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SERVO TRACKING OF TARGETS AT SEA

ANIS AHMED***, MIECZYSLAW A. BRDYS*

* Department of Electronic, Electrical and Computer Engineering
School of Engineering, University of Birmingham
Birmingham B15 2TT, UK
e-mail: m.brdys@bham.ac.uk

** Pilkington Glass, Pilkington Cowley Hill
St. Helens, WA10 2RZ, UK

e-mail: Anis.Ahmed@pilkington.com

This paper details a proposal for the position control system of a two-axis ship-mounted tracker. Aspects of the non-linear
dynamics governing Line-Of-Sight (LOS) errors between the tracker and the target are presented. It is shown that the
regulation of LOS errors can be achieved by introducing a feed-forward term based on the target’s velocity. This velocity is
not measurable, and an estimator is required. Given that the tracking problem is non-linear, the classical separation principle
does not hold, and cascading the estimator and regulator together may not lead to an optimal position control system. The
‘LQAdaptive’ system proposed here aims therefore to improve conformity to the separation principle. Simulation trials
show that tracking is improved under the LQAdaptive system in comparison to a simple estimator-regulator structure.
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1. Introduction

The tracker is a ship-mounted device that is used to follow
the path of airborne targets. It is composed of two control-
lable axes: a training axis, which is always perpendicular
to the ship deck, and an elevation axis, which always lies
in the plane of the ship deck. The aim of the control sys-
tem is to drive the tracker axes so that the bore-sight is
looking directly at the target, which requires regulation
of the angular position errors between the bore-sight and
the target Line-Of-Sight (LOS). As shown in Fig. 1, the
angular errors are defined by introducing an r-e-d coordi-
nate frame such that the r-axis is always coincident with
the tracker sightline, the e-axis is always parallel to the
ship deck, and the d-axis points seawards. This allows
two errors, namely the pitch and yaw errors, to be defined.
Radar and electro-optic sensors provide measurements of
these errors. The range of the target from the tracker is
also measured.

Feedback is also available of the roll, pitch and yaw
angular velocities of the bore-sight about the r, e and d
axes, respectively. These velocities are measured by gyros
mounted on the bore-sight.

The dynamics of the pitch and yaw errors are related
to the angular velocities of the tracker in the constructed -
e-d frame. A position controller can therefore be designed
that receives the available sensor data and then controls
the tracker’s pitch velocity w. and yaw velocity wg in or-
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Fig. 1. Tracker angles.

der to reduce the pitch and yaw errors. Details of the error
dynamics are given in Section 2.

The pitch velocity set point can be actuated directly
by the elevation axis, since the pitch axis and elevation
axis always coincide, but this is not always the case for
the yaw and training axes. Figure 2 shows how the posi-
tion of the yaw axis is dependent on the elevation angle
¢. As the bore-sight elevation angle tends towards 90°,
an increasing large rate 6 is required by the training axis
in order to generate the desired angular velocity w in the
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Fig. 2. Tracker velocities.

yaw axis. In reality, the control system would only be able
to operate safely up to elevation angles of around 70°.

The actuation of the tracker axes must account for
the dynamics of the physical hardware, as well as distur-
bances such as stiction, wind torques and ship motion. For
this purpose, a separate velocity controller is used that re-
ceives the angular velocity set points from the position
controller and then implements them. Work has already
been carried out on the design of the velocity controller,
with the use, for example, of fuzzy logic gain scheduling
to handle the non-linear friction effects. For the purposes
of position controller design, in this paper it will be as-
sumed that the velocity controller achieves perfect and in-
stant actuation of any set points it receives. Further details
of velocity controller design can be found in (Brdy$ and
Littler, 2002). Figure 3 gives the overall structure of the
tracker control system.
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Fig. 3. Overall structure of the tracker control system.

In addition to the tracker angular velocities, the pitch
and yaw error dynamics are also related to the target angu-
lar velocities. The analysis in Section 3.1 shows that the
regulation of the position errors is achieved if the regula-
tor is based on both the feedback of the errors and feed-
forward compensation of the target velocities.

However, the target’s angular velocities cannot be
measured directly, and thus estimates of these are re-
quired. A common solution to the estimation problem is
to use a Kalman filter. The filter is based on a dynamic
model that relates the known range and error data to the
required velocities, with uncertainties in the dynamics be-
ing represented by white noise. The details of the model
are presented in Section 2.

The simplest approach to designing the position con-
troller would be to cascade the estimator and the regulator
together. From a practical viewpoint, this would be the
ideal solution since both the required Kalman filter and the
regulator are already commercially available as individual
components that independently work well. The develop-
ment time would therefore be minimal. The cascaded po-
sition controller can be seen in Fig. 4.
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Fig. 4. Simple cascaded position controller.

During operation, the estimator would filter real in-
put sensor data, and also generate estimates of immea-
surable states. The filtered sensor data and the estimates
would then be treated as true input data by the regulator —
a case of the ‘certainty equivalence principle’. Since the
estimator would provide the required data, and the regula-
tor would be tuned to achieve the required tracking char-
acteristics, it could be assumed that the cascaded system
would be the overall optimal position control system.

Unfortunately, this is unlikely to be the case. The
optimality of the overall system assumes that the ‘lin-
ear separation principle” applies (Kwakernaak and Sivan,
1972), which states that if the estimator is a linear mean-
square-optimal filter, and the regulator is designed using
optimal linear state feedback techniques, then the cas-
caded estimator-regulator does indeed result in the opti-
mal closed-loop control system. In this problem, the dy-
namics are non-linear, and the regulator is designed by the
inspection of these dynamics. Thus, the ‘linear separation
principle’ is unlikely to hold, and the performance of the
closed-loop system is likely to be sub-optimal.
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In Section 3.2, a position control system is proposed
that aims to integrate the filter based on the non-linear dy-
namics with the regulator designed by inspection. The
guiding principle behind the development is to conform
as closely as possible to the separation principle. This
is achieved by introducing local linearization and filter-
ing based on standard techniques, such that the compo-
nents are at least locally linear-optimal. Under the as-
sumption of perfect velocity control, cascading these inde-
pendently designed components together leads to a closed
loop control system with improved tracking performance
compared to the simple estimator-regulator structure. De-
tails of the proposal are given Section 4, and simulation
data is provided in Section 5.

2. Kinematic Model

The differential equations governing Line-Of-Sight (LOS)
dynamics are already well established and used, e.g., in
guidance systems for homing missiles. The LOS dynam-
ics model can also form the basis of the control system for
the ship-based tracker.

A full derivation of the LOS model can be found in
(Ekstrand, 2001), but the key ideas are as follows: The
r-e-d coordinate frame is based on the tracker, with the
r-axis representing the bore-sight. A second coordinate
frame labelled r’-¢’-d’ is introduced based on the target
LOS, where the r’-axis lies on the LOS itself. Similar to
the e-axis, the ¢’-axis is defined as being parallel to the
ship deck.

The tracker must move so that the r-e-d frame coin-
cides with the r’-¢’-d’ frame. This is achieved by a se-
quence of two rotations — first, a yaw angle 4 about the
d-axis, which brings the e-axis in line with the e’-axis and,
secondly, a pitch angle e, about the e-axis in its new po-
sition. This sequence brings the r-axis into line with the
r’-axis, which in reality means the bore-sight is now on
the LOS. Only two rotations are required since the e-axis
and ¢’-axis always lie in the same plane. Both the tracker
r-e-d and target r’-¢’-d’ frames will have inertial angu-
lar velocities, which can be expressed in their respective
coordinate frames. The tracker velocity is

Wy
w=| we |,
wa
while the target velocity is
w
-/
= W,

€
A o S~

& o

The following relation holds true:

—£g8ine,
_/ — .
o — Mo = €e , 1)
£4COSE,
where
COSE,COSEq COSEcsSiney —sineg,
M = —siney cosey 0

sine,coseg sine.sinegy  cosee

is the coordinate transformation matrix to express the
tracker rate @ in terms of the LOS frame r’-¢’-d’.

By substituting the matrix M and the component
vectors of & and @’ into (1), and simplifying with the small
angle approximations sin # = 6 and cos 6 = 1, the follow-
ing relationships can be derived:

Ee =W, — We + wrEg, B

€d = W) — wqg — Wrée.

The equations in (2) show that the pitch and yaw er-
rors are coupled via the tracker roll rate w,.. Although in
some applications the roll rate may be discounted, in the
case of the tracker the roll rate is significant because the
rotation about the training axis leads to both w4 and w,.
velocity components.

The equations also show that the errors depend on the
target pitch rate w, and yaw rate w/,, neither of which is
controllable nor measurable. However, a model of these
rates was developed (Ekstrand, 2001) based on the target
range and acceleration.

In the LOS r’-¢’-d’ frame, the measurable accelera-
tion of the tracker is denoted as

[ o |
ar = | are |,
ard’
and the immeasurable acceleration of the target is denoted
as
QT
ar = aTe
ard’
It is also known that the target is a distance R along

the LOS, such that its coordinate position in the LOS
frame can always be described as

R
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Since the target is moving, the LOS frame is rotating, and
the rotation matrix based on the target angular velocity can
be stated as

0 —w) w.
~1
o= w 0 —w
—w, W, 0

From rotational mechanics, the following relation
holds true:

ar =a;+7+ &7+ 20'F + ST 3)

Substituting the vector components into (3) and rearrang-
ing it gives the following:

: R arqg — arg
W, = —2Ewé - + wiwl, (4)
R ;7 — ’
wh = —2Ewt’i _ e — Qe 7 Are whwl, (5)
.. ;2 12
R = (wd + w, )R—l—aTW. (6)

Finally, the well-known Singer acceleration model
(Singer, 1970) can be used for modelling the unknown tar-
get accelerations. For the r’-axis, it is

aryr = _;aTW + Waryr, (7)

where 7 stands for the target manoeuvre time constant
which is set to represent the expected manoeuvring of the
target, and w,, is the white noise representing uncer-
tainty in the knowledge of the acceleration value. This
model was recently generalised for mulltiple target track-
ing purposes (Yang, 2002).

Thus, among Eqgns. (2) and (4)—(6) and the accelera-
tion models, a model is available for the pitch and yaw er-
ror dynamics, as well as the target angular velocities. This
model now forms the basis for the control system design.

3. Controller Structure

3.1. Basic Regulator. As has already been stated, the
tracker has to regulate the pitch and yaw errors to zero so
that it is looking directly at the target. The equations in (2)
can be used to design the regulator, and our analysis will
focus on the pitch axis since the yaw axis follows similar
lines. The pitch error dynamics are stated again as

Ee = W, — (e + dye) + wred, 8)

where e, is the pitch error, w! denotes the target pitch rate,
we means the controlled tracker pitch rate, d,. signifies
the error in tracker pitch rate actuation, w,. is the tracker
roll rate, and &4 stands for the yaw error.

Looking at Eqn. (8), it is clear that compensation is
required of the target rate w/ and the coupling term w,.c4.
It is the compensation of w/, that gives rise to the need for
an estimator. The feedback of the filtered position error is
also required in order to drive the error in the closed loop
system to zero.

The regulator can be formulated as

we = (We + dure) +wp (€4 + dea) + kp (Ec + dze)
+ k; / (56 + dse) dt7 (9)

where d ., deq, d-. Stand for the errors in the estimates
of the target pitch rate, yaw error and pitch error, respec-
tively, and k,, k; are proportional and integral feedback
gains.

Substituting (9) into (8) leads to the following closed
loop dynamics:

Ee + kjpée + kige = _dw’e — Wpdeq — Wrdsd

- kpdse - kidse - dwe- (10)
The analysis of the terms on the right-hand-side of (10)
reveals that any constant actuation error is rejected. Con-
stant biasing of the estimates is partially rejected, with two
unwanted error drivers, w,.d-q and k;d.., remaining. If the
first product term is not significantly large and the integral
gain not set too high, then the error dynamics are

Eo+ kpfe + kice = 0. (11)

Thus the pitch error will asymptotically converge to zero
with the rate determined by the tuned gains &, and k;,
and error convergence is independent of the actual track-
ing profile.

3.2. Proposed Structure.  With the regulator in (9), the
data input requirements are an estimate of the immeasur-
able target pitch rate, and filtered pitch and yaw errors in
order to suppress the effect of measurement noise. An ex-
tended continuous Kalman filter can be developed based
on the non-linear kinematics model presented in Section 2
that can receive the raw radar and sensor data, and gen-
erate estimates of the required data inputs. Cascading the
filter and the regulator together would form the simplest
structure for the closed loop system.

However, as has already been discussed, the perfor-
mance of this system is likely to be sub-optimal since
there is no ‘separation principle’ for non-linear problems,
and open-loop performance of the estimator and regulator
is unlikely to be maintained in the closed loop.

In order to get better conformity to the separation
principle, a series of modifications can be made to the
estimator-regulator structure.
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Local Filtering
Separation assumes that the regulator is based on Linear-
Quadratic (LQ) optimal full state feedback design, and
full feedback implies that the regulator and estimator are
working in the same state-space. It can be seen that, in this
case, the regulator is only using limited information on the
target velocities and position errors, whereas the extended
continuous Kalman filter is based on the full LOS model
that also includes range and acceleration states. The regu-
lator is as such designed on a subset of the full state-space.
Applying full state feedback design to the complete
set of states in the LOS model would be unwise, since
many of the states, such as the target range, are uncon-
trollable, and the design procedure would be unsolvable.
Thus, in order to be able to apply optimal state feedback
design, a local Kalman filter is inserted between the main
Kalman filter and the regulator. The function of this local
filter is to ensure that the regulator is directly connected
to an estimator working on the same state space. The lo-
cal filter treats estimates of the position errors from the
main filter as sensor inputs. Target velocity estimates are
treated as measured disturbance signals since they are un-
controllable. The local filter then produces estimates of
the position errors and of the integral of the errors for use
in the feedback part of the regulator.

Linearization

An extended continuous Kalman filter works by produc-
ing continuous estimates based on the known non-linear
dynamics, but updates at discrete time points by lineariz-
ing the dynamics at that instant and basing the update gain
on the local linear dynamics. Although not proven to be
optimal in the least-square-error sense, it is possibly the
best application of the known optimal filters to non-linear
problems.

Since optimal state-space feedback design of regula-
tors applies only to linear dynamics, the opportunity arises
to make further use of local linear dynamics already cal-
culated in the filter. A regulator such as (9) would require
the tuning of the k, and k; gains with respect to some
expected scenario of target profiles and disturbances, but
redesigning the regulator at each point of linearization
would produce a more versatile controller that could re-
act to the individual profiles and disturbances at each in-
stant. Furthermore, the regulator would be based on LQ
optimal linear design, which improves the conformity of
the overall system to the separation principle.

Linearization is carried out by the Taylor series ex-
pansion of the dynamics about the operating point at that
instant. This leads to a constant term that depends on the
operating point. A compensation signal is required in the
regulator to cancel the effect of the constant term in order
to leave a standard linear dynamic system. LQ optimal
state-space feedback design can then be applied to this lin-
ear system. Hence, the overall regulator is still composed

of a feed-forward compensation term and feedback based
on the position errors.

Given that the regulator is adapted to the local linear
dynamics, and the design is based on LQ optimal control,
the proposed new control system is labelled the ‘LQAdap-
tive” structure. A diagrammatic representation of the sim-
ple estimator-regulator structure can be seen in Fig. 5,
while the LQAdaptive structure is given in Fig. 6.
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Fig. 5. Simple estimator-regulator structure.
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4. LQAdaptive Formulation

4.1. LOSMode. The component parts of the structure
can now be presented. Parts of the LOS model have al-
ready been presented in Section 2 but, for clarity, the fol-
lowing is the complete model:

e range equation:
i ’ 2 7 2
R= (wd + w, )R+aTru (12)

e disturbance input to range equation:
dTr’ = _%aTr’ + Warr, (13)

e pitch error:
e = W, — We + Wréd, (14)

e target pitch angular velocity:

) R arq — arg

wl = —ZEwé -5 + wiwl, (15)
e disturbance input into pitch angular rate:

aTer = —20Ter — WhATY + WaTe! (16)
e yaw error:

€d = Wl — Wg — Wre, )

&Yoo
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e target yaw angular velocity:

. R aTer — QJe!

W = —2wa1 -5 - wlwl, (18)
e disturbance input into yaw angular rate:

are = —Lary —wlare + wara- (19)

4.2. Extended Kalman filter. The extended continu-
ous Kalman filter algorithm with discrete measurements
(Borrie, 1992; Jazwinski, 1970) is a cycle consisting of a
continuous estimation phase followed by a discrete update
phase. A general non-linear system is given as

&y = A(xg,ug,t) + Twy,

(20)
yr = H (2, k) + v,

where z; is the continuous state, u; is the continuous in-
put, v, are discrete measurements, A, H are respectively
non-linear system and measurement functions, I denotes
the noise matrix, and w, vy, represent non-correlated addi-
tive white Gaussian noise with a positive semi-definite co-
variance matrix @ and a positive definite covariance ma-
trix R, respectively.
The estimates z; are generated using

.’i’t = A(:ﬁt,ut,t). (21)

The associated covariance matrix P is calculated using the
equation

Pyp—1 = Appp—1 Py +Pt\k71A£|k71 +IQr", (22)

where Py, is the initial condition in (22).

The matrices Ay, and Hj are first-order lin-
earized approximations of the functions A and H at the
previous update, and are calculated as

0A o0H
Agl—1 = {%] , Hp= {%} - (23)
T=Epp_1 T=Tp|p—1

After calculating the linearized approximations, updates
at the measurement instants are calculated in three steps.
First, the Kalman gain K is calculated,

—1
Ky = Py HY (HiPyp— HY +R) . (24)

Next, state updates occur based on the new measure-
ments y:

Tk = o1 + Kk (yr — H (Zpjp—1,k)) . (25)
Finally, the covariance matrix P is updated:
Py = Prje—1 — K Hy Pyjg—1- (26)

The algorithm embodied by (21)—(26) can be applied
to the LOS model in (12)—(19), with the differential equa-
tions representing the non-linear functions A. The mea-
surement function H is simply a matrix that selects the

pitch error, yaw error and range from the state vector,
since these are the states that are directly measured. The
linearization of H is therefore unnecessary in this case.
The covariance matrix Q) is set to represent the level of un-
certainty in the acceleration models, while the covariance
matrix R represents the sensor noise in the three measure-
ments. The control inputs are the tracker pitch and yaw
angular velocities w, and w,. Data such as the tracker roll
rate w,. and accelerations are treated as measured inputs,
but sensor noise associated with these measurements has
not been represented in the model.

4.3. Local Filter. The smaller local Kalman filter is
based on the following dynamics:

€e = W, + WrEq — We + Were,
€d =W — wrEe — wq + Wurd, @7)
-1'73 = Ee,
.1'?4 = &d-

For this filter, the four differential equations represent the
set of non-linear functions A. H is a matrix that selects
the pitch and yaw errors from the state vector since these
are read as ‘measurements’ from the main filter. The ex-
pected level of ‘noise’ on these measurements is set in the
covariance matrix R. The independent white Gaussian
noise terms w, . and w,q represent uncertainty in the
measured disturbance signals w/ and w/;, respectively, and
have a covariance matrix Q. Control inputs are the tracker
pitch and yaw angular velocities w. and wy as expected.

The two state variables x5 and x4 are used to pro-
vide estimates of the integral of the position errors. This
is identical to integrating the output estimates of . and
g4 individually. However, if the integrals are calculated
separately outside the filter, then the tuning of the integral
gains is required when designing the regulator. By allow-
ing the integral state variables to appear in the linearized
dynamics, the LQ optimal regulator design can solve gains
for these terms in a single overall problem.

4.4. Linearization. The linearized dynamics are pro-
duced by the Taylor series expansion of the known dy-
namics around the current operating point (x o, ug). The
dynamics can be stated in general again as

= A(x,u,t). (28)
The local dynamics about the operating point can then be
approximated by
(x 4+ Az) = A(zg,up)

, 0
ox

0A
A 4
T+ P

Zo,U0

Au + h.o.t.,

Zo,U0

(29)
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where Az = x — xg and Au = u — ug represent small de-
partures from the given operating point, and h.o.t. stands
for higher-order-terms that can be considered insignifi-
cant.

Let the matrices of partial derivatives be denoted as

0A 0A
AO = % and By = % . (30)

Zo,uo Zo,uo

Then the equation in (29) can be rearranged to give
T~ A (J)Q, Uo) — Agzg — Boug + Agx + Bou. (31)

The first three terms on the right-hand side of (31) form a
constant term that has arisen due to linearizing around the
particular operating point (z,ug). A compensation term
4 can be generated, where

U= Bal (A()J?O + Boug — A (J,‘Q, UO)) . (32)

Substituting (32) into (31) leaves a standard linear
dynamic system

& = Apx + Bou, (33)

where @ is designed to control this local approximation.

The process of linearizing and generating compensa-
tion signals must be carried out frequently, since the ap-
proximation is only valid over a short period of time, and
becomes invalid as the true state evolves.

4.5. Feed-Forward Compensation. In the dynamics
in (27), the state vector is

€e
€d
T3

T4

and the input vector is

u = .
We
Applying the above process to the dynamics results in

0 w 0 0
—w, 0 0 0
Ay = , 34a
0 1 0 00 (343)
L 0o 1 00
T o0 -1
1 0
By = . 34b
0 0 0 (34b)
L0 0

Since By has a full rank, its inverse exists, so the
feed-forward compensation signal @ can be calculated at
every point of linearization. Denoting terms at the operat-
ing point with a subscript 0, the compensation in (32) can
be calculated as

- 0 -1 0 0
u =
-1 0 0 0

0 Wro 0 0 €e0
" —w,g 0 0 0 €do
1 0 0 0 T30
0 1 0 0 x40
0 -1 ]
+ -1 0 wWdo
0 0 We0
0 0
Wl + wWroEdo — Weo
Who — Wro€ed — Wdo wWio
- :[ ’ . (35)
€e0 Weo
€do

Thus, the feed-forward compensation signal « represents
the angular velocities of the target at the point of lineariza-
tion, which is as expected. The cross-coupling terms de-
pendent on w, do not appear in the feed-forward com-
pensation since they are state-related, and are therefore
handled by LQ optimal regulator design that generates the
signal .

4.6. LQ-Optimal Design.  Steady-state LQ optimal de-
sign (Borrie, 1992; Kwakernaak and Sivan, 1972) is opti-
mal in the sense that the regulator is designed to generate a
control signal that minimizes a linear quadratic cost func-
tion V:

V= / (2" Ex 4+ u” Fu) dt. (36)
to

E is a positive semi-definite weight matrix that defines a
quadratic function of the states that is to be minimized. F’
is a positive definite weight matrix that defines a quadratic
function of the control inputs, and this term ensures that
the control effort does not exceed physical limits. In this
application, E and F are therefore set to represent the
relative importance of regulating the angular error states
ee and 4 to zero while keeping the angular velocity set
points w. and wy within acceptable limits.

Given the linear dynamic system in (33), the first step
in regulator design is to solve the algebraic Ricatti equa-
tion for P:

0=PAy+ AP - PB,F'BIP +E. (37)

€& o
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The control signal is then produced by the feedback of the
states:
i = —F Bl Pz, (38)

where x represents now the state estimates produced by
the local Kalman filter.

Substituting this back into (33) yields the closed loop
dynamics:

i = (Ao — BoF'Bj P) x. (39)

By design, this is guaranteed to be stable. Thus, feedback
regulation of the states is achieved while minimizing the
cost function V.

At each point of linearization, the process of regula-
tor design must be repeated. The weight matrices £ and F'
do not need to be changed for each redesign since the pri-
orities of minimising the position error states while keep-
ing the control signals low remain the same throughout.

Other possible regulator designs exist as well. One
example is alternative LQ optimal design that regulates
the states to zero by the end of a finite time period. The so-
lution is a regulator with time-varying gains that are spec-
ified over the control time horizon. The specification of
the end time is, however, an open problem, and the design
makes no attempt to maintain the states at zero after the
end time. In this tracking problem, the regulation of the
errors is required over an undetermined period. Further-
more, finite-time horizon design requires prior knowledge
of any parameters over the time period, which is imprac-
tical since disturbance inputs and target attributes are not
known in advance.

Another possibility would be to use a predictive con-
trol strategy with a receding time horizon (Mayne et. al,
2000; Soeterboek, 1992). This would overcome the prob-
lem of specifying a particular end-time point. The ref-
erence trajectory for the position errors over the horizon
would simply be zero. A receding time horizon design
would also fit into the LQAdaptive framework easily since
the repeated linearization process handles the effects of
disturbances at each time instant and, therefore, lends it-
self naturally to an updating control law. However, solv-
ing the optimization problem is still computationally diffi-
cult, and this could have an impact on the frequency of lin-
earization. Hence, the choice of steady-state LQ optimal
control is a practical and realisable solution to regulator
design.

4.7. Control Law. The overall control law is thus com-
posed of the feed-forward compensation of the target ve-
locities and the feedback regulation of the position errors:

u=1u-+1u
! 40
jl“d]:[“’gﬂ) — F-1BT Pz, (40)
We Weo

This control law is maintained for the period during which
the linear approximation of the dynamics is used. At the
next point of linearization, a new compensation signal
must be calculated and a new feedback regulator designed.

The generated control signal  represents angular ve-
locity set points for the tracker pitch and yaw axes in the
constructed r-e-d frame. As has already been shown, the
pitch axis set point can be actuated directly by the eleva-
tion axis, but the yaw axis set point must first be converted
into a training axis set point. The following conversion is
used:

0 = —sgn (wq) /w3 (1 + tan? ), (41)
where 6 is the training axis velocity set point, w4 stands
for the yaw axis velocity set point as calculated by con-
troller, and ¢ denotes the elevation angle. The ‘sgn’ com-
ponent ensures a consistent definition of positive angular
velocities in the r-e-d frame and the training axis.

Once the velocity set points w. and § have been gen-
erated, the elevation and training axes must physically ac-
tuate them. As has already been shown, this is carried out
by inner velocity loops that are designed to accommodate
disturbances such as friction and wind torques. The as-
sumption throughout this paper is that velocity controllers
work perfectly, and thus velocity set points are achieved
immediately.

In summary, the simple estimator-regulator struc-
ture is designed without acknowledging that the separa-
tion principle does not apply to non-linear dynamics. The
proposed LQAdaptive structure attempts to take the non-
linear dynamics of the LOS model and develop an estima-
tor and regulator that conform as closely as possible to the
separation principle over each period of local linearized
dynamics. This should yield improved tracking perfor-
mance over the simple estimator-regulator structure.

5. Simulation

A simulation was set up that modelled a target flying in a
straight line past the tracker. The units for specifying the
distances and speeds of the target in the standard x-y-z
frame were arbitrary since only the resultant angular rates
were important. Figure 7 shows the angular velocities in
the LOS coordinate frame r’-¢’-d’ of the test profile.

Given the significant non-zero angular acceleration
in the first 10 seconds of the profile, the first phase can
be considered “high manoeuvring’. This tests the abil-
ity of the control system to track a demanding target that
forces high rates of acceleration in the elevation and train-
ing axes. The second phase is at near zero angular veloc-
ity and, therefore, it tests the tracker’s ability to reject any
disturbances while holding steady.

The inner velocity loops was not modelled in the sim-
ulation, so perfect and instant actuation of the velocity set
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Fig. 7. Test profile angular rates.

points was assumed. Work already carried out on veloc-
ity loop design proposes regulator gains of £, = 4 and
k; = 3 that would be suitable for real implementation of
the loops, so these gains were used in the simulation for
the simple estimator. For the LQAdaptive controller, the
weight matrices £ and F' were set such that the relative
weights of the pitch error, yaw error, pitch velocity con-
trol signal and yaw velocity control signal were all equal.
This was so that equal priority would be given for mini-
mizing the position errors and keeping the control signals
acceptably low.

Additive white Gaussian measurement noise was in-
troduced to corrupt the simulated range, pitch error and
yaw error readings. In reality, sensor noise is likely to be
correlated with the target range, but this was not modelled
for simplicity.

Good quality performance of the tracker was defined
as a response that kept the absolute pitch and yaw errors
as small as possible. This is because other systems on the
ship may require the tracker to provide target information
at any instant. Thus a small continuous error is preferable
to perfect tracking that can suddenly be lost. The sim-
ulation was run first with the simple estimator-regulator
structure as the control system, and then secondly with
the LQAdaptive structure. The precise measurement noise
and disturbance scenarios were the same in both runs. Fig-
ure 8 shows the resultant pitch and yaw errors under the
simple control system, while Fig. 9 shows the same errors
under the LQAdaptive system.

It can be seen that under LQAdaptive control, the
performance was better for exactly the same test profile,
since the peak errors in both the high manoeuvring and
steady phases were smaller compared with the simple con-
troller. In terms of absolute maximum errors in either axis,
the largest under the simple controller is 0.066 rad, while
under LQAdaptive control it is only 0.047 rad.
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In addition to that, the error plots are considerably
smoother under LQAdaptive control, showing that much
smoother control of the axes was achieved. This would
lead to less mechanical wear of the tracker. Also, in the
steady phase of the target profile, the regulation of the er-
rors due to the effects of disturbances and sensor noise
is noticeably better with LQAdaptive control, unlike with
the simple control, where large and frequent fluctuations
in the errors are visible.

Although the general smooth response of the
LQAdaptive controller was clear from Fig. 9, further test-
ing was carried out to ensure that the absolute peak error
was indeed reduced under LQAdaptive control. The sim-
ulation was repeated 300 times for both the simple con-
troller and the LQAdaptive controller using the same test
profile, but with a new measurement noise scenario for
each repeat. The absolute peak errors in the pitch and yaw
axes over the high manoeuvring phase were recorded for
each controller, and the distributions of these errors are
seen in Figs. 10 and 11.
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In both cases, the centres of the distributions for the
LQAdaptive responses are lower than those for the sim-
ple estimator-regulator responses. With the spreads be-
ing roughly equal, this suggests that the LQAdaptive con-
troller manages to handle the measurement noise and dis-
turbances better than the simple controller for the same
test profile.

6. Conclusions

A ship-based two-axis target tracker was presented. The
non-linear dynamic model of Line-Of-Sight (LOS) errors
between the tracker and the target was detailed, and this
was used to derive a regulator that drives the LOS errors
to zero. The regulator includes a feed-forward compo-
nent based on target angular velocities that cannot be mea-
sured. Estimation is thus required, and an extended con-
tinuous Kalman filter is introduced to provide the relevant

velocities, along with filtered estimates of the input sensor
data. Both the regulator and the Kalman filter are already
available, and each component is known to function well
individually. The problem addressed in this paper is how
to integrate the two components together to form an over-
all closed loop position controller.

A simple control system is constructed by simply
cascading the Kalman filter and the regulator together in
a closed loop system. The performance of this system is
likely to be suboptimal, since the separation principle does
not hold in non-linear problems. A new control system la-
belled the ‘LQAdaptive structure’ is proposed that aims
to improve conformity to the separation principle. This is
done by introducing a local filter to ensure the compatibil-
ity of state spaces, and by using Linear-Quadratic optimal
regulator design on local linearized dynamics. As a result,
over each short period of local linear dynamics, a near op-
timal Kalman filter is cascaded with an optimal regulator
in the closed loop system.

Simulations were carried out to compare the re-
sponses of the two position control systems to a test target
profile. Perfect tracker axis actuation was assumed. The
results showed that control under LQAdaptive structure
was considerably smoother than under the simple struc-
ture. Repeated trials with random measurement noises
also showed that the peak errors that occur during track-
ing are generally smaller under LQAdaptive control than
under the simple controller.

In summary, the attempt to improve conformity to the
separation principle led to a control system that achieves
better tracking under the simulation assumptions. Further
testing would be required to incorporate the true axis dy-
namics and velocity controllers in order to get a more re-
alistic view of the tracker responses.

It was also assumed that the elevation angle ¢ is
available directly as a measurement, which may not be the
case in reality. Acquiring a value of ¢ may present its own
technical challenges, but the incorporation of the value
into the LQAdaptive structure should still yield the same
results. One available option is to relate the angle to the
known dynamics and carry out extended estimation. It can
also be seen that any improvement in tracking is traded
against the increased complexity of the LQAdaptive con-
trol system. The implementation of a rapidly adapting
control law may pose problems in the reliability and ro-
bustness of any hardware and software used.
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