , s

(i)
j , w(i), p(i)T

]T
, (23)

i = 1, . . . , I and j = 1, . . . , t.

The randomness of the association between data and
local models can be measured using the Shannon entropy:

S = −
N∑

n=1

I∑
i=1

G(i) (x0 (n)) log G(i) (x0 (n)) . (24)

In deterministic annealing, the objective is the mini-
mization of the cost E for a fixed level of entropy S0:

min E subject to S = S0. (25)

The procedure involves a series of iterations while
the randomness level is gradually reduced. To attain a
global optimum of the cost, the framework of the simu-
lated annealing method is used.

The constrained optimization is equivalent to un-
constrained minimization of the Lagrangian (Rao et al.,
1997):

L = E − T (S − S0) , (26)

where T is the Lagrange multiplier.
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A connection between (26) and the annealing of a
solid is essential here. The quantity L can be identified
as the Helmholtz free energy of a physical system with the
‘energy’ E, ‘entropy’ S and ‘temperature’ T (Rao et al.,
1997).

At a high level of pseudo-temperature T , the mini-
mization of the Lagrange function L amounts to entropy
maximization of associating data and models. In other
words, we seek a set of local models that are equally asso-
ciated to each input data point — the set of local models
which cooperate to work out a desired output (it can be
noticed that, as T → ∞, we get the uniform distribution
of G(i) (x0) and, therefore, identical local models). As
pseudo-temperature is lowered, more emphasis is placed
on reducing the square error. This also leads to a decrease
in entropy. We get more and more competitive local mod-
els, each associated with given data more closely. We
cross gradually from cooperation to competition. Finally,
at T = 0, the optimization is conducted regardless of the
entropy level and the cost is minimized directly.

The deterministic annealing algorithm (DA) can be
summarized as follows (Rao et al., 1997):

1. Set the parameters: the initial solution ζ , initial
pseudo-temperature Tmax, final pseudo-temperatu-
re Tmin and annealing schedule function q (T ). Set
T = Tmax.

2. Minimize the Lagrangian L using the steepest de-
scent method:

∂L

∂ζ
=

∂E

∂ζ
− T

∂S

∂ζ
. (27)

3. Decrement the pseudo-temperature according to the
annealing schedule T ← q (T ).

4. If T < Tmin, STOP. Otherwise, go to Step 2.

The annealing schedule function determines the
pseudo-temperature reduction procedure. In the sequel,
we assume the following decrement rule:

T ← q T, (28)

where q ∈ (0, 1) is a pre-set parameter.

At each level of temperature we minimize the La-
grangian L iteratively. The parameters of the neuro-fuzzy
system are

ζ (k + 1) = ζ (k)− η
∂L

∂ζ

∣∣∣∣
ζ=ζ(k)

, (29)

where η is the learning rate, and k denotes the iteration
index.

The Lagrange function (26) can be written in the
form

L =
N∑

n=1

Ln, (30)

where

Ln = En +T

I∑
i=1

G(i) (x0) log G(i) (x0)+
T

N
S0. (31)

For notational simplicity, we introduce the following
symbols:

Ξ(i) (x0 (n)) = [y0 (n)− t0 (n)] y(i) (x0 (n))

+ T log G(i) (x0 (n)) , (32)

Ξ (x0 (n)) =
I∑

i=1

G(i) (x0 (n)) Ξ(i) (x0 (n)) . (33)

Then the gradients ∂Ln/∂ζ , n = 1, . . . , N may be ex-
pressed as

∂Ln

∂c
(i)
j

=
xj0 − c

(i)
j(

s
(i)
j

)2

F (i) (x0)
g
(
F (i) (x0) , w(i)

)

×∂g
(
F (i) (x0) , w(i)

)
∂F (i) (x0)

G(i) (x0)

×
[
Ξ(i) (x0)− Ξ (x0)

]∣∣∣
x0=x0(n)

, (34)

∂Ln

∂s
(i)
j

=

(
xj0 − c

(i)
j

)2

(
s
(i)
j

)3

F (i) (x0)
g
(
F (i) (x0) , w(i)

)

×∂g
(
F (i) (x0) , w(i)

)
∂F (i) (x0)

G(i) (x0)

×
[
Ξ(i) (x0)− Ξ (x0)

]∣∣∣
x0=x0(n)

, (35)

∂Ln

∂p
(i)
j

=
∂E

∂p
(i)
j

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
y0 (n)− t0 (n)

]
G(i) (x0 (n)) xj0 (n)

for j �= 0,[
y0 (n)− t0 (n)

]
G(i) (x0 (n))

for j = 0,

(36)
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∂Ln

∂w(i)
=

1
g
(
F (i) (x0) , w(i)

) ∂g
(
F (i) (x0) , w(i)

)
∂w(i)

×G(i)(x0)
[
Ξ(i)(x0)−Ξ(x0)

]∣∣∣
x0=x0(n)

. (37)

The partial derivatives with respect to unknown pa-
rameters for all data from the training set may be written
in the following form:

∂L

∂c
(i)
j

=
1(

s
(i)
j

)2

N∑
n=1

[
xj0 (n)− c

(i)
j

]

× F (i) (x0 (n))
g
(
F (i) (x0 (n)) , w(i)

)
× ∂g

(
F (i) (x0 (n)) , w(i)

)
∂F (i) (x0 (n))

×G(i) (x0 (n))
[
Ξ(i) (x0 (n))− Ξ (x0 (n))

]
,

(38)

∂L

∂s
(i)
j

=
1(

s
(i)
j

)3

N∑
n=1

[
xj0 (n)− c

(i)
j

]2

× F (i) (x0 (n))
g
(
F (i) (x0 (n)) , w(i)

)
× ∂g

(
F (i) (x0 (n)) , w(i)

)
∂F (i) (x0 (n))

×G(i)(x0 (n))
[
Ξ(i) (x0 (n))−Ξ(x0 (n))

]
, (39)

∂L

∂p
(i)
j

=
∂E

∂p
(i)
j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
y0 (n)−t0 (n)

] N∑
n=1

G(i) (x0 (n)) xj0 (n)

for j �= 0,[
y0 (n)−t0 (n)

] N∑
n=1

G(i) (x0 (n))

for j = 0,

(40)

∂L

∂w(i)
=

N∑
n=1

1
g
(
F (i) (x0 (n)) , w(i)

)

× ∂g
(
F (i) (x0 (n)) , w(i)

)
∂w(i)

×G(i) (x0 (n))
[
Ξ(i) (x0 (n))− Ξ (x0 (n))

]
.

(41)

If we introduce the notation

d (x0) =
[
G(1) (x0)x

′T
0 , G(2) (x0)x

′T
0 , . . . ,

G(I) (x0)x
′T
0

]
, (42)

P =
[
p(1)T , p(2)T , . . . , p(I)T

]T
, (43)

where

x′
0 =

[
1
x0

]
(44)

is the extended input vector

p(i)T =
[
p
(i)
0 , p

(i)
1 , . . . , p

(i)
t

]
, (45)

then Eqn. (16) defining the crisp output value of the neuro-
fuzzy system is given by (Czogała and Łęski, 1999):

y0 = d (x0)
T

P . (46)

Thus, the parameters P of consequents may be esti-
mated using the least-squares (LS) method (Czogała and
Łęski, 1999; Jang et al., 1997; Sugeno and Kang, 1988).
The least-squares method accelerates the convergence of
the learning method (Czogała and Łęski, 1999). There are
two approaches to solve the LS problem, namely global
and local ones (Łęski, 2003). In what follows, we adopt
the local one. It enables us to tune each local model (rule)
independently. Hence, we have to solve I independent
weighted LS problems, one for each fuzzy conditional
statement (Łęski, 2003). To avoid the matrix inverse op-
eration, the recurrent least-squares method can be applied
(Czogała and Łęski, 1999).

The integration of the least-squares algorithm used
for estimating the parameters of linear combinations in the
fuzzy sets of the consequents and the deterministic anneal-
ing procedure used for estimating the remaining parame-
ters of the neuro-fuzzy system leads to a hybrid learning
method.

4. Learning Algorithm

The integration of the least-squares procedure with the de-
terministic annealing method leads to a learning method
where the parameters of the fuzzy sets from antecedents
and consequents of fuzzy if-then rules are adjusted
separately. The antecedent parameters c

(i)
j , s

(i)
j , i =

1, 2, . . . , I and j = 1, 2, . . . , t, as well as the trian-
gle base widths w(i), i = 1, 2, . . . , I of fuzzy sets in
consequents are estimated by means of the deterministic
annealing method, whereas the parameters of the linear
equations from consequents are adjusted using the least-
squares algorithm p(i)T

, i = 1, 2, . . . , I . The proposed
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method can be summarized in the following steps:

1. Set the parameters: the initial solution ζ , initial
pseudo-temperature Tmax, final pseudo-temperatu-
re Tmin and annealing schedule function q (T ). Set
T = Tmax.

2. Minimize the Lagrangian L using the steepest-
descent method (27).

3. Estimate the parameters of linear equations from the
consequents P (43) by means of the least-squares
method.

4. Check the equilibrium condition |δS| =∣∣S[k−1] − S[k]
∣∣ / ∣∣S[k−1]

∣∣ > δ or the stopping
condition k ≤ kmax, where k denotes the iteration
index, δ is a pre-set parameter and kmax denotes
the maximum number of iterations at a given level
of pseudo-temperature. If one of them is fulfilled, go
to Step 2.

5. Lower pseudo-temperature according to the anneal-
ing schedule T ← q T .

6. If T ≥ Tmin, go to Step 2.

7. Perform a zero entropy iteration, i.e., set T = 0 and
minimize the square error using the steepest-descent
and least-squares methods.

8. Stop the algorithm.

Another problem is the initialization of the learning algo-
rithm. Its solution is described in the subsequent sections.

5. Initialization of the Learning Algorithm

The problemof estimating initial values for the parameters
of membership functions for antecedents can be solved
by means of preliminary clustering of the input training
data (Czogała and Łęski, 1999). For this task we use the
fuzzy c-means (FCM) clustering method (Bezdek, 1982).
The quality of the FCM method as the initialization proce-
dure was confirmed in (Czogała and Łęski, 1996; 1999).
Clustering is based on the partition of the input vectors
x0 (n) into c classes represented by the prototypes (clus-
ter centres) vi ∈ V⊂Rt, ∀i = 1, 2, . . . , c. The certainty
of the assignment of the n-th sample in the i-th class
is measured by the grade of membership uin ∈ [0, 1].
The (c×N)–dimensional partition matrix U= [uin] is
a fuzzy c-partition in the set Mfc defined as (Bezdek,
1982):
Mfc

=
{

U ∈ V cN

∣∣∣uin ∈ [0, 1] ,
c∑

i=1

uin = 1, ∀ 1 ≤ n ≤ N,

0 <

N∑
n=1

uin < N, ∀ 1 ≤ i ≤ c

}
. (47)

In the FCM method we seek a partition that minimizes the
criterion function given by (Bezdek, 1982):

Jm(U, V ) =
c∑

i=1

N∑
n=1

(uin)m d2
in, (48)

where d2
in = ‖x0 (n)− vi‖2 is the distance (the most

frequent Euclidean distance) between the i-th prototype
vi and the n-th data point x0 (n), m ∈ [1,∞) is the
weighted exponent (usually m = 2), and the cluster cen-
tres are defined as

vi =

N∑
n=1

(uin)m x0 (n)

N∑
n=1

(uin)m

, i = 1, . . . , c. (49)

The iterative scheme leading to either a local minimum or
a saddle point of the objective function Jm (U, V ) is a
series of commutative modifications of both the partition
matrix and prototypes. If we fix the values of the param-
eters m and c, and for each n = 1, . . . , N we define the
sets

In = {i | 1 ≤ i ≤ c, din = 0} ,
In = {1, 2, . . . , c}�In, (50)

then using the technique of Lagrange multipliers we can
get updating equations for partition ed matrix elements
(Bezdek, 1982):

uin=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
c∑

j=1

(
din

djn

) 2
m−1

)−1

if In = ∅,

0 if i ∈ In,

and In �= ∅,∑
i∈In

uin = 1 if i ∈ In �= ∅,
(51)

where i = 1, . . . , c and n = 1, . . . , N .

The FCM algorithm can be summarized as follows:

1. Fix the number of classes c, the weighted exponent
value m. Initialize the membership matrix U (0) ∈
Mfc.

2. Construct c prototypes using (49).

3. Compute the value of the criterion function
J

(k)
m (U (k), V (k)), where k is the iteration index.

4. Update the membership uin according to (51).

5. Compare the last two values of the objective func-
tion J

(k)
m (U (k), V (k)) and J

(k+1)
m (U (k+1), V (k+1)).

If the change was less than a predefined value, termi-
nate the algorithm. Otherwise, go to Step 2.
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Since the algorithm leads to a local minimum of the
performance index (48), the computations are repeated for
various random realizations of the initial partition matrix.
They are stopped if a maximum number of iterations is
achieved or when the change in the objective function is
less than a predefined value. To evaluate cluster validity,
we use the Xie-Beni validity index (Xie and Beni, 1991):

vXB (U, V ) =
1
N

J2(U, V )
sep (V )

, (52)

where
sep (V ) = min

i�=j

∥∥vi − vj

∥∥2
(53)

is the separation measure between cluster centres.

The centre and dispersion parameters of Gaussian
membership functions of the neuro-fuzzy system can be
initialized using the clustering results (Czogała and Łęski,
1999):

c
(i)
j =

N∑
n=1

(uin)m
x0j (n)

N∑
n=1

(uin)m

(54)

and

(
s
(i)
j

)2

=

N∑
n=1

(uin)m
(
x0j (n)− c

(i)
j

)2

N∑
n=1

(uin)m

(55)

for each i = 1, . . . , I and j = 1, . . . , t .

6. Numerical Experiments

To validate the introduced method of neuro-fuzzy mod-
elling, two numerical experiments using benchmark
databases were conducted. The first one concerns a prob-
lem of chaotic time-series prediction generated by means
of the Mackey-Glass differential delay (Schuster, 1984):

dx (t)
dt

= ax (t) +
bx (t− τ)

1 + [x (t− τ)]10
.

We considered the benchmark database generated by
Jang (Jang and Sun, 1995) to be able to draw a comparison
with the results reported in the literature. To obtain a so-
lution, Jang applied the fourth-order Runge-Kutta method
with the following values of parameters: a = −0.1, b =
0.2, x(0) = 0.1, τ = 17. From the Mackey-Glass time
series x(t), 1000 input data pairs were extracted in the
following form (Jang and Sun, 1995):[

x (t) , x (t− 6) , x (t− 12) , x (t− 18) , x(t + 6)
]
,

where t = 118 to 1117. All data were divided into two
subsets of equal cardinalities: the training set consisting

of the first 500 input-output pairs and the testing set which
contains the remaining data. The goal is the prediction of
a future value x(k + 6) (system output) using past values
combined in the embedded input vector[

x (k) x (k − 6) x (k − 12) x (k − 18)
]T

.

The learning process (DA+LS) was conducted for
the most frequently used fuzzy implications (Fodor,
Gödel, Gougen, Kleene-Dienes, Łukasiewicz, Reichen-
bach, Rescher and Zadeh) using the following parameter
values: η = 0.01, Tmax ∈

{
10−2, 10−3, . . . , 10−10

}
,

Tmin = 10−5Tmax, q = 0.95, kmax = 5, and the num-
ber of zero entropy iterations equal to 500. The prediction
results obtained from Łukasiewicz and Reichenbach im-
plications are equivalent to inference results obtained on
the basis of Mamdani and Larsen fuzzy relations, respec-
tively. The number of fuzzy if-then rules I was changed
from 2 to 6. The initial values of membership functions
of antecedents were computed using FCM clustering re-
sults obtained for m = 2. The clustering was stopped
if the maximum number (500) of iterations was achieved
or when in sequential iterations the change in the crite-
rion function Jm(U, V ) was less than 10−5. The parti-
tion process was repeated 25 times for different random
initializations of the partition matrix. As a reference pro-
cedure, we used the original ANBLIR learning procedure.
To get similar computational burdens of 2750 iterations of
the steepest descent procedure combined with the least-
squares method (SD+LS). Moreover, two heuristic rules
for changes in the learning rate were applied in the refer-
ence learning algorithm (Czogała and Łęski, 1999; Jang
et al., 1997): (i) if in four sequential iterations the value
of the error function was reduced for the whole learn-
ing set, then the learning parameter was increased (mul-
tiplied by 1.1), (ii) if in four sequential iterations the value
of the error function increased and decreased alternately
for the whole learning set, then the learning parameter
was decreased (multiplied by 0.9). The prediction quality
and the generalization ability were evaluated on the basis
of the mean-square-error values obtained for the training
(MSEtrn) and testing (MSEtst) sets, respectively. All nu-
merical experiments were conducted in the MATLABR©
environment. The prediction results are presented in Ta-
bles 2–6.

Clearly, deterministic annealing based learning
yields a consistent improvement in neuro-fuzzy modelling
quality. Only two examples (I = 3, Kleene-Dienes and
Reichenbach implications) did not produce a decrease in
the prediction error. The DA+LS method leads to a better
generalization ability compared with the SD+LS learning
as well. Only for one example (I = 3, Reichenbach impli-
cation) there was no increase in the generalization ability.

The prediction errors for learning and testing data
decrease as the number of fuzzy if-then rules for all im-
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Table 2. MSE of the predition (I = 2).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSEtrn MSEtst MSEtrn MSEtst

Fodor 10−4 4.1370 e-5 5.0309 e-5 6.4907 e-5 7.9482 e-5

Gödel 10−9 6.5435 e-5 8.3436 e-5 7.6207 e-5 9.7570 e-5

Gougen 10−2 5.4552 e-5 6.3871 e-5 5.7061 e-5 6.4697 e-5

Kleene-Dienes 10−2 8.0767 e-5 8.6786 e-5 9.9971 e-5 13.270 e-5

Łukasiewicz (Mamdani) 10−5 4.7168 e-5 5.2120 e-5 5.9349 e-5 6.4673 e-5

Reichenbach (Larsen) 10−2 6.9900 e-5 8.6171 e-5 8.3648 e-5 8.8223 e-5

Rescher 10−3 5.8582 e-5 6.7172 e-5 6.0191 e-5 6.7677 e-5

Zadeh 10−5 14.259 e-5 14.857 e-5 37.681 e-5 41.771 e-5

Table 3. MSE of the predition (I = 3).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSEtrn MSEtst MSEtrn MSEtst

Fodor 10−3 1.9907 e-5 2.6856 e-5 3.2878 e-5 4.0671 e-5

Gödel 10−4 1.7003 e-5 2.0325 e-5 2.6040 e-5 2.9445 e-5

Gougen 10−15 1.5855 e-5 1.8599 e-5 1.5102 e-5 1.7598 e-5

Kleene-Dienes 10−4 1.0977 e-5 1.4574 e-5 4.1052 e-5 4.5181 e-5

Łukasiewicz (Mamdani) 10−4 1.1280 e-5 1.4606 e-5 1.8137 e-5 2.1673 e-5

Reichenbach (Larsen) 10−4 1.0763 e-5 1.4520 e-5 1.0656 e-5 1.5116 e-5

Rescher 10−4 1.7849 e-5 2.2996 e-5 1.8999 e-5 2.4887 e-5

Zadeh 10−2 3.9871 e-5 4.8860 e-5 39.399 e-5 298.92 e-5

Table 4. MSE of the predition (I = 4).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSEtrn MSEtst MSEtrn MSEtst

Fodor 10−10 0.9843 e-5 1.4486 e-5 1.4618 e-5 2.0496 e-5

Gödel 10−2 0.9904 e-5 1.2865 e-5 1.4771 e-5 1.9524 e-5

Gougen 10−8 0.9611 e-5 1.1839 e-5 1.1134 e-5 1.3758 e-5

Kleene-Dienes 10−3 0.7862 e-5 1.1910 e-5 1.3541 e-5 1.6517 e-5

Łukasiewicz (Mamdani) 10−10 0.6814 e-5 0.9603 e-5 0.8464 e-5 1.1667 e-5

Reichenbach (Larsen) 10−5 0.6948 e-5 1.0150 e-5 0.7382 e-5 1.0948 e-5

Rescher 10−3 1.0571 e-5 1.2771 e-5 1.1050 e-5 1.3608 e-5

Zadeh 10−2 1.9340 e-5 2.7107 e-5 42.390 e-5 50.744 e-5

Table 5. MSE of the predition (I = 5).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSEtrn MSEtst MSEtrn MSEtst

Fodor 10−4 0.5848 e-5 0.8147 e-5 0.7817 e-5 1.2424 e-5

Gödel 10−8 0.5859 e-5 0.8755 e-5 0.7004 e-5 1.0227 e-5

Gougen 10−4 0.5014 e-5 0.7639 e-5 0.5486 e-5 0.8395 e-5

Kleene-Dienes 10−4 0.4405 e-5 0.6759 e-5 0.5805 e-5 0.8470 e-5

Łukasiewicz (Mamdani) 10−10 0.3850 e-5 0.5989 e-5 0.5881 e-5 0.8158 e-5

Reichenbach (Larsen) 10−5 0.4658 e-5 0.7074 e-5 0.7453 e-5 1.1598 e-5

Rescher 10−5 0.4581 e-5 0.6893 e-5 0.5408 e-5 0.8325 e-5

Zadeh 10−2 1.6342 e-5 2.1129 e-5 14.006 e-5 108.25 e-5
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Table 6. MSE of the predition (I = 6).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSEtrn MSEtst MSEtrn MSEtst

Fodor 10−5 0.4914 e-5 0.7860 e-5 0.6086 e-5 0.9420 e-5

Gödel 10−2 0.3636 e-5 0.5979 e-5 0.4896 e-5 0.8442 e-5

Gougen 10−2 0.4206 e-5 0.6776 e-5 0.5536 e-5 0.8385 e-5

Kleene-Dienes 10−5 0.3017 e-5 0.4597 e-5 0.3618 e-5 0.5636 e-5

Łukasiewicz (Mamdani) 10−4 0.3120 e-5 0.4670 e-5 0.6618 e-5 0.9435 e-5

Reichenbach (Larsen) 10−4 0.3300 e-5 0.5468 e-5 0.7362 e-5 1.0540 e-5

Rescher 10−8 0.3336 e-5 0.5390 e-5 0.5461 e-5 0.8442 e-5

Zadeh 10−2 1.0462 e-5 1.7056 e-5 8.4695 e-5 10.143 e-5

plications used increases. Different methods of interpret-
ing if-then rules lead to different results. Nevertheless,
it is difficult to qualify one of them as the best. Only
for Zadeh fuzzy implications we did not get satisfactory
quality of neuro-fuzzy modelling. Generally, the lowest
values of the prediction error were achieved using the log-
ical interpretation of fuzzy if-then rules based on Kleene-
Dienes, Łukasiewicz and Reichenbach fuzzy implications,
and, hence, a conjunctive interpretation for Mamdani and
Larsen fuzzy relations, too. The best prediction quality
(MSEtrn = 0.3017e-5, MSEtst = 0.3017e-5) was ob-
tained using the deterministic annealing algorithm com-
bined with the least-squares method for I = 6 and
Tmax = 10−5.

The problem of chaotic time series prediction gen-
erated by means of the Mackey-Glass differential delay
has been studied by many authors (Cho and Wang, 1996;
Chung and Duan, 2000; Czogała and Łęski, 1999; Juang
and Lin, 1998; Jang and Sun, 1995). Table 7 shows the
comparison of performances (root mean square error val-
ues, RMSE) of fuzzy modelling methods reported in the
literature.

Table 7. Comparison of chaotic time series prediction methods.

Model I RMSEtrn RMSEtst

Juang &Lin 4 0.0180 —

Chung & Duan 20 0.0174 0.0139

Cho &Wang 23 0.0096 0.0114

Jang & Sun 16 0.0016 0.0015

ANNBFIS 15 0.0011 0.0014

ANBLIR 15 0.0011 0.0014

DA+LS 14 0.0006 0.0010

The best results were obtained for the ANNBFIS
and ANBLIR neuro-fuzzy systems (RMSEtrn = 0.0011,
RMSEtst = 0.0014, Reichenbach implication, I = 15).
The modification of their learning algorithms using the

deterministic annealing approach enables us to improve
the prediction quality (RMSEtrn = 0.0006, RMSEtst =
0.0010, Reichenbach implication, Tmax = 10−5) while
simultaneously reducing the number of if-then rules (I =
14). Figures 1 and 2 show the chaotic time series (con-
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Fig. 1. Chaotic time series (continuous line) and predicted
values (dotted line).
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Fig. 2. Error values of chaotic time series prediction.



R. Czabański572

tinuous line), predicted values (dotted line) and the pre-
diction error, respectively, obtained for I = 14, using the
DA+LS learning procedure with the Reichenbach fuzzy
implication.

The second numerical example—a system identifi-
cation problem—is based on benchmark data originating
from (Box and Jenkins, 1976). It concerns the identifica-
tion of a gas oven. The input signal consists of measure-
ments of a methane flow x(k) [ft/min]. Methane is deliv-
ered into a gas oven together with air to form a mixture of
gases containing carbon dioxide. The samples of the cor-
respondingCO2 percentage content form the output signal
y(k). The sampling period was 9 sec. To identify a model,
the data set consisting of 290 pairs of the input vectors
[y(k − 1) . . . y(k − 4)x(k) . . . x(k − 5)]T and the output
values y (k) was used.

In much the same way as in to the previous ex-
ample, the learning process (DA+LS) was conducted
for the most frequently used fuzzy implications (Fodor,
Gs̈odel, Gougen, Kleene-Dienes, Łukasiewicz, Reichen-
bach, Rescher and Zadeh). The specifications of the
proposed learning algorithm and the reference proce-
dure were defined in the same manner. However, the
searching range of the initial pseudo-temperature val-
ues for the (DA+LS) method was changed to Tmax ∈{
103, 102, . . . , 10−4

}
. The identification quality was

evaluated on the basis of the mean square error values ob-
tained for the data set (MSE). Tables (8)–(12) show the
identification results. In this case, too, the determinis-
tic annealing based method leads to higher learning qual-
ity. Only in four examples (Gougen, I = {2, 4}, Gödel,
I = 6 and Rescher, I = 5) we observed an increase in
the identification error compared with the reference pro-
cedure.

From the obtained results we can see that the iden-
tification error decreases as the number of fuzzy if-then
rules for all implications used increases. Just as in the
first numerical experiment, different methods of interpret-
ing if-then rules lead to different learning results. All
implications except for the Zadeh one lead to satisfac-
tory identification quality. Generally, the lowest values
of the identification error were achieved using the logical
interpretation of fuzzy if-then rules based on the Kleene-
Dienes fuzzy implication. The best learning quality (MSE
= 1.5268e-2) was obtained using the (DA+LS) method for
I = 6 and Tmax = 1. Table 13 is provided for compar-
ison with the RMSE results of some previous studies of
the Box-Jenkins identification problem reported in the lit-
erature (Box and Jenkins, 1976; Chen et al., 1998; Czo-
gała and Łęski, 1999; Kim et al., 1997; Lin and Cun-
ningham, 1995; Pedrycz, 1984a; Sugeno and Yasukawa,
1993; Tong, 1980; Wang and Langari, 1995; Xu and Lu,
1987; Zikidis and Vasilakos 1996).

Table 8. MSE of the identification (I = 2).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSE MSE

Fodor 100 3.5004 e-2 4.6156 e-2

Gödel 100 3.4669 e-2 3.5272 e-2

Gougen 102 3.4828 e-2 3.5227 e-2

Kleene-Dienes 103 3.7239 e-2 4.6186 e-2

Łukasiewicz (Mamdani) 100 3.4815 e-2 4.6355 e-2

Reichenbach (Larsen) 100 3.4967 e-2 4.6375 e-2

Rescher 100 3.4683 e-2 3.4947 e-2

Zadeh 100 5.2824 e-2 5.5516 e-2

Table 9. MSE of the identification (I = 3).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSE MSE

Fodor 100 3.1708 e-2 4.0168 e-2

Gödel 100 3.0840 e-2 3.2917 e-2

Gougen 100 3.0977 e-2 3.2303 e-2

Kleene-Dienes 100 2.8372 e-2 3.9848 e-2

Łukasiewicz (Mamdani) 102 3.1805 e-2 4.0170 e-2

Reichenbach (Larsen) 102 3.1710 e-2 4.0170 e-2

Rescher 10−1 3.0840 e-2 3.2109 e-2

Zadeh 100 5.4378 e-2 5.4378 e-2

Table 10. MSE of the identification (I = 4).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSE MSE

Fodor 100 2.2425 e-2 4.0168 e-2

Gödel 100 2.7980 e-2 3.2917 e-2

Gougen 100 2.7922 e-2 3.2303 e-2

Kleene-Dienes 102 2.2049 e-2 3.9848 e-2

Łukasiewicz (Mamdani) 100 2.2518 e-2 4.0170 e-2

Reichenbach (Larsen) 100 2.2374 e-2 4.0170 e-2

Rescher 10−1 2.7838 e-2 3.2109 e-2

Zadeh 100 4.1911 e-2 5.4378 e-2

The best identification quality was obtained for the
ANBLIR neuro-fuzzy system (RMSE = 0.1791, Rescher
implication, I = 3). The learning algorithm using
the deterministic annealing approach improved the iden-
tification results (RMSE = 0.1684, Kleene-Dienes im-
plication, Tmax = 1) for the same number of if-then
rules. Figures 3–5 show the evolution of the input, out-
put (original—continuous line, modelled—dotted line)
and identification error signals, respectively, obtained for
I = 6, using the DA+LS learning procedure with the
Kleene-Dienes fuzzy implication.



Neuro-fuzzy modeling based on deterministic annealing approach 573

Table 11. MSE of the identification (I = 5).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSE MSE

Fodor 10−3 1.9130 e-2 2.0362 e-2

Gödel 100 2.2190 e-2 2.4808 e-2

Gougen 100 2.1980 e-2 2.2772 e-2

Kleene-Dienes 100 2.0042 e-2 2.2391 e-2

Łukasiewicz (Mamdani) 10−3 1.9215 e-2 1.9845 e-2

Reichenbach (Larsen) 100 1.8852 e-2 2.1900 e-2

Rescher 100 2.2172 e-2 2.2170 e-2

Zadeh 103 4.0008 e-2 5.2668 e-2

Table 12. MSE of the identification (I = 6).

Fuzzy implication DA+LS learning SD+LS learning

(relation) Tmax MSE MSE

Fodor 10−1 1.6119 e-2 2.0362 e-2

Gödel 10−4 1.9361 e-2 2.4808 e-2

Gougen 100 2.1918 e-2 2.2772 e-2

Kleene-Dienes 10−1 1.5268 e-2 2.2391 e-2

Łukasiewicz (Mamdani) 10−1 1.5530 e-2 1.9845 e-2

Reichenbach (Larsen) 10−1 1.5946 e-2 2.1900 e-2

Rescher 10−3 1.9122 e-2 2.2170 e-2

Zadeh 102 4.8292 e-2 5.2668 e-2

Table 13. Comparison of Box-Jenkins identification methods.

Model I
Number
of inputs

Number
of parameters

RMSE

Tong 19 2 — 0.6848

Pedrycz 81 2 — 0.5656

Xu& Lu 25 2 — 0.5727

Box & Jenkins — 6 10 0.4494

Sugeno & Yasukawa 6 3 96 0.4358

Chen et al. 3 2 — 0.2678

Lin& Cunningham 4 5 354 0.2664

Wang &Langari 2 6 110 0.2569

Zikidis&Vasilakos 2 6 — 0.2530

Kim et al. 2 6 110 0.2190

ANNBFIS 3 10 96 0.2004

ANBLIR 3 10 96 0.1791

DA+LS 3 10 96 0.1684

Summarizing, the combination of the deterministic
annealing method and the least-squares procedure leads
to an improvement in modelling results. However, it must
be noted that the performance enhancement is achieved
through a decrease in the computational effectiveness of
the learning procedure. The computational burden of
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the proposed optimization method approximately doubles
when compared with the original ANBLIR learning. An-
other disadvantage of the DA procedure is the necessity of
an arbitrary selection of learning parameters. The value
of the learning rate η was determined on the basis of a
trial-and-error procedure. There is no standard method of
determining the learning rate and application of the same
heuristic rules as those employed in the reference proce-
dure was unsuccessful. Other parameters exerting a strong
influence on the learning results are the initial pseudo-
temperature Tmax, the final pseudo-temperature Tmin, the
annealing schedule parameter q and the number of itera-
tions at each level of the pseudo-temperature kmax.

The initial pseudo-temperature should be sufficiently
high to ensure entropy maximization at the beginning of
the optimization procedure. The final pseudo-temperature
should be low enough to assure the minimization of the
square error in the end. In our experiments a trial-and-
error method was used to establish their values. We at-
tempted to get satisfactory modelling results and the low-
est possible number of iterations. A formula for the calcu-
lation of the annealing schedule parameter that guarantees
finding a global minimum of the cost for the simulated an-
nealing method was given in (German and German, 1984).
However, there is no such a result for the deterministic
annealing procedure. This method of computing the an-
nealing schedule parameter leads to a significant increase
in the number of steps needed to find optimal system pa-
rameters. Therefore, its value was set arbitrarily. Again,
we tried to obtain acceptable modelling quality and a low
number of iterations. The number of iterations at each
level of the pseudo-temperaturewas determined on the ba-
sis of the entropy variation level (Rose, 1999). However,
to ensure faster convergence, a limitation on the maximum
number of criterion evaluations was added.

7. Conclusions

A neuro-fuzzy modelling method based on the determin-
istic annealing approach has been presented. We have de-
scribed a new learning procedure of the ANBLIR neuro-
fuzzy system. In the proposed method, the parameters
of fuzzy sets from antecedents and consequents of if-then
rules are adjusted separately by means of deterministic an-
nealing and the least-squares method, respectively. Exper-
iments prove the usefulness of the proposed method in the
extraction of fuzzy if-then rules for the chaotic time se-
ries prediction problem. The obtained results indicate an
improvement in neuro-fuzzy modelling quality compared
with selected fuzzy modelling methods reported in the lit-
erature. However, performance enhancement is achieved
through an increased computational load of the learning
procedure. Another problem is the necessity of an arbi-
trary selection of learning parameters. The determination

of automated methods for their selection constitutes the
principal direction of future investigations. Other interest-
ing questions for the future are sa follows:

– How does the proposed learning procedure influence
the generalization ability of the neuro-fuzzy system
when ε-insensitive learning is considered?

– How does the learning performance change if dif-
ferent clustering algorithms are used for the estima-
tion of initial values of membership functions of an-
tecedents?
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