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The aim of this paper is numerical estimation of pharmacokinetic parameters of the ligands of the macrophage mannose
receptor, without knowing a priori the values of these parameters. However, it first requires a model identifiability analysis,
which is done by applying an algorithm implemented in a symbolic computation language. It is shown that this step can
lead to a direct numerical estimation algorithm. In this way, a first estimate is computed from noisy simulated observations
without a priori parameter values. Then the resulting parameter estimate is improved by using the classical least-squares
method.
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1. Introduction

Intracellular infections are an important worldwide health
problem. For instance, it is estimated that tubercu-
losis, caused by the facultative intracellular bacterium
Mycobacterium tuberculosis, kills 2–3 million people
each year.

Macrophage lifetime is much longer than the life-
time of granulocytes, the latter cells forming the body’s
first line of defense against infectious organisms. Thus,
bacteria which evolved resistance against macrophage de-
fense mechanisms can survive for a long time in the body,
being protected from immune responses. Moreover, an-
tibiotic concentrations are often lower inside cells than in
extracellular fluids. Consequently, intracellular infections
determine diseases difficult to cure.

Targeting anti-infectious drugs toward macrophages
could bring the drugs in close contact with intracellular
bacteria and thus help to fight the diseases they determine.
In order to reach this goal, macromolecular carriers bear-
ing the drug and a homing device directed toward the man-
nose receptor of macrophages were used (Balazuc et al.,
2005; Roseeuw et al., 2003).

Before synthesizing macromolecular conjugates and
studying their in vivo efficacy, it was necessary to ex-
plore the capacity of the macrophage mannose receptor
to endocytose soluble macromolecules and to quantify the
different aspects of such a process. Glucose oxidase, a
mannosylated enzyme easily detected in biological sam-
ples through spectrophotometric, potentiometric (Aubrée-
Lecat et al., 1989) or immunologic techniques (de Belle-
fontaine et al., 1994), was used for a first pharmacokinetic
study of the mannose receptor activity in vivo (Demignot
and Domurado, 1987).

After bolus intravenous administration of glucose
oxidase, its pharmacokinetic behavior is represented by
the following system:

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = α1(x2 − x1) −
Vmx1

kc + x1
, x1(0) = C0,

ẋ2 = α2(x1 − x2), x2(0) = 0,

y = x1,

(1)

where x1 is the enzyme concentration in plasma, x2 its
concentration in Compartment 2, and Vm is the maxi-
mum rate of an uptake by macrophages through the man-
nose receptor. The receptor-mediated uptake is a cellular
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process taking place at the level of the macrophage mem-
brane. Here kc, the uptake constant, is the molar concen-
tration of the ligand which produces one half of the Vm

uptake. It is usually close to the affinity constant between
the ligand and the receptor. Moreover, α1 is the rate
constant of the transfer from Compartment 1 (or the cen-
tral compartment), practically plasma, to Compartment 2
(or the peripheral compartment), which represents in the
model the part of the extravascular extracellular fluid ac-
cessible to glucose oxidase. Precisely, this transfer occurs
through the capillary walls, more or less rapidly depend-
ing on the different permeabilities of the capillary beds in
the different organs. Therefore, α1 is the sum of all the
transcapillary transfers in all the organs. Furthermore, α2

is the rate constant of the transfer from Compartment 2 to
Compartment 1. For a macromolecule such as glucose
oxidase, this transfer corresponds to the return from the
extracellular fluid to blood through lymphatic circulation.
The ratio α1/α2 of these two parameters is equal to the
ratio of the volume of the peripheral compartment to the
volume of the central compartment (Aubrée-Lecat et al.,
1993). From the equations of the system (1), it is possible
to calculate the amount of a mannose receptor ligand taken
up by macrophages at any given time after an intravenous
injection.

In the second step, it was necessary to study in vivo
the targeting of mannosylated polymers to be used as car-
riers, preferably without labeling them since radioactiv-
ity raises problems of security and macromolecular in-
tegrity, and fluorescence labeling can modify in vivo tar-
geting. Consequently, glucose oxidase and mannosylated
polymers were intravenously injected simultaneously and
the polymer interaction with the mannose receptor was
assessed through its influence on glucose oxidase phar-
macokinetics (Domurado et al., 1995). This competition
method gives rise to the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = α1(x2 − x1) −
kaVmx1

kcka + kcx3 + kax1
,

x1(0) = C0,

ẋ2 = α2(x1 − x2), x2(0) = 0,

ẋ3 = β1(x4 − x3) −
kcVmx3

kcka + kcx3 + kax1
,

x3(0) = γC0,

ẋ4 = β2(x3 − x4), x4(0) = 0,

y = x1.

(2)

The variables x1 and x2 are the same glucose ox-
idase concentrations as in the system (1). The variable
x3 is the plasma concentration of the mannosylated poly-
mer that acts as a competitor of glucose oxidase for the
mannose receptor of macrophages. The variable x4 is

the concentration of the same competitor in the part of the
extravascular fluid of the organs accessible to this macro-
molecule. Glucose oxidase and its competitor being dif-
ferent molecules, it should be noted that their respective
second compartments are not identical.

In this system, the first two equations describe phar-
macokinetic behavior of glucose oxidase whereas the third
and fourth equations describe pharmacokinetic behavior
of its competitor.

Being a characteristic of endocytosis by the
macrophage population, Vm is the same irrespective of
the ligand and is therefore identical in the first and the
third equations. The uptake constant is a characteristic of
the couple formed by the macrophage mannose receptor
and its ligand. Consequently, we have two different con-
stants, kc when glucose oxidase is the ligand, and ka for
its competitor. Likewise, the transfer between compart-
ments depends on the molecule being transfered. There-
fore, α1 and α2 correspond to glucose oxidase and β1

and β2 to its competitor. Finally, γ is the ratio of the mo-
lar concentration of the polymer competitor to the molar
concentration of glucose oxidase in the solution adminis-
tered to the animals.

The method presented, i.e., a few animal experiments
followed by numerical identification of the parameters, al-
lows us

• to get a more rapid answer than the traditional meth-
ods (cell culture) to determine the maximum rate of
uptake and the uptake constant,

• to take into account the full physiology of the ani-
mals,

• to use a minimal number of animals by fully exploit-
ing the experimental results.

The systems (1) and (2) are nonlinear because of the hy-
perbolic term due to the saturability of the mannose recep-
tor. Although the mathematics of linear pharmacokinetics
has been extensively studied (Gibaldi and Perrier, 1975),
it is not the case for nonlinear pharmacokinetics. In spite
of the fact that only renal filtration is a linear mechanism
and the reality of pharmacokinetics is otherwise nonlin-
ear because of the saturability of many mechanisms acting
on drug fate (intestinal absorption, metabolism, transfer
through membrane carriers, etc.), the clinically observable
pharmacokinetics of most drugs is linear because their
concentration in the body is usually sufficiently small to
prevent the saturation of biological processes. In math-
ematical terms, their therapeutic concentration is much
smaller than kc. This paper also constitutes a contribu-
tion to nonlinear pharmacokinetics.

Let us come back to numerical parameter estima-
tion. Since the initial concentration C0 is assumed to
be known, the model (1) leads to the estimation of the



Identifiability and estimation of pharmacokinetic parameters for the ligands. . . 519

parameters {α1, α2, Vm, kc}, and the model (2) to the es-
timation of the parameters {β1, β2, ka, γ}. Before per-
forming numerical estimation, it is necessary to investi-
gate parameter identifiability, i.e., the unique determina-
tion of the parameters from the observations. An approach
to analyze model identifiability is based on differential al-
gebra. It is outlined in Section 2.1. This approach leads
to an algorithm implemented in a symbolic computation
language, which is presented in Section 2.2. In the case
of the model (2), there are two major difficulties: the type
of nonlinearity (rational functions) and three unmeasured
state variables. However, in Section 2.2, we show how
the application of the algorithm yields the identifiability
of both models.

Links between identifiability and numerical estima-
tion were introduced in (Denis-Vidal et al., 2003). This
approach leads to a first estimate of kinetic parameters,
without the knowledge of a priori values for these param-
eters, as is described in Section 3.1. Sections 3.2 and 3.3
show how the identifiability analysis leads to a first numer-
ical estimate of the kinetic parameters of the models (1)
and (2). Starting from these parameter values, the classi-
cal least-squares method produces better estimates.

The originality of the paper is principally due to the
complexity of the model (2). By introducing fictitious
control, the identifiability of the model obtained in such
a way was proved with a local isomorphism, but it does
not correspond to reality. By considering more than one
experiment, it was also possible to get the identifiability
of the parameters, but this requires VM to be the same
for all the experiments, which is not realistic either. A
first very simplified model was studied in (Denis-Vidal et
al., 2003), yet the complete analysis from the identifiabil-
ity proof to the numerical parameter estimation for such a
complex model is completely new.

2. Identifiability Analysis

2.1. Definitions of Uncontrolled Model Identifiability

A well-known prerequisite for the well-posedness of pa-
rameter estimation is a priori global identifiability. Model
identifiability of nonlinear systems has been extensively
studied. Among the most recent and applied papers, let
us cite (Denis-Vidal et al., 2001a; Ljung and Glad, 1994;
Vajda et al., 1989).

Since the models (1) and (2) are uncontrolled, they
can be described in a general state-space form as

Γθ

{
ẋ(t, θ) = f

(
x(t, θ), θ

)
, x(0, θ) = x0(θ),

y(t, θ) = h
(
x(t, θ), θ

)
.

(3)

Here x(t, θ) ∈ R
n and y(t, θ) ∈ R denote the state vari-

ables and the measured outputs, respectively, and θ ∈ Up

the unknown parameters (Up is an open subset in R
p).

The functions f(·, θ) and h(·, θ) are real, rational and an-
alytic for every θ ∈ Up on M (a connected open subset
of R

n such that x(t, θ) ∈ M for every θ ∈ Up and every
t ∈ [0, T ]). Moreover, we assume that f(x0(θ), θ) �= 0
for every θ ∈ Up. In this paper, the identifiability defini-
tions considered take into account initial conditions.

Definition 1. The model Γθ is globally identifiable at
θ ∈ Up if there exists a finite time t1 > 0 such that if
y(t, θ̃) = y(t, θ) (θ̃ ∈ Up) for all t ∈ [0, t1], then θ̃ = θ.
The model Γθ is locally identifiable at θ ∈ Up if there
exists an open neighborhood W of θ such that Γθ is
globally identifiable at θ with Up restricted to W .

In most models there exist atypical points in Up where
the model is not globally (locally) identifiable. Thus,
the previous definitions should be generically extended so
that the model Γθ is said to be globally (locally) struc-
turally identifiable if it is globally (locally) identifiable
at all θ ∈ Up except at the points of a subset of mea-
sure zero in Up. Sometimes, identifiability results are
obtained independently of the initial conditions. Thus, if
x(0, θ) = x0(θ) is removed from Γθ, it gives Σθ:

Σθ

{
ẋ(t, θ) = f

(
x(t, θ), θ

)
,

y(t, θ) = h
(
x(t, θ), θ

)
.

(4)

Then the solutions of Σθ may be nonunique and some
solutions might be of a degenerate character. Thus, the set
of nondegenerate solutions will be denoted by x̄(θ), the
set of corresponding outputs by ȳ(θ) and the definition
introduced in (Ljung and Glad, 1994) is adopted here:

Definition 2. The model Σθ is globally identifiable at
θ ∈ Up if for any θ̃ ∈ Up, θ̃ �= θ, ȳ(θ) �= ∅ and ȳ(θ) ∩
ȳ(θ̃) = ∅.

Then the definitions of local (structural) identifiabil-
ity are deduced in a straightforward manner.

2.2. Identifiability Algorithm

The identifiability approach adopted here is based on the
differential algebra, which is possible since f(·, θ) and
h(·, θ) are assumed to be rational functions. It consists
in eliminating unobservable state variables in order to get
relations between outputs and parameters. It is not obvi-
ous how to do such a computation only with a pencil and
paper, but there exist software enwironments equipped
with symbolic computation languages (Denis-Vidal et al.,
2001b; Ljung and Glad, 1994).

More precisely, the system Σθ is rewritten as a dif-
ferential polynomial system, complemented with θ̇i =
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0, i = 1, . . . , p. The resulting system can be described
by the following polynomial equations and inequalities:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(ẋ, x, θ) = 0,

q(x, y, θ) = 0,

r(x, y, θ) �= 0,

θ̇i = 0, i = 1, . . . , p.

(5)

A solution of Σθ is any triplet {x, y, θ} satisfying (5).

Before presenting our identifiability algorithm, let us
recall some notation and some subsidiary results (Denis-
Vidal et al., 2001b):

• I is the radical of the differential ideal generated
by (5). I, endowed with the following ranking which
eliminates the state variables:

[θ] ≺ [y] ≺ [x], (6)

is assumed to admit a characteristic presentation (i.e.,
a canonical representant of the ideal). It is shown that
this characteristic presentation, evaluated at θ, has
the following form:

C(θ) =
{
θ̇1, . . . , θ̇p, P (y, θ), Q1(x, y, θ),

. . . , Qn(x, y, θ)
}
.

• Io
θ is the ideal obtained after eliminating state vari-

ables. Then it is necessary to make some “tech-
nical assumptions” about the polynomials of C(θ)
(Denis-Vidal et al., 2001b), which is explained in
Appendix. In this way, the characteristic presentation
Co

θ of Io
θ , called the output characteristic presenta-

tion, is proved to contain the differential polynomial
P (y, θ), called the output polynomial, which can be
expressed as

P (y, θ) =
l∑

i=1

gi(θ)φi(y) + φl+1(y), (7)

where (gi(θ))1≤i≤l are rational in θ, gi �= gj

(i �= j), (φi)1≤i≤l are differential polynomials with
respect to y, and φl+1 �= 0. The list{

g1(θ), g2(θ), . . . , gl(θ)
}

(8)

is called the exhaustive summary.

The identifiability algorithm is based on the follow-
ing proposition (Denis-Vidal et al., 2001a):

Proposition 1. Set

ΔP (y) = det
(
φi(y), i = 1, . . . , l + 1

)
. (9)

If ΔP (y) is not in Io
θ , then Σθ is globally identifiable

at θ if and only if for every θ̄ ∈ Up (θ̄ �= θ), the two
characteristic presentations Co

θ and Co
θ̄

are distinct.

The algorithm, elaborated by ourselves, is written in
MAPLE 7. The second and fifth steps are based on the
Rosenfeld-Groebner algorithm, which was implemented
by Boulier in MAPLE 7 (Boulier et al., 1995), and is avail-
able in the DIFFALG package.

Data: f and h (the functions occurring in Σθ).

Step 1: Software rewrites the original system Σθ (4) as
the differential polynomial system (5).

Step 2: The Rosenfeld-Grobner algorithm computes the
general input-output characteristic presentation.
(If the user is interested by all the input-output
characteristic presentations involving all the par-
ticular cases, he or she can require them.)

Step 3: The software computes the values of θ such that
the “technical assumptions” (given in the Ap-
pendix) about the polynomials of C(θ) are not
valid.

Step 4: It saves the coefficients {gi(θ), i = 1, . . . , l}
in an exhaustive summary, which is simplified in
order to extract its smallest generator system in
terms of the degree, the number of monomials,
etc.

Step 5: The exhaustive summary is analyzed by the
Rosenfeld-Grobner algorithm that solves⎧⎨

⎩
gi(θ) = gi(θ̄), i = 1, . . . , l,

˙̄θi = 0, i = 1, . . . , p.
(10)

Step 6: The software validates the method by checking
the assumption of Proposition 1. Let us note that,
if the assumption is valid, then the solutions are
not degenerate.

In this section, the identifiability of the model is an-
alyzed without considering initial conditions. But the re-
sults or Proposition 1 could be improved by adding infor-
mation from such conditions.

2.3. Application to Pharmacokinetics

Firstly, the algorithm is applied to the model (1) with θ =
{α1, α2, Vm, kc}. The successive steps give the following
results:

Step 1: The software rewrites the system as the following
polynomial differential system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(kc+x1) − α1(x2−x1)(kc+x1) + (Vmx1) = 0,

ẋ2 − α2(x1 − x2) = 0,

y − x1 = 0,

kc + x1 �= 0,

α̇1 = 0, α̇2 = 0, V̇m = 0, k̇c = 0.

(11)
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Step 2: It returns the following general output characteris-
tic presentation with the assumption that α1 �= 0:{
2kcÿy + k2

c ÿ + (α1 + α2)ẏy2 + 2kc(α1 + α2)ẏy

+
(
(α1 + α2)kc + Vm

)
kcẏ + α2Vmy2

+ α2Vmkcy − ÿy2
}
. (12)

(The particular case of α1 = 0 does not corre-
spond to any realistic assumption.)

Step 3: The “technical assumptions” about the polynomi-
als of C(θ) are not valid if Vmkc = 0 (see Ap-
pendix). Consequently, the set Up is defined by
Up = {θ ∈ R

4, α1 �= 0, Vmkc �= 0}.
Step 4: The exhaustive summary, given by the software, is{

kcα2Vm, k2
c , kc, kc(α1 + α2), α2Vm,

α1 + α2, kc(kcα2 + kcα1 + Vm)
}
. (13)

Step 5: The analysis of this exhaustive summary leads to{
Vm = V̄m, kc = k̄c, α1 = ᾱ1, α2 = ᾱ2

}
. (14)

Step 6: It verifies that
det

{
ÿy, ÿ, ẏy2, ẏy, ẏ, y2, y

}
is not in Io

θ .

All these steps show that the model (1) is globally
identifiable with respect to Up or structurally globally
identifiable with respect to R

4.

Now, the software applied to the model (2) does
not imply anything because the computations require too
much memory. But it is possible to give more information
to the software. Indeed, the state x2 can be considered
as a new observed state because it is known as the unique
solution of

ẋ2 + α2x2 = α2y, x2(0) = 0. (15)

On the other hand, from the first equation of (2), we have

ẋ1 = α1(x2 − x1) −
Vm

kc

x1

1 + x3/ka + x1/kc
. (16)

The quantity x3/ka can be considered as known. Conse-
quently, the quantity

x3/ka

1 + x3/ka + x1/kc

is known, too. Therefore the algorithm is applied to the
model (2) with

y =
(
x1, x2,

x3/ka

1 + x3/ka + x1/kc
,
x3

ka

)
and

θ = {β1, β2, ka}.

Step 1: The software rewrites the system as the following
polynomial differential system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(kcka + kcx3 + kax1) − α1(x2 − x1)
× (kcka + kcx3 + kax1) + kaVmx1 = 0,

ẋ2 − α2(x1 − x2) = 0,

ẋ3(kcka + kcx3 + kax1) − β1(x4 − x3)
× (kcka + kcx3 + kax1) + kcVmx3 = 0,

ẋ4 − β2(x3 − x4) = 0,

y1 − x1 = 0,

y2 − x2 = 0,

y3(kakc + kcx3 + kax1) − kcx3 = 0,

kay4 − x3 = 0,

kcka + kcx3 + kax1 �= 0

β̇1 = 0, β̇2 = 0, k̇a = 0.

(17)

Step 2: It returns the following general output characteris-
tic presentation:{

ÿ4y
2
4kcka + ẏ4y

2
4kc(β1 + β2)ka + y2

4y3kcVmβ2

−(y3
3y4 − y2

3y4 + y3
3)V 2

m − (−y3y4ẏ4 − y2
3y4ẏ4)kcVm

−
(
y2
3y

2
4 − y3y

2
4 +

y2

kc
y2
3y4 + y2

3y4

)
α1kcVm,

(ẏ3y
2
4 + y3y4ẏ4 + y2

3y4ẏ4)kc + (y3
3y4 − y2

3y4 + y3
3)Vm

+
(y2

kc
y2
3y4 + y2

3y4 + y2
3y

2
4 − y3y

2
4

)
α1kc,

y1y3 + (y3 + y3y4 − y4)kc,

ẏ2y3 + y2y3α2 + (y3 − y3y4 + y4)α2kc

}
.

Only the first polynomial involves the unknown parame-
ters. The other polynomials correspond to the known rela-
tions between the “artificial” outputs introduced in order
to simplify the computation of the characteristic presenta-
tion. (The particular cases β1 = 0 and x3 = 0 are not
considered).

Step 3: The “technical assumptions” about the polynomi-
als of C(θ) are not valid if ka = 0. Consequently,
the set Up is defined by Up = {θ ∈ R

3, ka �= 0}.

Step 4: The exhaustive summary, given by the software,
can be expressed as

{ka, β2, ka(β1 + β2)} . (18)

Step 5: The analysis of this exhaustive summary leads to{
ka = k̄a, β1 = β̄1, β2 = β̄2

}
. (19)

Step 6: It verifies that det {ÿ4, ẏ4, y3} is not in Io
θ .
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All these steps show the model (2) (without initial condi-
tions) to be globally identifiable at θ = {β1, β2, ka} with
respect to Up or structurally globally identifiable with re-
spect to R

3. As regards the parameter γ involved only
in the initial condition, its uniqueness can be directly de-
duced from the first equation at the time t = 0, i.e.,

ẏ1(0) = −α1C0 −
kaVmC0

kcka + kcγC0 + kaC0
.

3. Preliminary Numerical Parameter
Estimation

3.1. Idea

In the previous section, only one output polynomial gives
information about model identifiability. It can be written
down as

l∑
i=1

gi(θ)φi(y) + φl+1(y) = 0. (20)

Since initial conditions play a role in the identifia-
bility procedure, a way of considering these conditions is
the integration of the relations (20) from 0 to t. The aim
of this computation is not only to facilitate identifiability
analysis by the introduction of initial conditions, but also
to reduce the highest order of the time derivative, which is
a source of numerical instabilities.

The integration will be performed as far as possi-
ble and the resulting relations will be called the integro-
differential equation of observation:

T (y, θ) = 0. (21)

Since (21) can be obtained by integrating (20), and (20)
is linear with respect to some parameter combinations,
T (y, θ) is also linear with respect to some parameter com-
binations. The introduction of initial conditions can give
additional combinations, and {γ1(θ), . . . , γl̂(θ)} denote
the parameter combinations appearing in T (y, θ).

The exact observation, corresponding to the exact
value θ̄, is more or less perturbed by noise. Thus,
Eqns. (20) and (21) are not satisfied by the noisy output.
Moreover, the observation is not carried out at any time
and the given data are a set of measurements:

zj := y(tj; θ̄) + εj , j = 1, 2, . . . , q. (22)

The aim of this section is to provide a first estimate
of the parameters directly from (21). In most cases, output
derivatives are involved in (21), and they have to be esti-
mated from noisy observations. Generally, the numerical
approximation of a derivative is sensitive to noise, espe-
cially if the derivative order is high. Moreover, it is not

accurate near the bounds of the observation horizon. That
is why, on the one hand, the output polynomial was inte-
grated, and on the other hand, over a time interval away
from 0. Various methods were tested in order to approxi-
mate these derivatives at the points (tj). Firstly, a local
approximation polynomial was used, then an algorithm
based on B-splines was applied (Ibrir and Diop, 2004).
These do not require any knowledge of the statistics of
measurement uncertainties. For our first application, they
give similar results, but for the second one, the method
given in (Ibrir and Diop, 2004) is better and was success-
fully applied.

Consider the derivatives to be estimated at
{tn0 , . . . , tn1} and denote by {Tint(zj , θ)}n0≤j≤n1
the values of the function corresponding to the approx-
imation of (21), in which integrals and derivatives have
been numerically approximated. A way of getting an
estimate of {γ1(θ), . . . , γl̂(θ)} is to solve the following
minimization problem:

min
(γ1(θ),...,γl̂(θ))

n1∑
j=n0

(Tint(zj , θ))
2 . (23)

Since the integral-differential expression T is linear
with respect to {γ1(θ), . . . , γl̂(θ)}, it is the same for the
function Tint. Therefore, the QR algorithm can be applied
to solve (23). Moreover, since model identifiability has
been shown, unique parameter values θ are drawn from
{γ1(θ), . . . , γl̂(θ)}.

3.2. Application to the Model (1)

The output polynomial (12) can be rewritten as

ÿy2 + 2γ1(θ)ÿy + γ2(θ)ÿ + γ3(θ)ẏy2 + 2γ4(θ)yẏ

+ γ5(θ)ẏ + γ6(θ)y2 + γ7(θ)y = 0, (24)

where
θ = {α1, α2, Vm, kc}

and

γ(θ) =
{
kc, k

2
c , α1 + α2, kc(α1 + α2),(

kc(α1 + α2) + Vm

)
kc, α2Vm, α2Vmkc}.

The integration between t0 > 0 and t leads to

ẏ(t)y(t)2 − ẏ(t0)y(t0)2 − 2
∫ t

t0

y(s)ẏ(s)2 ds

+2γ1

(
ẏ(t)y(t) − ẏ(t0)y(t0) −

∫ t

t0

ẏ(s)2 ds
)

+
1
3
γ2

(
ẏ(t) − ẏ(t0)

)
+ γ3

(
y(t)3 − y(t0)3

)
+γ4

(
y(t)2 − y(t0)2

)
+ γ5

(
y(t) − y(t0)

)
+γ6

∫ t

t0

y(s)2 ds + γ7

∫ t

t0

y(s) ds = 0.
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The integrals involved are approximated by a trape-
zoidal rule, which gives the following least-squares prob-
lem (t0 = tn0 , t = tk, k = n0, . . . , n1, after discretizing
in time):

min
(γ1(θ),...,γ7(θ))

n1∑
k=n0

( 7∑
j=1

Ak,jγj(θ) − bk

)2

,

where

Ak,1 = 2
(
yp(tn0)y(tn0) − yp(tk)y(tk)

)
+

k−1∑
i=n0

(ti+1 − ti)
(
yp(ti)2 + yp(ti+1)2

)
,

Ak,2 = yp(tn0) − yp(tk),

Ak,3 =
1
3
(
y(tn0)3 − y(tk)3

)
,

Ak,4 =
(
y(tn0)2 − y(t2k)

)
,

Ak,5 = y(tn0) − y(tk),

Ak,6 = −1
2

k−1∑
i=n0

(ti+1 − ti)
(
y(ti)2 + y(ti+1)2

)
,

Ak,7 = −1
2

k−1∑
i=n0

(ti+1 − ti)
(
y(ti) + y(ti+1)

)
,

bk = yp(tk)y(tk)2 − yp(tn0)y(tn0)2

−
k−1∑
i=n0

(ti+1 − ti)
(
y(ti)y2

p(ti)

+y(ti+1)y2
p(ti+1)

)
,

(25)

and yp(ti) is a numerical approximation to ẏ(ti). In
order to test the method, the measured state is sim-
ulated from the true signal ȳ computed with θ =
{0.011, 0.02, 0.1, 1} and disturbed by noise, so it is a ran-
dom variable with the mean ȳ and the variance (σȳ)2.
The coefficient σ is computed so that the relative error
has a maximum value of 0.01 (resp. 0.05) with an error
probability less than 0.003. It will be denoted by σ1

(resp. σ2).

If the measured data are simulated with the coeffi-
cient σ1 (resp. σ2), the previous least-squares minimiza-
tion solved by the QR algorithm leads to the estimate
θσ1 = [0.0759, 0.0164, 0.0811, 0.1431] (resp. θσ2 =
[0.0343, 0.0069, 0.0759, 0.1151]). Figure 1 (resp. Fig. 2)
represents the measured data (dashed line), and the output
(solid line) computed from the model (1) and the parame-
ter value θσ1 (resp. θσ2 ).

Obviously, the results are not satisfactory, but the
aim of the method is to provide a preliminary esti-
mate of the parameters. It is used as a starting point
of an iterative minimization procedure: the well-known
Levendberg-Marquard algorithm. The results are very
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Fig. 1. System (1), noise level σ1, first estimate.
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Fig. 2. System (1), noise level σ2, first estimate.

satisfactory. Indeed, if the measured data are simulated
with the variance σ1 (resp. σ2), the resulting param-
eter values are {0.0109, 0.0196, 0.102, 1.0271} (resp.
{0.0106, 0.0196, 0.1044, 1.0535}), which corresponds to
Fig. 3 (resp. Fig. 4).

Remark 1. An alternative approach for estimating the pa-
rameter vector θ from (24) could be given by an adaptive
observer as is done in (Marino and Tomei, 1995). How-
ever, the above-mentioned drawbacks of the approxima-
tion of derivatives from noisy measurements seem to re-
main.

3.3. Application to the Model (2)

The previous estimation of the parameters
(α1, α2, Vm, kc) is taken into account in the model (2).



N. Verdière et al.524

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

t

y

output
measured data

Fig. 3. System (1), noise level σ1, final estimate.
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Fig. 4. System (1), noise level σ2, final estimate.

In Section 2.3 the identifiability of the model (2) is
given by the first polynomial of the characteristic presen-
tation. The second polynomial permits a simplification
which leads to

ÿ4 + (β1 + β2)ẏ4 +
Vm

ka
ẏ3 +

β2Vm

ka
y3 = 0. (26)

In order to decrease the derivation order, let us inte-
grate (26) between t0 and t:

ẏ4(t) − ẏ4(t0) + (β1 + β2)
(
y4(t) − y4(t0)

)
+

Vm

ka
(y3(t) − y3(t0)) +

β2Vm

ka

∫ t

t0

y3(τ) dτ = 0.

(27)

The corresponding least-squares problem can be ex-
pressed as

min
θ∈R3

‖Aθ − b‖2, (28)

where

θ =
{
β1 + β2,

Vm

ka
,
β2Vm

ka

}
,

Aj =
[
y4(tj) − y4(t0), y3(tj) − y3(t0),

∫ tj

t0

y3(τ) dτ

]
,

bj = −
(
y4p(tj) − y4p(t0)

)
.

The integral is approximated by a trapezoidal rule and
y4p(tj) corresponds to a numerical estimate of ẏ4(tj).

In order to test the method, the measured state is sim-
ulated from the true signal ȳ (C0 = 0.625) computed
with β1 = 0.01, β2 = 0.02, ka = 0.5, γ = 50 and
disturbed by noise so that it can be treated as a random
variable with the mean ȳ and the variance (σȳ)2. The
coefficient σ is computed so that the relative error has a
maximum value of 0.01 (resp. 0.05) with an error proba-
bility less than 0.003. As has been done previously, it will
be denoted by σ1 (resp. σ2).

Then, the least-squares problem is solved using the
QR algorithm, which gives the preliminary estimates
β1 = 0.0244, β2 = 0.0263, ka = 0.7 (resp. β1 = 0.017,
β2 = 0.011, ka = 0.3). The parameter γ is estimated
from the evaluation of the first equation of (2) at t = 0:

γ = −ka

((
1

C0
+

1
kc

)
+

Vm/kc

ẏ(0) + α1C0

)
. (29)

In this way, γ = 22.7376 (resp. γ = 0.9641) was found.

The parameter γ is estimated from the relation (29),
which depends on the derivative of the observation at 0
and the estimate of ka. It is well known that it is quite
difficult to approximate values at initial conditions, espe-
cially with disturbed data. Thus the accumulation of errors
makes the estimate of γ too bad. Figure 5 (resp. Fig. 6)
represents the measured data (dashed line), and the output
(solid line) computed from the model (2) and the second
estimate of the parameters. The big difference between
both the curves is due to the important sensitivity of the
output with respect to γ.

As in Section 3.3, the Levenberg-Marquard algo-
rithm is applied and the obtained parameter values of the
model (2) are {β1, β2, ka, γ} = {0.03; 0.03; 0.29; 49.67}
(resp. {β1, β2, ka, γ} = {0.0374; 0.0328; 0.2711;49.66})
which corresponds to Fig. 7 (resp. Fig. 8).

4. Conclusion

In order to study the feasibility of antibiotic targeting to-
ward the macrophages for the treatment of intracellular
infections, we used a model macromolecule, namely, glu-
cose oxidase, and analyzed its pharmacokinetics, which
gave rise to the first system. In the second step, we used
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Fig. 5. System (2), noise level σ1, first estimate.
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Fig. 6. System (2), noise level σ2, first estimate.

glucose oxidase as the sensor in a competition test de-
signed to assess the capacity of macromolecular potential
drug carriers to reach in vivo the macrophages. This ex-
perimental setup gave rise to the second system. Model
identifiability analysis of both systems was shown by us-
ing software based on differential algebra tools. Then it
was shown that this analysis leads to a differential poly-
nomial linking some parameter combinations and system
outputs, which can be used to give a preliminary numer-
ical parameter estimate. This step does not require any
information about the parameters. Lastly, starting from
these parameter values, a classical least-squares problem
leads to a very good numerical estimation.
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Appendix

The aim of this appendix is to clarify the “technical as-
sumptions” about the differential polynomials of Cθ that
are given in the identifiability algorithm.

Let us begin by introducing the appropriate notation:

• I is the radical of the differential ideal generated
by (5).

• C is a characteristic presentation of I endowed with
the ranking [θ] ≺ [y] ≺ [x],

C=
{
θ̇1, . . . , θ̇p, P (y, θ), Q1(x, y, θ), . . . , Qn(x, y, θ)

}
.

• L is the set of the leaders of C, i.e.,

L =
{
θ̇1, . . . , θ̇p, y

(d), x
(d1)
1 , . . . , x(dn)

n

}
,

where {d, d1, . . . , dn} depend on the model.

• N is the set of the other derivatives occurring in C,
and R[N ] is the polynomial ring built over N with
coefficients in R.

• C(θ) is the characteristic presentation C evaluated at
θ, a particular parameter value.

• Iθ is the radical of the differential ideal generated
by (5) via considering θ, a particular parameter value,
and Cθ is the characteristic presentation of Iθ , en-
dowed with the ranking [y] ≺ [x],

In order to avoid the evaluation of C(θ) at each pa-
rameter value, the following result (Denis-Vidal et al.,
2001b) gives a sufficient condition for the equality Cθ =
C(θ):

Proposition A. Let C = {θ̇1, . . . , θ̇p, c1, c2, . . . , cn+1}
be the characteristic presentation of the differential ideal
I endowed with the ranking [θ] ≺ [y] ≺ [x]. If, for every
θ ∈ Up and for every i = 1, . . . , n + 1, the initial of
ci(θ) ∈ C(θ) is nonzero and none of its factors (�= 1) is a
divisor of all the other coefficients of ci(θ) ∈ R[N ], then
Cθ = C(θ) for all θ ∈ Up.

The “technical assumptions” correspond to the as-
sumptions of this proposition, which finally implies that
the set Co

θ = Cθ ∩ R(θ){y}, defined in Section 2.2, con-
tains P (y, θ).

Let us illustrate this by the result of Step 3 applied
to the model (1). The hypotheses of Proposition A are
not valid if Vmkc = 0. Indeed, the set L is reduced to
L = {ÿ} and the input-output characteristic presentation
can be rewritten as

{(y + kc)2ÿ + T },

where (y + kc)2 and T belongs to R[N ]. If Vm = 0,
(y + kc)2 is a divisor of T and kc = 0, then y2 is a
divisor of T .

Indeed, the software gives the result Vmkc �= 0 di-
rectly, but this can be easily made explicit in the case of
the model (1). In the same way, the result given by Step 3
applied to the model (2) can be checked.
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