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The realization problem for a class of positive, continuous-time linear SISO systems with one delay is formulated and
solved. Sufficient conditions for the existence of positive realizations of a given proper transfer function are established.
A procedure for the computation of positive minimal realizations is presented and illustrated by an example.
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1. Introduction

In positive systems, inputs, state variables and outputs
take only non-negative values. Examples of positive sys-
tems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems,
compartmental systems, or water and atmospheric pollu-
tion models. A variety of models revealing the behaviour
of positive linear systems can be found in engineering,
management science, economics, social sciences, biology
and medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive systems
is more complicated and less advanced. An overview of
the state of the art in positive systems theory is given in the
monographs (Farina and Rinaldi, 2000; Kaczorek, 2002).
Recent developments in positive systems theory and some
new results are given in (Kaczorek, 2003). The realization
problem of positive linear systems without time delays has
been considered in many papers and books (Benvenuti and
Farina, 2004; Farina and Rinaldi, 2000; Kaczorek, 2002).

An explicit solution of equations describing discrete-
time systems with time delays was given in (Busłowicz,
1982). The realization problem for positive multivariable
discrete-time systems with one time delay was formulated
and solved in (Kaczorek and Busłowicz, 2004). Recently,
reachability, controllability and minimum energy control
of positive linear discrete-time systems with time delays
were considered in (Busłowicz and Kaczorek, 2004; Xie
and Wang, 2003).

The main purpose of this paper is to present a method
of computing positive minimal realizations for a class of
positive continuous-time systems with one delay. Suffi-

cient conditions for the solvability of the realization prob-
lem will be established and a procedure for the computa-
tion of a minimal positive realization of a proper trans-
fer function will be presented. To the best of the au-
thor’s knowledge, the realization problem for positive
continuous-time linear systems with delays has not been
considered yet.

2. Problem Formulation

Consider a single-input single-output continuous-time lin-
ear system with one time delay:

ẋ(t) = A0x(t) + A1x(t − h) + bu(t), (1a)

y(t) = cx(t) + du(t), (1b)

where x = x(t) ∈ R
n, u = u(t) ∈ R, y = y(t) ∈ R

are the state vector, input and output, respectively, Ak ∈
R

n×n, k = 0, 1, b ∈ R
n, c ∈ R

1×n, d ∈ R and h ∈ R+

is a given delay. The initial conditions for (1a) are given
as

x0(t) for t ∈ [−h, 0]. (2)

Let R
n×m
+ be the set of n × m real matrices with non-

negative entries and R
n
+ = R

n×1
+ .

Definition 1. The system (1) is called (internally) posi-
tive if for every x0(t) ∈ R

n
+, t ∈ [−h, 0] and all inputs

u(t) ∈ R+, t ≥ 0 we have x(t) ∈ R
n
+ and y(t) ∈ R+

for t ≥ 0.

Theorem 1. The system (1) is positive if and only if
A0 is a Metzler matrix (all off-diagonal entries are non-
negative) and

A1 ∈ R
n×n
+ , b ∈ R

n
+, c ∈ R

1×n
+ , d ∈ R+. (3)
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Proof. The solution x(t) of (1a) for t ∈ [0, h] is given by

x(t) = eA0tx0(0)

+
∫ t

0

eA0(t−τ)
[
A1x0(t − h − τ) + bu(τ)

]
dτ. (4)

It is well known (Kaczorek, 2002) that eA0t ∈ R
n×n
+ ,

t ≥ 0 if and only if A0 is a Metzler matrix. From (4)
it follows that if A0 is a Metzler matrix, A1 ∈ R

n×n
+ ,

b ∈ R
n
+, then x(t) ∈ R

n
+ for every x0(t) ∈ R

n
+ and all

u(t) ∈ R+ for t ∈ [0, h].
From (1b) we have that if c ∈ R

1×n
+ , d ∈ R+,

x(t) ∈ R
n
+ and u(t) ∈ R+, then y(t) ∈ R+ for

t ∈ [0, h]. The deliberations can be repeated for the suc-
cessive intervals [h, 2h], [2h, 3h], and so on.

The necessity can be shown in much the same way as
for positive continuous-time linear systems without delays
(Kaczorek, 2002).

The transfer function of the system (1) is given by

T (s) = c[Ins − A0 − A1e
−hs]−1b + d. (5)

Definition 2. Matrices

A0 ∈ M, A1 ∈ R
n×n
+ , b ∈ R

n
+,

c ∈ R
1×n
+ , d ∈ R+,

(6)

where M stands for the set of Metzler matrices, are called
a positive realization of a given proper transfer function
T (s) if they satisfy the equality (5). The realization (5)
is called minimal if the dimension n of A0 and A1 is
minimal among all realizations of T (s).

The positive realization problem can be formulated
as follows: Given a proper transfer function T (s), find
a positive minimal realization (6) of T (s). Necessary
conditions and sufficient conditions for the solvability of
this problem will be established and a procedure for the
computation of a positive minimal realization will be pro-
posed.

3. Problem Solution

The transfer function (5) can be rewritten in the form

T (s) =
c AdjH(s)b
det H(s)

+ d =
n(s)
d(s)

+ d, (7)

where Adj H(s) denotes the adjoint matrix for H(s),

H(s) = [Ins − A0 − A1w], w = e−hs,

n(s) = c AdjH(s)b = bn−1s
n−1 + · · · + b1s + b0, (8)

d(s) = detH(s) = sn + dn−1s
n−1 + · · · + d1s + d0,

and the coefficients bk = bk(w) and dk = dk(w), k =
0, 1, . . . , n − 1 are polynomials in w = e−hs with real
coefficients.

From (7) we have

d = lim
s→∞ T (s) (9)

since lims→∞H−1(s) = 0. The strictly proper part of
T (s) is given by

Tsp(s) = T (s) − d =
n(s)
d(s)

. (10)

Therefore, the positive realization problem has been re-
duced to finding matrices

A0 ∈ M, A1 ∈ R
n×n
+ , b ∈ R

n
+, c ∈ R

1×n
+ (11)

for the given strictly proper transfer function (10).

Let us assume that the given proper transfer function
T (s) has the form (7) with the denominator d(s) with co-
efficients dk, k = 0, 1, . . . , n − 1, which are first-degree
polynomials in w, i.e.,

d(s) = sn − (a2n−1w + a2n−2)sn−1

− (a2n−3w + a2n−4)sn−2

− · · · − (a3w + a2)s − (a1w + a0), (12)

and with the numerator n(s) of the form (8) with coeffi-
cients

bk = qk,n−1w
n−1 + qk,n−2w

n−2 + · · ·
+ qk1w + qk0, k = 0, 1, . . . , n − 1. (13)

Lemma 1. The coefficient a0 of (12) is equal to zero, i.e.,
a0 = 0, if and only if

detA0 = 0. (14)

If d(s) has the form (12) and n ≥ 2, then

detA1 = 0. (15)

Proof. Note that the substitution of s = w = 0 into d(s)
(defined by (8)) yields det[−A0] = −a0. From (8) we
have

det[−A0−A1w] = wn det[−A1]+· · ·+det[−A0]. (16)

If d(s) has the form (12) and n ≥ 2, then from (16) it
follows that (15) holds.
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Lemma 2. If the pair (A0, A1) has one of the following
forms:

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 1
a0 0 · · · 0 0 0
a2 1 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a2n−6 0 · · · 1 0 0
a2n−4 0 · · · 0 1 a2n−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17a)

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
a1 0 · · · 0 0
a3 0 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . .

a2n−5 0 · · · 0 0
a2n−3 0 · · · 0 a2n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17b)

Ā0 = AT
0 , Ā1 = AT

1 , (17c)

Â0 = PA0P, Â1 = PA1P, (17d)

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
. . . . . . . . . . . . . . . .

0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (17e)

Ã0 = ÂT
0 , Ã1 = ÂT

1 , (17f)

A′
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 1
a0 0 · · · 0 0 0
a2 1 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a2n−6 0 · · · 1 0 a2n−4

0 0 · · · 0 1 a2n−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17g)

A′
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
a1 0 · · · 0 0
a3 0 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . .

a2n−5 0 · · · 0 a2n−3

0 0 · · · 0 a2n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (17h)

Ā′
0 = (A′

0)
T , Ā′

1 = (A′
1)

T , (17i)

Â′
0 = PA′

0P, Â′
1 = PA′

1P, (17j)

Ã′
0 = (Â′

0)
T , Ã′

1 = (Â′
1)

T , (17k)

then

det[Ins − A0 − A1w] = det[Ins − Ā0 − Ā1w]

= det[Ins − Â0 − Â1w] = det[Ins − Ã0 − Ã1w]

= det[Ins − A′
0 − A′

1w] = det[Ins − Ā′
0 − Ā′

1w]

= det[Ins − Â′
0 − Â′

1w] = det[Ins − Ã′
0 − Ã′

1w]

= sn−(a2n−1w−a2n−2)sn−1−(a2n−3w−a2n−4)sn−2

− · · · − (a3w + a2) − (a1w + a0). (18)

Proof. The expansion of the determinant with respect to
the first row for (17a) and (17b) yields

det [Ins − A0 − A1w]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s 0 · · · 0 0 −1
−a0−a1w s · · · 0 0 0
−a2−a3w −1 · · · 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−a2n−6−a2n−5w 0 · · · −1 s 0
−a2n−4−a2n−3w 0 · · · 0 −1 s−a2n−2−a2n−1w

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= sn−1 − (s − a2n−2 − a2n−1w) + (−1)n+2

×

∣∣∣∣∣∣∣∣∣∣∣∣

−a0 − a1w s · · · 0 0
−a2 − a3w −1 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−a2n−6 − a2n−5w 0 · · · −1 s

−a2n−4 − a2n−3w 0 · · · 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣
= · · · =sn

1−(a2n−1w+a2n−2)sn−1−(a2n−3w+a2n−4)sn−2

− · · · − (a3w + a2) − (a1w + a0).

Taking into account that detXT = detX in (17c), we
obtain

det[Ins − Ā0 − Ā1w] = det[Ins − A0 − A1w]T

= det[Ins − A0 − A1w].

Note that P−1 = P and

det[Ins − Â0 − Â1w] = det
{
P−1[Ins − A0 − A1w]P

}
= det[Ins − A0 − A1w].

The proof for the pair (17f) is similar to that for the pair
(17c). The proof for the pairs (17g)–(17k) proceeds in
much the same way.

Remark 1. The matrix A0 is a Metzler matrix and the
matrix A1 has non-negative entries if and only if the co-
efficients ak, k = 0, 1, . . . , 2n − 3, 2n − 1 of the poly-
nomial (12) are non-negative and a2n−2 is arbitrary.
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Remark 2. The dimension n × n of the matrices (17) is
the smallest possible for (10).

If the pair (A0, A1) has the form (17a) and (17b),
then the adjoint matrix AdjH(s) has the form

Adj H(s) =

⎡
⎢⎢⎢⎣

h11(s) h12(s) · · · h1n(s)
h21(s) h22(s) · · · h2n(s)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

hn1(s) hn2(s) · · · hnn(s)

⎤
⎥⎥⎥⎦ ,

(19)
where

h11(s) = sn−1 − sn−2(a2n−1w + a2n−2),

h12(s) = 1, h13(s) = s, . . . , h1n(s) = sn−2,

h21(s) = sn−3
[
s−(a2n−1w+a2n−2)

]
(a1w+a0),

h22(s) = sn−1 − sn−2(a2n−1w + a2n−2)

− sn−3(a2n−3w + a2n−4)

− · · · − (a3w + a2),

h23(s) = a1w + a0, . . . ,

h2,n−1(s) = sn−4(a1w + a0),

h2n(s) = sn−3(a1w + a0),

h31(s) = sn−4
[
s − (a2n−1w + a2n−2)

]
× [

s(a3w + a2) + a1w + a0

]
,

h32(s) = sn−2 − sn−3(a2n−1w + a2n−2)

− sn−4(a2n−3w + a2n−4)

− · · · − (a5w + a4),

h33(s) = sn−1 − sn−2(a2n−1w + a2n−2)

− · · · − s(a5w + a4), . . . ,

h3,n−1(s) = sn−5
[
s(a3w + a2) + a1w + a0

]
,

h3n(s) = sn−4
[
s(a3w + a2) + a1w + a0

]
...

hn−1,1(s) =
[
s − (a2n−1w + a2n−2)

]
× [

sn−3(a2n−5w + a2n−6)

+ · · · + s( a3w + a2) + a1w + a0

]
,

hn−1,2(s) = s2 − s(a2n−1w + a2n−2)

− (a2n−3w + a2n−4),

hn−1,3(s) = s3 − s2(a2n−1w + a2n−2)

− s(a2n−3w + a2n−4),

...

hn−1,n−1(s) = sn−1 − sn−2(a2n−1w + a2n−2)

− sn−3( a2n−3w + a2n−4),

hn−1,n(s) = sn−3(a2n−5w + a2n−6)

+ · · · + s( a3w + a2) + a1w + a0,

hn,1(s) = sn−2(a2n−3w + a2n−4)

+ · · · + s( a3w + a2) + a1w + a0,

hn2(s) = s, hn3(s) = s2, . . . ,

hn,n−1(s) = sn−2, hnn = sn−1.

The substitution of (19) into (7) yields

c AdjH(s)b
detH(s)

=
1

d(s)
[

c1 c2 . . . cn

]

×

⎡
⎢⎢⎢⎣

h11(s) h12(s) · · · h1n(s)
h21(s) h22(s) · · · h2n(s)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

hn1(s) hn2(s) · · · hnn(s)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

b1

b2

...

bn

⎤
⎥⎥⎥⎥⎦

=
n(s)
d(s)

(20)

From the comparison of the coefficients at the same pow-
ers of s and w of the numerators of (20), we obtain

Gx = q, (21)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G =

[
g11 · · · g1n2

gm1 · · · gmn2

]
,

x =
[

x1 x2 . . . xn2

]T

=
[

b1c1 b1c2 . . . b1cn, b2c1, . . . , bncn

]T
,

q =
[

q1 q2 . . . qm

]T
.

(22)

The entries gij of G depend on the entries of the matri-
ces A0 and A1, and the entries qi of q depend on the
coefficients qkl of the polynomial (13).

For example, if

A0 =

[
0 1
a0 a2

]
, A1 =

[
0 0
a1 a3

]
,

then

Adj H(s)=Adj[Is−A0−A1w]=

[
s − (a3w + a2) 1

a1w + a0 s

]
.
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The comparison of the coefficients at the same powers of
s and w in the equality

[
c1 c2

] [
s − (a3w + a2) 1

a1w + a0 s

] [
b1

b2

]

= n(s) = q1s + q2w + q3

yields

⎡
⎢⎣ 1 0 0 1

−a3 a1 0 0
−a2 a0 1 0

⎤
⎥⎦

⎡
⎢⎢⎢⎣

b1c1

b1c2

b2c1

b2c2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣ q1

q2

q3

⎤
⎥⎦ .

By Lemma A of Appendix, if

rankG = rank
[

G, q
]
, (23)

then (21) has a non-negative solution x ∈ R
n2

+ if

r∑
i=1

uT
i GT qui

si
≥ 0 for all si > 0, i = 1, . . . , r, (24)

where r = rankGT G, si is an eigenvalue of GT G and
ui is the corresponding eigenvector, i.e.,

GT Gui = siui, i = 1, . . . , n2, (25)

‖ui‖ = 1. From the structure of the vector x defined
by (22) it follows that

xixk+n = xkxi+n for i �= k and i, k = 1, . . . , n.
(26)

Knowing the solution x of (21), we may find b ∈ R
n
+ and

c ∈ R
1×n
+ if the conditions (26) are satisfied. Therefore,

the following result has been proved:

Theorem 2. There exists a positive minimal realization
(6) of T (s) if the following conditions are satisfied:

(i) T (∞) = lims→∞T (s) ∈ R+,

(ii) the coefficients ak, k = 0, 1, . . . , 2n − 3, 2n − 1 of
the polynomial (12) are non-negative, i.e.,

ak ≥ 0 for k = 0, 1, . . . , 2n − 3, 2n − 1, (27)

(a2n−2 can be arbitrary),

(iii) the conditions (24) and (26) are satisfied.

If the conditions of Theorem 2 are satisfied, then a positive
minimal realization (6) of T (s) can be found using the
following procedure:

Procedure

Step 1. Using (9) and (10), find d and the strictly proper
transfer function Tsp(s).

Step 2. Knowing the coefficients ak, k =
0, 1, . . . , 2n− 1 of the polynomial (12), find the
matrices (17a) and (17b) (or (17c)–(17k)).

Step 3. Comparing the coefficients at the same powers of
s and w of (20), find the entries of G and q.

Step 4. Find the solution x ∈ R
n2

+ of (21).

Step 5. Knowing x, find b and c.

Example 1. Given the transfer function

T (s) =
2s3 − 2ws2 − (2w + 1)s − 2w

s3 − (w + 1)s2 − (w + 2)s − (2w + 1)
, (28)

find its positive minimal realization (6).

Solution. Using the above procedure, we obtain the fol-
lowing:

Step 1. From (9) and (10) we get

d = lim
s→∞ T (s) = 2 (29)

and

Tsp(s) = T (s) − d

=
2s2 + 3s + 2(w + 1)

s3 − (w + 1)s2 − (w + 2)s − (2w + 1)
. (30)

Step 2. Taking into account the fact that d(z) = s3−(w+
1)s2 − (w + 2)s − (2w + 1) (a0 = a3 = a4 =
a5 = 1, a1 = a2 = 2), and using (17a) and (17b),
we obtain

A0 =

⎡
⎢⎣ 0 0 1

1 0 0
2 1 1

⎤
⎥⎦ ,

(31)

A1 =

⎡
⎢⎣ 0 0 0

2 0 0
1 0 1

⎤
⎥⎦ .

Step 3. In this case, we get (32a) and (32b).

The comparison of the coefficients at the same powers of
s and w of (32) yields (21) with

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 1
−1 2 1 0 −1 0 0 0 0
−1 1 2 0 −1 1 1 0 0

0 1 0 0 0 0 0 0 0
0 −3 2 0 −1 0 0 2 0
0 −1 1 1 −2 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
3
0
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(33)
For (33), the conditions (23) and (24) are satisfied.



T. Kaczorek452

Adj[Is − A0 − A1w] =

⎡
⎢⎣ s2 − (w + 1)s 1 s

(2w + 1)s − (w + 1)(2w + 1) s2 − (w + 1)s − (w + 2) w + 1
(w + 2)s + (2w + 1) s s2

⎤
⎥⎦ , (32a)

c Adj[Is − A0 − A1w]b =
[

c1 c2 c3

] ⎡
⎢⎣ s2 − (w + 1)s 1 s

(2w+1)s−(w+1)(2w+1) s2−(w+1)s−(w+2) 2w+1
(w + 2)s + (2w + 1) s s2

⎤
⎥⎦
⎡
⎢⎣ b1

b2

b3

⎤
⎥⎦

= 2s2 + 3s + 2(w + 1). (32b)

Step 4. Equation (21) with (33) has the solution

x =
[

1 0 1 1 0 1 1 0 1
]T

. (34)

It is easy to check that the solution (34) satisfies the con-
ditions (26).

Step 5. The matrices b and c have the form

b =

⎡
⎢⎣ 1

1
1

⎤
⎥⎦ , c =

[
1 0 1

]
. (35)

The desired minimal positive realization is given by (29),
(31) and (35). �

4. Concluding Remarks

The realization problem for a class of positive single-
input single-output continuous-time systems with one de-
lay has been formulated and solved. Special forms (17)
of the pairs of matrices were introduced. Sufficient con-
ditions for the existence of a positive minimal realiza-
tion (6) of a proper transfer function T (s) were estab-
lished. A procedure for the computation of a minimal
positive realization of a proper transfer function was pre-
sented and illustrated by an example. The deliberations
can be extended to multi-input multi-output continuous-
time linear systems with many time delays. An exten-
sion to singular linear systems with time delays is also
possible.
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Appendix

Consider the matrix equation

Ax = b, (A1)

where A ∈ R
n×n, b ∈ R

n.

It is assumed that (A1) has a solution, i.e.,

rank
[
A, b

]
= rankA. (A2)

Lemma A. Let the assumption (A2) be satisfied. The
equation (A1) has a non-negative solution x ∈ R

n
+ if

r∑
i=1

uT
i AT bui

si
≥ 0 for all si > 0, i = 1, . . . , r, (A3)

where r = rankAT A, si is an eigenvalue of AT A and
ui is the associated eigenvector, i.e.,

AT Aui = siui, i = 1, . . . , n, (A4)

and ‖ui‖ = 1.
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Proof. Premultiplying (A1) by AT , we obtain

AT Ax = AT b. (A5)

The premultiplication of (A5) by uT
i yields

uT
i AT Ax = uT

i AT b, i = 1, . . . , n, (A6)

and using (A4) we obtain

siu
T
i x = uT

i AT b, i = 1, . . . , n. (A7)

Taking into account the fact that si = 0, i = r +
1, . . . , n, from (A7) we obtain

x =
r∑

i=1

uT
i xui =

r∑
i=1

uT
i AT bui

si
(A8)

for all si > 0, i = 1, . . . , r. Therefore, Eqn. (A1) has
a non-negative solution x ∈ R

n
+ if the condition (A3) is

satisfied.


