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Although the first rule-based systems were created as early as thirty years ago, this methodology of expert systems designing
still proves to be useful. It becomes especially important in medical applications, while treating evidence given in an
electronic format. Constructing the knowledge base of a rule-based system and, especially, of a system with uncertainty is
a difficult task because of the size of this base as well as its heterogeneous character. The base consists of facts, ordinary
rules and meta-rules, which differ from each other regarding both the syntax structure and the semantics. Having no tool to
aid designing and maintaining the knowledge base of a rule-based system with uncertainty, we propose the algebra of rules
with uncertainty which gives us theoretical foundations to build such a tool. Using the tool, it will be possible to indicate
the facts and rules of a redundant character, as well as the pairs of facts and the pairs of rules which are contradictory to
each other. The above tool is used in designing and maintaining the knowledge base of a system intended to prognosticate
the effects of a medical treatment of the bronchial asthma disease.
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1. Introduction

The amount of knowledge available in different fields of
science is increasing systematically. Its assimilation by
an individual person is becoming more and more difficult.
Therefore, the obvious result is the increasing importance
of expert systems (Giarratano and Riley, 2004); they help
us to evaluate different phenomena and situations, to make
decisions and prognosticate elements of the future.

On the other hand, the acquired knowledge often has
a relative, contextual character. Its particular significance
can be conditioned by time and place, as well as other
less obvious factors. For this reason, expert systems with
uncertainty have nowadays a very special role to play.

Generally speaking, what we mean by the term of
uncertainty is the lack of information which is precise
enough to make a decision. The uncertainty is the sub-
ject of many formal theories, e.g., the following ones:

• Pascal-Fermat’s theory, introduced in the 18th cen-
tury and considered to be a classical theory of prob-
ability;

• Carnap’s theory (Carnap, 1945), pointed at a new
type of probability, also called an epistemic proba-
bility;

• Dempster-Shaffer’s theory (Shaffer, 1976), devel-
oped in the 1960s and 1970s in accordance with Car-
nap’s theory;

• Zadeh’s theory (Zadeh, 1965), the most general the-
ory of uncertainty that has been formulated so far;

• belief networks (Pearl, 1988), introduced in the
1980s and being developed intensively up to now,
based on using the Bayes theory of conditional prob-
abilities.

Let us have a closer look at some of those.

Both the Pascal-Fermat and Bayes theories are dif-
ferent from the others. What makes the main difference
between them is the way how the notion of ignorance is
used. Namely, the classical theories claim that the evi-
dence not supporting a hypothesis H is an evidence for
the refutation of H . There is no place for ignorance here
(it follows from the axiom P (H) + P (H ′) = 1). Unlike
here, in the Carnap and Dempster-Shaffer theories, while
lacking the knowledge about H , we do not have to assign
any belief to H or to its negation H ′. Instead, we may as-
sign the remaining belief to the environment (the set of all
possible hypotheses) θ. In order to deal with the idea of
ignorance, Dempster and Shaffer consider the following
certainty factors in their theory:

• the certainty factor cf: 2θ → [0; 1], fulfilling the con-
ditions cf(∅) = 0 and Σ(X ∈ 2θ) cf(X) = 1;

• the global certainty factor Bel: 2θ → [0, 1], such that
Bel(H) = Σ(X ⊆ H) cf(X);
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• the plausibility factor Pls: 2θ → [0, 1], such that
Pls(H) = 1 − Bel(H ′) = 1 − Σ(X ⊆ H ′) cf(X);

• the ignorance factor Igr: 2θ → [0, 1], such that
Igr(H) = Pls(H) − Bel(H).

By means of certainty factors, we are also able to
estimate how much credit should be granted to the con-
clusions obtained as the results of processing the evidence
coming from different sources. In such cases, it is suf-
ficient to apply the following Dempster rule of combina-
tion:

cf1 ⊕ cf2(Z) = Σ(X ∩ Y = Z) cf1(X) ∗ cf2(Y ),

in which X and Y are any input hypotheses, Z is a re-
sult hypothesis, cf1(X), cf2(Y ) and cf1 ⊕ cf2(Z) stand
for the certainty factors of X , Y and Z , respectively.

Having rigorous mathematical foundations, the
Dempster-Shaffer theory has been widely implemented in
expert systems, particularly in rule-based systems, where
the uncertainty of knowledge is expressed through cer-
tainty factors attributed to facts and rules (Duda et al.,
1979; Lucas et al., 1989; Shortliffe, 1976). The course
and final result of the reasoning process depend on cal-
culating the certainty factors of conclusions, and also on
the algorithm of conflict resolution in the set of active
rules. This algorithm, in many implementations, takes
as the most important criterion the one of how detailed
a rule is, which is measured by the number and the inter-
nal complexity of its premises. Then, it usually considers
the rule newness, measured by the moment of introduc-
ing its premises into the knowledge base. In other cases,
a decisive factor to select the rule is its priority. It is given
statically in the process of designing the knowledge base,
or determined dynamically on the basis of certainty fac-
tors of the rule and its premises.

The notion of ignorance is widely discussed in
Zadeh’s theory, in which all hypotheses from the envi-
ronment are characterized not by means of numerical cer-
tainty factors, but with the so-called membership func-
tions.

Consider the following definitions founded on the
proposal of certainty factors:

(fact-A) CF 0.8 fact

(defrule example

(fact-A) CF 0.3

⇒ rule

(assert (fact-B) CF 1.0)

(assert (∼fact-C) CF 0.5)).
In Zadeh’s fuzzy logic, they take the following, equivalent
form:

(fact-A, almost-certain) fact

(defrule example

(fact-A, rather-uncertain)

⇒ rule
(assert (fact-B) certain)

(assert (∼fact-C) medium-certain)).

Here, the notions almost-certain, rather-
certain, certain, and medium-certain are
all fuzzy notions used to determine the frequency of the
events. Without going into details, note that in order to
represent the first three notions, we shall use the member-
ship S-function and, to represent medium-certain,
the membership Π-function.

Clearly, the conclusions deduced in high quality
fuzzy systems usually meet our requirements much bet-
ter than those deduced with the use of Dempster’s rule of
combination. Nevertheless, we shall point out that a fuzzy
system will perform well if and only if the numerical evi-
dence, obtained as an experiment result, is correctly trans-
formed to a set of membership functions. Such a coding
(and decoding) is not a trivial task.

Since the late 1980s, the designers started focusing
more on the methods of representing uncertain knowl-
edge in the form of probabilistic graphical models and,
in particular, belief networks. As it has been recently
proved, the certainty factors used in rule-based systems
are in fact closely related to the uncertainty model used in
belief networks (Lucas, 2001). Because of their character,
each method is useful in different applications. Therefore,
in the cases where knowledge has a character of simple,
linear cause-and-effect dependencies, the belief networks
prove to be the most convenient. However, in the cases
where knowledge has a character of complex implications,
which reflect the course of expert thinking and combine
a multi-parameter input data with a multi-parameter out-
put data, the rule-based systems are better. For example,
in medical applications, knowledge representation in the
form of belief networks turns out to be useful in diagnos-
tic systems, whereas the knowledge in the form of rules is
good in systems assigned to plan and prognosticate the ef-
fects of pharmacological treatment. All in all, although
rule-based systems have often been criticized (Hecker-
man, 1990), only a balanced judgement seems to be fair
(Oniśko et al., 2001).

Undoubtedly, the credibility of an expert system in-
creases as soon as it is equipped with a truth maintenance
module, namely, the module which is able not only to con-
struct justifications of conclusions, but also to maintain the
knowledge base in the state of internal consistency.

Being inspired to build an expert system which could
have an advisory function in both the diagnostics and
treatment of the bronchial asthma disease, we agreed to
model it in the form of a rule-based expert system with
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uncertainty. An additional argument in favour of the rule-
based system is the ease of acquiring knowledge from
electronic sources (the Internet), automatically or semi-
automatically (Jankowska and Szymkowiak, 2005). To
improve the quality of our system, we decided that it will
be equipped with a truth maintenance module. Having no
tools to aid designing the truth maintenance module for
a rule-based system with uncertainty, we set our mind on
defining a formal system which might be helpful in build-
ing such a tool.

We shall notice that the knowledge base of a rule-
based system with the truth maintenance module consists
of three types of elements: facts—which play the role of
statements with an axiomatic nature, rules—the implica-
tions which enable reasoning in the system, and meta-
rules—responsible for keeping the knowledge base in the
state of internal consistency. Defining this heterogeneous
knowledge base often involves the necessity of using var-
ious methods and various formal languages.

The heterogeneous character mentioned above is also
an ever-present feature of rule-based systems with uncer-
tainty. In these systems, all elements of the knowledge
base have some additional attributes usually in the form
of certainty factors. Their role is to designate the proba-
bility of the occurrence of particular facts or dependencies
in reality. If particular elements of the knowledge base of
the system with uncertainty are similar thanks to their at-
tributes, it suggests the idea of perceiving the knowledge
base as a certain whole.

2. Syntax of Rules with Uncertainty

At the beginning, let us define the concept of a rule with
uncertainty. We intend to make use of this concept for sub-
sequent modelling of both ordinary rules and meta-rules
kept in the knowledge base of a rule-based system with
uncertainty. Since each fact from this knowledge base is
actually a particular case of the rule (with a universal fact
as a premise and with the analyzed fact as a new conclu-
sion), we aim at obtaining a formal system which would
provide a basis to model the whole knowledge base in a
homogeneous way.

Such a formal system will be defined in an increas-
ing manner, applying in each following step the concepts
defined in the previous steps.

2.1. Uncertain Facts. Let us consider an infinite set T

of facts. This set will be settled axiomatically, together
with the relations =0 and ≤0. The elements of T will be
denoted by T1, T2, T3, etc. As a result, we obtain

T = {T1, T2, T3, . . . }.

The relation =0: T × T meaning “the same as” is
an equivalence relation. Let us assume that Ti, Tj and

Tk are any facts from the set T. Then, the relation ≤0:
T × T meaning “subsumed by” must fulfil the following
conditions:

• Ti =0 Tj ⇒ Ti ≤0 Tj ,

• Ti ≤0 Tj ∧ Tj ≤0 Ti ⇒ Ti =0 Tj ,

• Ti ≤0 Tj ∧ Tj ≤0 Tk ⇒ Ti ≤0 Tk.

Obviously, the relation ≤0 is a partial ordering. An
exemplary model of T may be a set of facts composing
a medical evidence. Here are two such facts, specified
by means of the FuzzyCLIPS (Orchard, 1998) notation.
These facts characterize Mr Smith’s state of health, who is
suffering from the bronchial asthma disease (BAD, 2002):

(assert (SMITH cough-before lev-c(3))), (1)

(assert (SMITH cough-before lev-c(2 3))). (2)

They show that the frequency of Mr Smith’s morning
cough is no less than a few episodes a week for (1), and
a few episodes a month or a few episodes a week for (2).
The above facts are related to each other in the following
way: if-then0((2),(1)), where if-then0 is the
two-argument relation, corresponding to ≤0 in the model
under discussion.

The determination of the relations if-then0 and
if-and-only-if0 (equivalent to =0 in the model)
may not be an easy task. In the above example, we refer
to the dependencies which hold between the ranges of fre-
quency. However, it does not imply that using numerical
ranges is indispensable to determine these relations. If we
consider any field of knowledge which has a well-defined
ontology, then if-and-only-if0 and if-then0 are
obtained by adapting the relations of equality and sub-
sumption which hold between the concepts of this field.

For example, in the field of genealogy there are
some obvious dependencies, which might be expressed
by means of an extended FuzzyCLIPS notation (the
assertmf construct) as follows:

(assertmf if-and-only-if0((WIFE X Y),

(HUSBAND Y X))), (3)

(assertmf if-then0((PARENT X Y),

(FATHER X Y))). (4)

All the comments concerning the semantics of the
subsequently defined concepts will be included in Sec-
tion 3.

The uncertain fact will be each fact which has the
form:

• ⊥ (an empty fact—always false),

• � (a universal fact—always true),
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• 〈Ti, pi〉, where Ti ∈ T, and pi ∈ [0, 1] denotes the
probability of the occurrence of T i.

The infinite set of uncertain facts will be denoted by
F and its elements by F1, F2, F3, etc. The result is

F = {F1, F2, F3, . . . }.
In the next stage, let us define the relations =1 and

≤1 on the set of uncertain facts F which are extensions
of the previously introduced relations =0 and ≤0, respec-
tively. We shall assume that the uncertain facts F1 and F2

have the forms F1 = 〈T1, p1〉 and F2 = 〈T2, p2〉, respec-
tively. Such assumptions lead to

F1 =1 F2 ⇔ (T1 =0 T2) ∧ (p1 = p2),

F1 ≤1 F2 ⇔ (T1 ≤0 T2) ∧ (p1 ≤ p2).

2.2. Conjunction of Uncertain Facts. Having intro-
duced the concept of uncertain facts, we can formulate
a recursive definition of the set FC of conjunctions of un-
certain facts:

• if Fi ∈ F, then Fi ∈ FC,

• if FCi, FCj ∈ FC, then FCi ∧2 FCj ∈ FC (the ∧2

symbol is the connective of the conjunction of uncer-
tain facts),

• no other element belongs to the set FC.

Denoting particular elements of the infinite set FC by
FC1, FC2, FC3, etc., we obtain

FC = {FC1, FC2, FC3, . . . }.
Let us extend the relations =1 and ≤1 to the set FC.

To this end, we shall assume that FC i = Fi1 ∧2 Fi2 ∧2

· · · ∧2 Fik and FCm = Fm1 ∧2 Fm2 ∧2 · · · ∧2 Fmp. Then
the relation ≤2: FC × FC will be given the following
meaning:

FCi ≤2 FCm

⇔ (∀(1 ≤ j ≤ k)∃(1 ≤ n ≤ p)(Fij ≤1 Fmn)
)
.

In turn, the relation =2: FC × FC will be defined
in two succeeding steps. First, we will set a priori a
number of pairs 〈FC i, FCm〉 such that the dependency
FCi =2 FCm holds. Finally, we will define =2 as the
least equivalence relation comprising all the pairs men-
tioned above and fulfilling the condition

FCi ≤2 FCm ∧ FCm ≤2 FCi ⇒ FCi =2 FCm.

The last definition enables us to put the constraint
on the uncertain facts Fi1, Fi2, . . . , Fik so as they cannot
hold simultaneously. It is sufficient to include 〈Fi1 ∧2

Fi2 ∧2 · · · ∧2 Fik,⊥〉 in the axiomatically formulated set
of pairs.

We will say that a conjunction of uncertain facts
FCi = Fi1 ∧2 Fi2 ∧2 · · · ∧2 Fik has a normal form if
and only if

∀(1 ≤ j1 ≤ k)
((∃(1 ≤ j2 ≤ k)(Fij2 ≤1 Fij1)

)

⇒ (j1 = j2)
)
.

Obviously, every conjunction of uncertain facts FC i can
be assigned a conjunction of uncertain facts FC m in
a normal form, which complies with the dependency
FCi =2 FCm. The set of all conjunctions of uncer-
tain facts in normal form will be denoted by FCnorm,
and the appropriate normalization function by fnorm 2:
FC → FCnorm.

2.3. Disjunction of Uncertain Facts. In the following
step, we will perform the extension of the set of conjunc-
tions of uncertain facts FC to the set of disjunctions of
uncertain facts FD. This new set is defined recurrently as
follows:

• if FCi ∈ FCnorm, then FCi ∈ FD,

• if FDi, FDj ∈ FD, then FDi ∨3 FDj ∈ FD (the
symbol ∨3 is the connective of the disjunction of un-
certain facts),

• no other element belongs to the set FD.

Let FD1, FD2, FD3, etc. denote the particular elements
of the infinite set FD. We obtain

FD = {FD1, FD2, FD3, . . . }.
Consistently, let us define “the same as” relation

=3 and the “subsumed by” relation ≤3 on the set FD.
Let us make the assumption that the uncertain facts dis-
junctions FDi, FDm have, respectively, the following
forms: FDi = FCi1 ∨3 FCi2 ∨3 · · · ∨3 FCik and
FDm = FCm1 ∨3 FCm2 ∨3 · · · ∨3 FCmp. The rela-
tion ≤3: FD × FD will be given the following meaning:

FDi ≤3 FDm

⇔ (∀(1 ≤ n ≤ p)∃(1 ≤ j ≤ k)(FCij ≤2 FCmn)
)
.

In order to define the relation =3: FD × FD, first we
will arbitrarily set a number of pairs 〈FD i, FDm〉 such
that FDi =3 FDm holds. Next, we will appoint =3

as the least equivalence relation comprising all the pairs
mentioned above and fulfilling the condition

FDi ≤3 FDm ∧ FDm ≤3 FDi ⇒ FDi =3 FDm.

In the light of this definition, we can easily impose
the constraint on the uncertain facts conjunctions FC i1,
FCi2, . . . , FCik so as they exhaust the “space of solu-
tions”. It is sufficient to include 〈FC i1 ∨3 FCi2 ∨3 · · · ∨3

FCik,�〉 in the axiomatically formulated set of pairs.
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We can say that the disjunction of uncertain facts
FDi = FCi1 ∨3 FCi2 ∨3 · · · ∨3 FCik has a normal
form if and only if

∀(1 ≤ j1 ≤ k)
((∃(1 ≤ j2 ≤ k)(FCij1 ≤2 FCij2)

)

⇒ (j1 = j2)
)
.

Just as in the case of any conjunction of uncertain facts
FCi, each disjunction of uncertain facts FD i can be as-
signed a disjunction of uncertain facts FDm in a nor-
mal form which complies with the dependence FD i =3

FDm. The set of all uncertain facts disjunctions will
be denoted by FDnorm, and the appropriate normalization
function by fnorm3: FD → FDnorm.

Since “the same as” relations =0, =1, =2 and =3

are equivalence relations, it can be easily proved that the
“subsumed by” relations ≤1, ≤2 and ≤3 are partial order
relations like the axiomatically given relation ≤0.

At last, let us define the auxiliary functions of the
sum ∪3 and the intersection ∩3 on the set FDnorm. Meet-
ing the former assumptions about the form of the disjunc-
tions of uncertain facts FDi and FDm, the sum function
∪3: FDnorm × FDnorm → FDnorm is defined as follows:

FDi ∪3 FDm = fnorm3(FCi1 ∨3 FCi2

∨3 · · ·∨3 FCik ∨3 FCm1∨3 FCm2∨3 · · ·∨3 FCmp),

and the intersection function ∩3: FDnorm × FDnorm →
FDnorm is defined as

FDi ∩3 FDm

= fnorm3

(
fnorm2(FCi1 ∧2 FCm1)

∨3 · · · ∨3 fnorm2(FCi1 ∧2 FCmp)

∨3fnorm2(FCi2 ∧2 FCm1)

∨3 · · · ∨3 fnorm2(FCi2 ∧2 FCmp)

∨3 . . . fnorm2(FCik ∧2 FCm1)

∨3 · · · ∨3 fnorm2(FCik ∧2 FCmp)
)
.

2.4. Rules with Uncertainty. Finally, we shall intro-
duce the main concept of the set R of rules with uncer-
tainty. To this end, we will use the following recursive
definition:
• �, ⊥ ∈ R,

• if FDi1, FDi2, FDi3 ∈ FDnorm, then (FDi1) ⇒4

(•FDi2, FDi3) ∈ R,

• if Ri1, Ri2, . . . , Rik, Ri(k+1), Ri(k+2) ∈ R, then
(Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1), Ri(k+2)) ∈ R

(symbol the ⇒4 stands for the connective of the im-
plication which means the relationship between a set
of premises and a pair of conclusions),

• no other element belongs to the set R.

Applying the symbols R1, R2, R3, etc. to denote the
uncertain rules, we will obtain the following form of the
infinite set R of rules with uncertainty:

R = {R1, R2, R3, . . . }.

What is the semantics of the rules (FDi1) ⇒4

(•FDi2, FDi3) and (Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1),
Ri(k+2))? They tell us, respectively, that

• if the premise FDi1 is in the knowledge base, then
the old conclusion FDi2 should be removed from it
(if FDi2 exists), and the new conclusion FD i3 should
be added to this knowledge base,

• if all of the rules Ri1, Ri2, . . . , Rik are in the knowl-
edge base, then the rule Ri(k+1) should be removed
from it (if Ri(k+1) exists), and the rule Ri(k+2) should
be added to this knowledge base.

Let us notice that in the hierarchical process of defin-
ing rules we did not use a negation operator. As a con-
sequence, we refer here to the special type of the closed
world assumption, called “negation by absence”. Such
an approach clearly decreases the expressive power of the
rules being proposed. On the other hand, however, it en-
ables us to easily express incomplete information. If we
assume that a rule’s premise has the following form:

〈Ti1, p1〉 ∧ 〈Ti2, p2〉 ∧ · · · ∧ 〈Tin, pn〉,

then, except for the knowledge about the truth of the
facts Ti1, Ti2, . . . , Tin, it expresses the lack of our knowl-
edge about the truthfulness of the facts from the set
T − {Ti1, Ti2, . . . , Tin}. Such a situation occurs in many
experimental fields, where knowledge is acquired step by
step through collecting positive evidence. If necessary, we
are able to express the falseness of the fact Ti0 by complet-
ing the premise into the form:

〈Ti1, p1〉 ∧ 〈Ti2, p2〉 ∧ · · · ∧ 〈Tin, pn〉 ∧ 〈Ti0, 0〉.

Now, on the set R of rules with uncertainty, we will
determine the “the same as” relation =4 and the “sub-
sumed by” relation ≤4. First, the relation ≤4: R × R

can be defined recurrently as follows:

• for any rule Ri ∈ R there holds � ≤4 Ri and Ri ≤4

⊥,

• if Ri = (FDi1) ⇒4 (•FDi2, FDi3) and
Rm = (FDm1) ⇒4 (•FDm2, FDm3),
then Ri ≤4 Rm ⇔ (FDm1 ≤3 FDi1) ∧ (FDm2 ≤3

FDi2) ∧ (FDi3 ≤3 FDm3),
• if Ri = (Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1), Ri(k+2))

and Rm = (Rm1, Rm2, . . . , Rmp) ⇒4 (•Rm(p+1),
Rm(p+2)), then Ri ≤4 Rm ⇔ (∀(1 ≤ n ≤ p)∃(1 ≤
j ≤ k)(Rmn ≤4 Rij)) ∧(Rm(p+1) ≤4 Ri(k+1))
∧(Ri(k+2) ≤4 Rm(p+2)),
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• no other pair of rules Ri, Rm ∈ R can be in rela-
tion ≤4.

It can be easily proved that ≤4 is a partial ordering.

Assume that the former notation remains valid. The
relation =4: R × R is defined as the least equivalence re-
lation, which fulfils the following conditions:

• if Ri = (FDi1) ⇒4 (•FDi2, FDi3) and FDi1 =3

⊥, then Ri =4 �,

• if Ri = (Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1), Ri(k+2))
and ∃(1 ≤ j ≤ k)(Rij =4 ⊥), then Ri =4 �,

• if Ri = (FDi1) ⇒4 (•FDi2, FDi3) and FDi1 =3 �
and FDi3 =3 ⊥, then Ri =4 ⊥,

• if Ri = (Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1), Ri(k+2))
and ∀(1 ≤ j ≤ k)(Rij =4 �) and Ri(k+2) =4 ⊥,
then Ri =4 ⊥,

• if Ri =(FDi1) ⇒4 (•FDi2, FDi3) and ¬(FDi1 =3

⊥)
and (FDi1 ≤3 FDi2) and (FDi3 ≤3 FDi1),
then Ri =4 ⊥,

• if Ri = (Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1), Ri(k+2))
and ¬∃(1 ≤ j ≤ k)(Rij =3 ⊥)
and ∀(1 ≤ j ≤ k)(Rij ≤4 Ri(k+1)),
and ∃(1 ≤ j ≤ k)(Ri(k+2) ≤4 Rij), then Ri =4 ⊥,

• if Ri ≤4 Rj and Rj ≤4 Ri, then Ri =4 Rj .

We say that a rule Ri ∈ R has a normal form if and
only if:

• Ri = � or

• Ri = ⊥ or

• Ri = (FDi1) ⇒4 (•FDi2, FDi3), where FDi1,
FDi2, FDi3 ∈ FD, and the following condition is ful-
filled:

¬(
(Ri = �) ∨ (Ri = ⊥)

) ∧
¬(

(FDi1 ≤3 FDi2) ∧ (FDi3 ≤3 FDi1)
)
,

or

• Ri = (Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1), Ri(k+2)),
and the following condition is fulfilled:

¬(
(Ri = �) ∨ (Ri = ⊥)

) ∧
∀(1 ≤ j1 ≤ k)

((∃(1 ≤ j2 ≤ k)(Rij2 ≤4 Rij1)
)

⇒ (j1 = j2)
) ∧

((∃(1 ≤ j ≤ k)¬(Rij ≤4 Ri(k+1))
) ∨

(∀(1 ≤ j ≤ k)¬(Ri(k+2) ≤4 Rij)
))

.

Let Rnorm denote the appropriate subset R contain-
ing all the rules which have a normal form. We shall notice
that each rule Ri ∈ R can be assigned a rule Rm ∈ Rnorm

which fulfils Ri =4 Rm.

To sum up, the recursive method of forming rules
with uncertainty reminds us the method of forming for-
mulae used in First Order Logic (FOL). However, let us
notice that only four out of the five FOL connectives have
their equivalents in the logic of rules with uncertainty,
namely, the connective ∧ has its equivalent in the form
of the conjunction connective ∧2,∨ in the form of the dis-
junction connective ∨3,⊆ in the form of the subsumption
operator ≤4, and ≡ in the form of the equality operator
=4. Furthermore, the proposed connectives ∧2 and ∨3 are
not global, but partial functions only.

Instead of the FOL negation connective ¬, in the
logic of rules with uncertainty we propose a special, three-
argument connective ⇒4. If, by means of the negation
¬f , one can express the truthfulness of the formula oppo-
site to f , then by means of the rule (f1) ⇒4 (•f2, f3),
with the premise f1 being true, one can express (except
for the truthfulness of f3) the lack of knowledge about the
value of f2. That is why, in the logic of rules with un-
certainty, we can model “negation by absence” only. As a
result, this logic is deductively incomplete and its expres-
sive power is smaller than the expressive power of FOL.
On the other hand, it offers us a possibility to make use of
the notion of ignorance. The rules with uncertainty will
be evaluated in the set {true, unknown}, rather than in the
set {true, false}.

3. Knowledge Base of a Rule-Based System
as a Model for the Logic of Rules
with Uncertainty

Using the elements of Rnorm, we will represent both facts
and ordinary rules, as well as meta-rules from the knowl-
edge base of a rule-based system with uncertainty. To il-
lustrate this claim, let us have a look at the rule-based sys-
tem RiAD, which can aid prognosticating the effects of a
bronchial asthma treatment (Jankowska, 2001; 2004). In
the knowledge base of this system, one can find the fol-
lowing elements:

• facts, of temporary nature, informing about the inten-
sity of disease symptoms in a patient with a bronchial
asthma,

• ordinary rules, of persistent nature, defining dependen-
cies between disease symptoms plus pharmacother-
apy and effects expected after a one-year treatment
(Deutsch et al., 2001),

• meta-rules, of persistent nature, defining simple de-
pendencies between ordinary rules.

Consequently, among the facts, the following uncer-
tain fact might be found:

(assert (SMITH cough-before lev-c(3))

CF 0.8). (5)



How to secure a high quality knowledge base in a rule-based system with uncertainty? 257

It informs us, with confidence 0.8, that for a patient
SMITH, before starting the treatment, the frequency of his
or her night-time cough was at the level of several times
a week (marked with the number 3). The above fact is a
model of the following rule with uncertainty:

(�) ⇒4 (•⊥, 〈(SMITH cough-before

lev-c(3)), 0.8〉). (6)

Now, as the example of an ordinary rule, we can use
the following definition:
(defrule prognosis-1

(X group 3)

(X cough-before lev-c(3))

(X wheezing-before lev-w(2))

(X drugs 3-14)
⇒

(assert (X cough-after lev-c(2 3))
CF 0.8)

(assert (X pef-after lev-p(1 2))
CF 0.9)). (7)

It tells us that in a patient initially classified into the
group of chronic asthma of medium progress (X group
3)—with a night-time cough frequency of several times
a week (X cough-before lev-c(3)) and with an
over wheezing frequency of several times a month (X
wheezing-before lev-w(2))—after a prolonged
(over one year) taking of the combination of drugs identi-
fied as 3-14 (X drugs 3-14), the frequency of his or
her night-time cough, with confidence 0.8, will decrease
to several episodes a month or will stay at the same level
((X cough-after lev-c(2 3)) CF 0.8), and
the patient’s peak expiratory flow PEF will be placed, with
confidence 0.9, within the range marked with the sym-
bolic number 1 or within the range marked with the sym-
bolic number 2 ((X pef-after lev-p(1 2)) CF
0.9).

The above definition is a model of the following rule
with uncertainty:

(〈(X group 3), 1.0〉 ∧2

〈(X cough-before lev-c(3)), 1.0〉 ∧2

〈(X wheezing-before lev-w(2)), 1.0〉 ∧2

〈(X drugs 3-14), 1.0〉)
⇒4

(•⊥,

〈(X cough-after lev-c(2 3)), 0.8〉 ∧2

〈(X pef-after lev-p(1 2)), 0.9〉). (8)

Examples of meta-rules will be considered later, after
defining the sum and intersection operations on the Rnorm

set.

4. Algebra of Rules with Uncertainty

An essential component of most professional expert sys-
tems is a truth maintenance module. We consider a wider
notion of the truth maintenance module. We assume that
it not only keeps the track of dependencies among the ele-
ments of knowledge base, but it is also responsible for the
knowledge base correctness and for the credibility of rea-
soning performed in the system. Such a truth maintenance
module can detect the redundancy or inconsistency of in-
formation stored in the knowledge base. Optionally, it can
also test the knowledge base regarding its completeness.

The contents of the knowledge base change in the
course of expert system performance. Therefore, the truth
maintenance module should strictly cooperate with the in-
ference engine (Kahney et al., 1989). It would be a smart
solution to implement the knowledge base and the truth
maintenance module together.

The logic of rules with uncertainty presented above
allows modelling all the facts, all the ordinary rules and
also some meta-rules from the knowledge base of a rule-
based system with uncertainty. To obtain an additional
possibility of modelling a high quality truth maintenance
module, let us extend our formal system to the algebra. To
this end, let us define the functions of the sum ∪4 and the
intersection ∩4 of the rules in a normal form.

Accordingly, the sum ∪4 : Rnorm×Rnorm → Rnorm

of the rules R1 and Rm ∈ Rnorm will be defined recur-
rently as follows:

• Ri ∪4 � = � ∪4 Ri = Ri,

• Ri ∪4 ⊥ = ⊥ ∪4 Ri = ⊥,

• if Ri = (FDi1) ⇒4 (•FDi2, FDi3)
and Rm = (FDm1) ⇒4 (•FDm2, FDm3),
then Ri ∪4 Rm = fnorm4(fnorm3(FDi1 ∪3 FDm1))
⇒4 (• fnorm3(FDi2 ∪3 FDm2), fnorm3(FDi3 ∩3

FDm3))),

• if Ri = (FDi1) ⇒4 (•FDi2, FDi3) and Rm =
(Rm1, Rm2, . . . , Rmp) ⇒4 (•Rm(p+1), Rm(p+2)),
then Ri ∪4 Rm = Rm ∪4 Ri = fnorm4((�)
⇒4 (•Rm(p+1), ((FDi1) ⇒4 (•FDi2, FDi3))
∪4 Rm(p+2))),

• if Ri = (Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1), Ri(k+2))
and Rm = (Rm1, Rm2, . . . , Rmp)
⇒4 (•Rm(p+1), Rm(p+2)),
then Ri ∪4 Rm = fnorm4((Ri1 ∩4 Rm1, . . . , Ri1 ∩4

Rmp, . . . , Rik ∩4 Rm1, . . . , Rik ∩4 Rmp)
⇒4 (•(Ri(k+1) ∩4 Rm(p+1)), Ri(k+2) ∪4 Rm(p+2))).

Likewise, the intersection ∩4 : Rnorm × Rnorm →
Rnorm of the rules Ri and Rm ∈ Rnorm is defined as fol-
lows:

• Ri ∩4 � = � ∩4 Ri = �,

• Ri ∩4 ⊥ = ⊥ ∩4 Ri = Ri,
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• if Ri = (FDi1) ⇒4 (•FDi2, FDi3)
and Rm = (FDm1) ⇒4 (•FDm2, FDm3),
then Ri∩4Rm = fnorm4((fnorm3(FDi1∩3FDm1))
⇒4 (• fnorm3(FDi2 ∩3 FDm2), fnorm3(FDi3 ∪3

FDm3))),

• if Ri = (FDi1) ⇒4 (•FDi2, FDi3)
and Rm = (Rm1, Rm2, . . . , Rmp) ⇒4 (•Rm(p+1),
Rm(p+2)),
then Ri ∩4 Rm = Rm ∩4 Ri

= fnorm4((Rm1, Rm2, . . . , Rmp)
⇒4 (•⊥, ((FDi1)⇒4 (•FDi2, FDi3))∩4 Rm(p+2))),

• if Ri = (Ri1, Ri2, . . . , Rik) ⇒4 (•Ri(k+1), Ri(k+2))
and Rm = (Rm1, Rm2, . . . , Rmp)
⇒4 (•Rm(p+1), Rm(p+2)),
then Ri ∩4 Rm = fnorm4((Ri1 ∪4 Rm1, . . . , Ri1 ∪4

Rmp, . . . , Rik ∪4 Rm1, . . . , Rik ∪4 Rmp)
⇒4 (•(Ri(k+1) ∪4 Rm(p+1)), Ri(k+2) ∩4 Rm(p+2))).

For the above functions of the sum ∪4 and the inter-
section ∩4 of the rules in a normal form, the following
principles are satisfied:

∀(Ri, Rm ∈ Rnorm)
(
(Ri ≤4 Ri ∪4 Rm)

∧ (Rm ≤4 Ri ∪4 Rm)
)
,

∀(Ri, Rm ∈ Rnorm)
(
(Ri ∩4 Rm ≤4 Ri)

∧ (Ri ∩4 Rm ≤4 Rm)
)
.

Moreover, it can be proved that

∀(Ri, Rm ∈ Rnorm)
((∃(Rk ∈ Rnorm)

(
(Ri ≤4 Rk

≤4 Ri ∪4 Rm) ∧ (Rm ≤4 Rk ≤4 Ri ∪4 Rm)
))

⇒ (
Rk =4 (Ri ∪4 Rm)

))

and

∀(Ri, Rm ∈ Rnorm)
((∃(Rk ∈ Rnorm)

(
(Ri∩4Rm ≤4 Rk

≤4 Ri) ∧ (Ri ∩4 Rm ≤4 Rk ≤4 Rm)
))

⇒ (
Rk =4 (Ri ∩4 Rm)

))
.

From these principles we can draw some further auxiliary
conclusions:

∀(Ri, Rm ∈ Rnorm)((Ri ∪4 Rm) =4 sup{Ri, Rm})
and

∀(Ri, Rm ∈ Rnorm)((Ri ∩4 Rm) =4 inf{Ri, Rm}),
and the final conclusion: the algebra R = (Rnorm,∪4,∩4)
is a lattice.

The importance of the above conclusion is not di-
minished by the fact that the lattice R is determined on
the set Rnorm, and not on the full set R. Consider the rule
R = (r-p) ⇒4 (•r-c1, r-c2). If the r-c2 conclusion (be-
ing inserted) is “subsumed by” the r-p premise and this

premise is “subsumed by” the r-c2 conclusion (being re-
moved), then the rule R does not represent any value at all
and it should be disregarded in the process of reasoning.

5. Truth Maintenance Module as a Model for
the Algebra of Rules with Uncertainty

On the basis of the algebra R = (Rnorm,∪4,∩4), we can
model a truth maintenance module of the rule-based sys-
tem with uncertainty. Using the elements of the set Rnorm

and the functions of the sum ∪4 and the intersection ∩4,
we will represent both facts and ordinary rules, as well as
various meta-rules. The last ones, which specify the se-
mantic constraints to be fulfilled by the facts and ordinary
rules, form the truth maintenance module.

Therefore, any fact f -kb, after bringing it to the form
of the disjunction of uncertain facts FDkb, can be pre-
sented as the simple rule (�) ⇒4 (•⊥, FDkb). Then
the ordinary rule r-kb = (p-kb) ⇒ (c1-kb,¬c2-kb) will
be given the form (FDpkb) ⇒4 (•FDc1kb, FDc2kb),
in which FDpkb is a formal representation of the p-kb
premises, whereas FDc1kb and FDc2kb are formal rep-
resentations of the c1-kb and the c2-kb conclusions,
respectively. The meta-rule mr-kb = (mp-kb) ⇒
(mc1-kb,¬mc2-kb) will be presented as the complex
rule of the form (Rmp1kb, Rmp2kb, . . . , Rmpkkb) ⇒4

(•Rmc1kb, Rmc2kb) where Rmp1kb, Rmp2kb, . . . , Rmpkkb

are formal representations of the rule’s premises mp-kb,
while Rmc1kb and Rmc2kb are formal representations of
the rule conclusions mc1-kb and mc2-kb, respectively.

Any proper subset KB of the set Rnorm can represent
a knowledge base of the expert system with uncertainty.
Examining the =4 and ≤4 relations between elements of
the set KB, we can significantly improve the quality of
this knowledge base.

For instance, finding any rules Ri and Rm with un-
certainty which fulfil the relation Ri ≤4 Rm in the KB

constitutes a pretext to delete the rule Ri from this set
(and its equivalent from the knowledge base) because the
knowledge represented by the rule R i is also “included”
in the rule Rm.

Next, the relation =4 can be used to examine the con-
sistency of the set of rules which create the KB knowledge
base. If for any ordinary rules Rkb1, Rkb2 ∈ KB there
holds Rkb1 ∩4 Rkb2 =4 (FDkb12) ⇒4 (•⊥,�) =4 ⊥,
then these rules are contradictory to each other and they
must not occur simultaneously in the KB set. Also, two
any meta-rules Rmkb1, Rmkb2 ∈ KB, for which there
holds Rmkb1 ∩4 Rmkb2 =4 (Rkb1, Rkb2, . . . , Rkbk) ⇒4

(•⊥,�) =4 ⊥, are contradictory to each other. In case
the KB does not have the feature of internal consistency,
it should undergo a modification which would cause the
recovery of this feature.
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Using the algebra R = (Rnorm,∪4,∩4), we can also
examine other features of the KB knowledge base, for ex-
ample, its completeness.

To illustrate the above deliberations, let us analyze
the possibility of using the algebra R in designing and
maintaining the truth maintenance module for the knowl-
edge base of the system RiAD. Let us assume that in this
knowledge base, apart from the fact (5) and the rule (7)
defined above, there are the fact and the rule presented
below:

(assert (SMITH cough-before lev-c(2 3))

CF 0.7), (9)

(defrule prognosis-2

(X group 3)

(X cough-before lev-c(3))

(X drugs 3-14)
⇒

(assert (X cough-after lev-c(2))

CF 0.8)

(assert (X pef-after lev-p(1 2))

CF 0.95)). (10)

Let us further assume that also the meta-fact (11) be-
longs to the RiAD knowledge base:

(assertmf if-then0
((X cough-before lev-c(Y Z)),
(X cough-before lev-c(Y)))). (11)

This meta-fact, which is a model of the following de-
pendency from the logic of rules with uncertainty:

(
(�) ⇒4 (•⊥, 〈(X cough-before (Y Z)), 1.0〉)) ≤4

(
(�) ⇒4 (•⊥, 〈(X cough-before (Y)), 1.0〉)), (12)

forms an if-then0 relation between the fact stating that
a cough frequency of a person X before starting the treat-
ment is set on the Y or Z level, and the fact stating that a
cough frequency of this person is set right on the Y level.

As a result of the simultaneous occurrence of (5), (9)
and (11) in the knowledge base, we can come to the con-
clusion that the fact (9) has a redundant character.

A similar situation will be observed in the case of
the ordinary rules (7) and (10). If we assume that the
meta-facts analogous to (11) are also in force for other
measurable symptoms of the bronchial asthma disease
(wheezing-before, cough-after, pef-after),
we can easily deduce that the rule (7) is in the if-then4
relation with the rule (10) (with weaker premises and a
stronger conclusion).

What shall we do with the fact (9) and the rule (7),
which are obviously redundant ones in the knowledge
base? They must be removed from it!

In order to cope with their removal, it is sufficient
to activate the meta-rule subsumption-1, defined by
means of the extending construct defrulem:

(defrulem subsumption-1
(rule R2)
(if-then4(R1,R2))
(not(if-and-only-if4(R1,R2)))

⇒
(undefrule R1)), (13)

where if-then4 and if-and-only-if4 are predi-
cate functions implementing the relations ≤4 and =4, re-
spectively. The performance of this meta-rule will result
in removing from the knowledge base each rule R1 for
which we can find any rule R2 that is different from it and
fulfils the dependency ‘R1 is “subsumed by” R2’.

The meta-rule subsumption-1 is a model for the
following complex rule from the logic of rules with uncer-
tainty:

((((R2) ⇒4 (•⊥, R1)) ⇒4 (•⊥,�)), R2,

(R1) ⇒4 (•⊥, R2)) ⇒4 (•R1,�). (14)

Let us analyse its contents. Assuming that the relation
R1 ≤4 R2 holds, we obtain ((R2) ⇒4 (•⊥, R1)) =4

⊥. In consequence, the first premise (((R2) ⇒4

(•⊥, R1)) ⇒4 (•⊥,�)) is “the same as” �. And, if
the rule R2 is in the knowledge base and the relation
R1 =4 R2 does not hold (which is guaranteed by fulfill-
ing the third premise (R1) ⇒4 (•⊥, R2)), then the rule
R1 (if it exists) will be removed from it.

In the opposite case, when the relation R1 ≤4 R2

does not hold, the first premise (((R2) ⇒4 (•⊥, R1)) ⇒4

(•⊥,�)) is “the same as” ⊥. Similarly, fulfilling simul-
taneously both R1 ≤4 R2 and R2 ≤4 R1 (equivalent to
R1 =4 R2) makes the third premise (R1) ⇒4 (•⊥, R2)
“the same as” ⊥. If so, the complex rule considered will
not become active.

Now let us investigate a new situation in which the
meta-fact (15) co-occurs with the rules (16) and (17) in the
RiAD knowledge base. The meta-fact asserts the presence
of four separate levels of respiratory efficiency (marked
with natural numbers 1, 2, 3, 4):

(assertmf if-and-only-if0 ((X pef-after

lev-p(1 2 3 4)), true)). (15)

Traditionally, the rules define the dependencies between
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the patient’s states of health before and after the treatment:

(defrule prognosis-3

(X group 3)

(X cough-before lev-c(3 4))

(X wheezing-before lev-w(3))

(X drugs 3-14)

⇒
(assert (X pef-after

lev-p(2 3 4))), (16)

(defrule prognosis-4

(X group 3)

(X cough-before lev-c(3))

(X drugs 3-14)

⇒
(assert (X pef-after

lev-p(1 2 3))). (17)

Let us assume that also the meta-fact (18) is in the
RiAD knowledge base:

(assertmf if-and-only-if0

((X pef-after lev-p(Y Z)),

or3((X pef-after lev-p(Y)),

(X pef-after lev-p(Z))))). (18)

This meta-fact is a model for the obvious dependency (19)
from the logic of rules with uncertainty:

((�)

⇒4 (•⊥, 〈(X pef-after lev-p(Y Z)), 1.0〉)) =4

((�) ⇒4 (•⊥, 〈(X pef-after lev-p(Y)), 1.0〉 ∨3

〈(X pef-after lev-p(Z)), 1.0〉)). (19)

(Let us observe that the connective ∨3—unlike ∧2—has
in the RiAD its counterpart in the form of the function
or3.)

As regards the rules (16) and (17) and the meta-fact
(18), we obtain

intersect4(prognosis-3,prognosis-4) =

(X group 3)

(X cough-before lev-c(3))

(X wheezing-before lev-w(3))

(X drugs 3-14)

⇒
(assert (X pef-after

lev-p(1 2 3 4))), (20)

where the intersect4 function from RiAD is equiva-
lent to the ∩4 operator from the algebra of rules with un-
certainty. In the light of the meta-fact (15), the intersection
of the rules (16) and (17) equals false.

Apparently, this seems to be unlikely! However, af-
ter having a closer look at it, we can observe a contra-
diction between the rules (16) and (17). It results from
imprecisely recognised levels of the respiratory efficiency
pef-after. Most likely, the extreme levels 1 (the rule
(17)) or 4 (the rule (16)) have been added to increase the
“system safety”. Therefore, both rules require some pol-
ishing. If not, the knowledge discovered in the reasoning
process may turn out to be of no value!

Polishing the rules must be done with the assistance
of a user. Obviously, the contradiction can be resolved
by removing one of the two rules. However, if this is the
case, the user must decide which rule is to be preserved
in the knowledge base and which is to be removed from
it. In the light of this comment, we think it is reasonable
to design a meta-rule that removes, after the conflict has
been detected, both rules from the knowledge base, and
lets the user know about this modification. Such a meta-
rule might have the following form:

(defrulem contradiction-1

(rule R1)

(rule R2)

(if-and-only-if4(intersect4(R1,R2),

false))

⇒
(undefrule intersect4(R1,R2)). (21)

Formally, this meta-rule performance results
in removing from the knowledge base each rule
intersect4(R1, R2)—obtained from a pair of the
rules R1 and R2 from this base—which is “the same as”
false. In fact, the knowledge base cannot contain any
rule equal to false. Thus, the meta-rule performance
consists in removing from the knowledge base all such
rules Ri that fulfil the condition: Ri is “subsumed by”
intersection(R1, R2), first of all—the rules R1
and R2. The recursive process of removing the rules
will be performed by a special, independently designed
meta-rule, which is initiated after entering the command
undefrule.

The meta-rule (21) is a model for the following rule
with uncertainty:

((R1∩4R2) ⇒4 (•⊥,�), R1, R2) ⇒4 (•(R1∩4R2),�).
(22)

We shall notice that the complex premise (R1 ∩4 R2) ⇒4

(•⊥,�) will be fulfilled if and only if R1 ∩4 R2 =4 ⊥.
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6. Final Conclusions

The knowledge base of a rule-based system, including a
rule-based system with uncertainty, has a heterogeneous
character from the point of view of a knowledge engineer.
On the one hand, facts and ordinary rules with the con-
tents defined by an expert in the field are placed in the
base. The knowledge engineer is responsible for trans-
forming the informal records into the form required by
the inference engine.

On the other hand, a high quality knowledge base
should be equipped with a truth maintenance module. It
is a set of special meta-rules specifying the dependencies
which ordinary rules must satisfy. This set is defined by
the knowledge engineer alone on the basis of both the facts
and ordinary rules, as well as reasoning algorithms.

Designing and maintaining the expert system knowl-
edge base, especially the one with uncertainty, consti-
tutes a difficult task (Jankowska, 2005; Santos and Santos,
1999). Taking this into account, we had an idea to build a
tool which would aid the knowledge engineer to fulfil the
task with a reference to rule-based systems.

The algebra of rules with uncertainty R = (Rnorm,
∪4,∩4) presented in this paper gives us some theoretical
basis to build such a tool. The algebra, being a lattice, cre-
ates numerous possibilities to examine the facts, ordinary
rules and meta-rules which are collected in the knowledge
base of the system with uncertainty. Our paper shows
these possibilities with reference to the knowledge base
of the system prognosticating the progress in a bronchial
asthma treatment.

The aim of the tool hereby presented is to aid de-
signing a correct knowledge base. Base correctness must
be verified both at the initial stage, while implementing
the system, and later, while the system is already in ac-
tion. That is why the tool should be used during system
performance, too. To this end, all the simple and com-
pound rules forming the tool must take part in the reason-
ing processes together with the system’s ordinary rules. If
necessary, the tool will influence the state of the knowl-
edge base by itself.

Both truth maintenance module design and its im-
plementation are a challenging task. Considering that the
module is (in a sense) a supplement to the knowledge
base, we should implement them jointly, in the program-
ming language predestined to facilitate expert systems de-
velopment (e.g. FuzzyCLIPS). The difficulty is that most
of such languages cannot manage meta-rules. To en-
sure meta-rules management, it will be necessary to ex-
tend the set of the language constructs (e.g. assertmf,
defrulem).

Moreover, we shall acknowledge the fact that im-
plementing a full version of the presented truth mainte-
nance module will obviously slow down the reasoning

processes. The full test has time complexity O(n2), where
n is the number of all rules (facts, ordinary rules and meta-
rules) kept in the knowledge base. Taking this into ac-
count, instead of operating the module permanently, we
should consider the possibility of turning it periodically
on and off. For example, it can be turned on every time
after a fixed, imposed number of reasoning steps, or its
operating can be conditioned by changes in the knowledge
base. In the designed system, in order to prognosticate the
progress in a bronchial asthma treatment, we try to apply
the first solution.

Summarizing, the tool presented here offers us a pos-
sibility to handle all the elements of the heterogeneous
knowledge base of a rule-based system with uncertainty in
a similar manner. Thanks to this possibility, we can com-
prehend well the inference engine performance. More-
over, this tool takes care of the knowledge base quality,
not only while it is being designed, but also when it is
already maintained. The consequence of implementing
the tool is slowing down the whole system performance.
However, in the case of expert systems which do not work
in real time, this cost cannot be particularly important.
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