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The paper considers a set membership joint estimation of variables and parameters in complex dynamic networks based on
parametric uncertain models and limited hard measurements. A recursive estimation algorithm with a moving measurement
window is derived that is suitable for on-line network monitoring. The window allows stabilising the classic recursive
estimation algorithm and significantly improves estimate tightness. The estimator is validated on a case study regarding a
water distribution network. Tight set estimates of unmeasured pipe flows, nodal heads, tank level and pipe resistances are
obtained.
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1. Introduction

A joint estimation of variables and model parameters is
a routine activity that is carried out on-line during net-
work operation. The estimation of heads, flow rates, tank
level, chlorine concentrations, pipe parameters or chlorine
reaction rates across drinking water distribution network
(Brdyś and Chen, 1996; Brdyś and Lisiak, 1999; Brdyś
et al., 2001; Duzinkiewicz, 2005), and the estimation of
biological state and model parameters for an integrated
wastewater system (Rutkowski et al., 2004) can serve
as examples. It is crucial to properly integrate a-priori
knowledge including mathematical models with measure-
ment information provided by hard sensors in order to
obtain robust and quality estimates. An uncertainty ex-
ists due to modelling errors, measurement noise and dis-
turbance inputs. In the paper, in order to obtain robust
estimates with a guaranteed estimation error and, at the
same time, to reduce the modelling effort which is neces-
sarily due to a network’s complexity, a set membership
model of uncertainty is employed (Chang et al., 2004;
Duzinkiewicz, 2005; Milanese et al., 1996; Schweppe,
1978; Walter and Pronzato, 1997). For the linear case,
the solution set is a convex polyhedron, which can be very
complicated, and other simple-shaped forms, such as el-
lipsoids or parallelotopes, have been used to give an en-
closure of the exact solution set (Milanese et al., 1996;
Walter and Pronzato, 1997).

When a model is nonlinear, the previous algorithms
are no longer relevant (Raïssi et al., 2004). In the paper,

the outer approximation is used, defined by taking orthog-
onal projections of the exact set. The estimates are sets
bounding uncertain parameters and tubes bounding uncer-
tain variable trajectories. Point estimates can be selected
from the set estimates depending on their future usage.
Regardless of the selection, the estimation error can be al-
ways assessed in a guaranteed manner. The Chebyshev
centres of the sets serve as point estimates that minimise
the estimation error in the worst case (Milanese et al.,
1996). In the paper, recursive algorithms for set mem-
bership estimation are derived. A moving measurement
window is introduced in order to stabilize the estimates
and also to compromise between the computational effort
and estimate tightness.

It should be pointed out that the set bounded model
of uncertainty is used in the paper in order to overcome
difficulties in obtaining statistical information needed by
a probabilistic model of uncertainty for estimation pur-
poses. Moreover, key statistical assumptions are often not
met in complex networks e.g., the whiteness of noise due
to the modelling error. The “statistically optimal” esti-
mates would not be then of the required quality. In addi-
tion, even if the network model is linear in parameters, it
is rarely linear in variables that are estimated jointly. This
creates well-known difficulties in applying probabilistic
models of uncertainty. However, statistical concepts such
as consistency, structure selection, etc. can also be applied
to set membership estimation and similar results can be
achieved (Veres and Norton, 1991). The paper does not
focus on theoretical considerations with regard to these is-
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sues. Instead, a geometrical advantage of the set bounded
approach is utilised in order to approximate complicated
topological shapes of the set estimates, and their useful
tightness is demonstrated by the application to an exam-
ple regarding a water distribution network.

2. Information in the Estimation Problem

We shall consider a dynamic network that is composed
of interconnected static and dynamic elements. The ele-
ment variables and model parameters are related by equal-
ities to obtain the element mathematical model. For a
dynamic element, we shall distinguish between the state
variables and the remaining non-state variables. The non-
state variables are composed of network inputs, outputs
and intermediate variables. The other variables connect
the elements. It is a common property of static network
element models that all variables are linked in an implicit
manner through model equalities. Hence, for a network
as a whole, we shall distinguish between state variables
s, non-state variables y and external inputs (controls and
disturbances) u. As all three types of variables are to be
estimated (controls due to actuator errors), the composed
vector x of the estimated variables is introduced as

x =
[
sT, uT, yT

]T
, x ∈ R

nx , u ∈ R
nu , y ∈ R

ny .
(1)

Let us denote by F the operator representing the al-
gebraic equations modelling the static part of the network.
Hence, this static part of the network model can be written
as

F (x) = 0. (2)

The operator F is not exactly known and only its approx-
imate model FM is available. The following holds:

0 = F (x) = FM (x, γ) + eM
s (x, γ) , (3)

where γ ∈ R
nγ is the model parameter vector and eM

s (·)
describes the modelling error of the static part of the
model.

It is assumed that the upper and lower bounds on the
modelling error, eM,u

s and eM,l
s , respectively, are known,

so that
eM,l

s ≤ eM
s (x, γ) ≤ eM,u

s . (4)

The static network model used via (2)–(4) enables us to
bound the sets of possible variable and parameter values
to the ones that satisfy the inequalities

−eM,u
s ≤ FM (x, γ) ≤ −eM,l

s . (5)

The relationship (5) can be written for the successive time
steps j = 1, 2, . . . . The inequality (5) with x (j) , j =
1, 2, . . . , bounds the variables and parameters at the time
step j. By adding to this inequality known pointwise a-
priori bounds on the estimated variables and parameters

xmin (j) ≤ x (j) ≤ xmax (j) and γmin ≤ γ ≤ γmax,
static a-priori knowledge at the time step j is obtained
that can be shortly written as

Ms

(
x (j) , γ

) ≤ 0, (6)

where M∫ is a suitably defined operator. Hence, the oper-
ator M∫ consists of the network static model inequalities
and the a-priori bounds on the variables and parameters.

The network dynamics are composed of the element
dynamics linked by intermediate variables as

s (j + 1) = f (x (j) , j) , j = 1, 2, . . . (7)

As previously, an approximate model f M (·) of f (·) to-
gether with upper and lower bounds on the modelling
error of the dynamic part of the model eM

d (x, γ, j),
eM,u

d (j) and eM,l
d (j), respectively, is only available. The

inequalities can then be written that robustly bound the
estimated quantities at the time step j as

eM,l
d (j) ≤ s (j + 1) − fM

(
x (j) , γ, j

) ≤ eM,u
d (j) ,

(8)
j = 1, 2, . . . , yielding the dynamic a-priori knowledge at
the time step j.

The models are assumed to be parametric, as op-
posed to point-parametric models (Chang et al., 2004).
This means that there exists a constant parameter vec-
tor γ∗ and the modelling error mappings eM,∗

s (·) and
eM,∗

d (·) such that for any external inputs from an admis-
sible set, the following holds over the control horizon:

F(
x∗ (j)

)
= FM

(
x∗ (j) , γ∗) + eM

s

(
x∗ (j) , γ∗),

f
(
x∗ (j) , j

)
= fM

(
x∗ (j) , γ∗, j

)
+eM

d

(
x∗ (j) , γ∗, j

)
,

eM,l
s ≤ eM

s

(
x∗ (j) , γ∗) ≤ eM,u

s ,

eM,l
d ≤ eM

d

(
x∗ (j) , γ∗, j

) ≤ eM,u
d , (9)

j = 1, 2, . . . , where x∗ (j) is the network variable tra-
jectory over the control horizon. The vector γ ∗ will be
further called the real parameter vector.

Only a small part of the variable set is directly mea-
sured. Let z denote the vector of the measured variables.
Clearly, z ⊂ x. The measurements are taken at the dis-
crete time instants j corresponding to the time steps of the
network dynamic model (7). The measurement set avail-
able at the time stage k is

ZP (k) =
[
zP (1)T , . . . , zP (j)T

, . . . , zP (k)T
]T

,

(10)
where the superscript ‘P ’ denotes hard sensor measure-
ments of the network variables gathered over j = 1, k.

The measurements are contaminated by the noise
eP (j) and zP (j) = z (j) + eP (j), j = 1, k. The noise
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is lower and upper bounded with the known L∞ bounds
eP,l (j) and eP,u (j), respectively. Hence, the following
holds for j ∈ 1, k:

zP (j) − eP,u (j) ≤ z (j) ≤ zP (j) − eP,l (j) . (11)

The inequalities (11) over the time period Ξk = 1, k con-
stitute the overall information about the variables and pa-
rameters available at the time instant k from the measure-
ments gathered till k. We shall call it the measurement
information at the time step k. Let X(k) be a vector of
the trajectories of the estimated variables over Ξk = 1, k.
That is,

X(k) =
[
x (1)T

, . . . , x (j)T
, . . . , x(k)T

]T

. (12)

The inequalities (11) can now be briefly written as

P(k)
(
X(k)

) ≤ 0, (13)

where P (·) is a suitably defined operator. We shall also
introduce an operator p(k) to define the measurement in-
equality p(k) (x (k)) ≤ 0 only at k:

zP (k) − eP,u(k) ≤ z(k) ≤ zP (k) − eP,l (k) . (14)

3. Batch Estimation Algorithms

3.1. Static Joint Batch Estimation of Variables and
Parameters. At the time instant k, let us consider all es-
timated variable trajectories X(k) and all parameter val-
ues γ consistent with the static a-priori knowledge and the
measurements over the time period Ξk = 1, k. Let Φ (k)
denote the set of all these consistent variable trajectories
and parameter values. Hence, the set Φ(k) can be defined
in the following way:

Φ(k) =
{(

X(k), γ
)

: Ms

(
x(j), γ

) ≤ 0, j = 1, k;

P(k)
(
X(k)

) ≤ 0
}
. (15)

If (X(k), γ) ∈ Φ(k), then, on the basis of the static
a-priori information and measurement information avail-
able at the time instant k, we cannot preclude that the end
point x(k) of the trajectory X (k) is equal to the real
vector x∗(k) and the parameter vector γ is equal to the
real parameter vector γ∗ estimated at the time instant k.
Let Φx(k),γ(k) denote the set of the end points of the
variable trajectories X(k) and parameter values γ such
that (X (k) , γ) ∈ Φ(k). It is obvious that for the static
a-priori information and measurement information avail-
able at the time instant k, the set Φx(k),γ(k) is the smallest
one that certainly contains the estimated pair (x∗(k), γ∗).
It should be noted that, in spite of estimating variables
only at the time instant k, the static a-priori information

at all time instants over the period Ξk = 1, k has been
taken into account. This is due to the time structure of the
static batch estimation problem introduced to it by con-
stant values of the parameters.

It is a very difficult numerical task to obtain exact
bounds of the set Φx(k),γ(k). Hence, the estimates of the
variables x(k) and parameters γ are defined as orthogonal
projections of Φx(k),γ(k) on the subspaces of a variable
xi(k) and parameter γi, the elements of the vector x(k)
and γ, respectively. The intervals

[
xmin

i (k), xmax
i (k)

]
and[

γmin
i (k), γmax

i (k)
]

are then obtained by bounding at k
the scalars x∗

i (k) and γ∗
i . The following holds for each

pair of the components (x∗
i , γ

∗
i ) of the vector (x∗(k), γ∗):

xmin
i (k) ≤ x∗

i (k) ≤ xmax
i (k) ,

γmin
i (k) ≤ γ∗

i ≤ γmax
i (k).

(16)

An orthotope built by the interval estimates (16) is only an
outer approximation of the set Φx(k),γ(k). It may happen
that this approximation is conservative and contains many
points not consistent with the information available at the
time instant k. The centres of the interval estimates (16)
are natural choices of robust point estimates as it may be
possible to assess an upper error of these estimates. In
other words, it will be possible to determine the guaran-
teed estimation error.

The interval estimate of the i-th components of the
variable vector x(k) and the parameter vector γ are deter-
mined by solving the following optimisation tasks:

min (max)
{

qo

(
X(k), γ

)
= xi(k) (or γi)

}

subject to
(
X(k), γ

) ∈ Φ(k),
(17)

where q0 is the objective function for determining the
lower and upper bounds of the outer approximation set.

The application of static estimation to the dynamic
network is practically possible when the changeability of
system variables is small. Then the dynamic a-priori in-
formation (8) over the time period Ξk = 1, k can be re-
placed by the static a-priori information in the form of the
inequality

eM,l
d (j) ≤ s − fM

(
x (j) , γ, j

) ≤ eM,u
d (j) , (18)

j = 1, k, where s is a constant vector.
The inequalities (18) should be added to the inequal-

ities set (15), and the resulting extended task of the static
estimation should be solved.

3.2. Dynamic Joint Batch Estimation of Variables and
Parameters. The static joint estimation of variables and
parameters at the time instant k did not utilise the dynamic
a-priori information given by (8) over the time interval
Ξk = 1, k. At the time instant k we shall define a set Ω(k)
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of all variable trajectories X(k) and parameters γ that are
consistent with the measurement and a-priori information
over the time period Ξk = 1, k which is available at k.
Hence, the following holds:

Ω(k) =
{(

X(k), γ, s(k + 1)
)

:

Ms

(
x (j) , γ

) ≤ 0, j = 1, k;

eM,l
d (j) ≤ s (j + 1) − fM

(
x (j) , γ, j

)

≤ eM,u
d (j) , j = 1, k;

P(k)
(
X(k)

) ≤ 0
}
. (19)

The state s(k) is estimated as a component of the vec-
tor x(k). The state s (k + 1) participates in the definition
of the set Ω(k) since the inequality (8) with j = k con-
tributes at k to knowledge about x(k), and s (k + 1) is
present in (8). However, as opposed to x(k) and γ, esti-
mating s (k + 1) at k means predicting the state.

Let (X(k), γ, s (k + 1)) ∈ Ω(k). Regarding the
static, dynamic and measurement information available at
k, the set

Ωx(k),γ,s(k+1)(k)
Δ=

{(
x(k), γ, s (k+1)

) ⊂ Ω(k)
}

(20)

is the smallest set which is guaranteed to contain the
estimated quantities (x∗(k), γ∗, s∗ (k + 1)). Unfortu-
nately, as for the static estimation, a topological struc-
ture of this set is complicated even for linear net-
works. Hence, for practical reasons, we shall take
its outer approximation that can be realistically deter-
mined as the set estimate at k. The outer approxi-
mation is defined by taking orthogonal projections of
Ωx(k),γ,s(k+1)(k) on the subspaces of xi(k),si (k + 1)
and γi. This results in producing the intervals[
xmin

i (k), xmax
i (k)

]
,

[
smin

i (k + 1) , smax
i (k + 1)

]
and[

γmin
i (k), γmax

i (k)
]

bounding x∗
i (k), s∗i (k + 1) and γ∗

i

at k, respectively. This means that the following holds:

xmin
i (k) ≤ x∗

i (k) ≤ xmax
i (k) ,

γmin
i (k) ≤ γ∗

i ≤ γmax
i (k),

smin
i (k + 1) ≤ s∗i (k + 1) ≤ smax

i (k + 1) .

(21)

Let the sets Ωx(k)(k), Ωs(k+1)(k) and Ωγ(k) be
outer approximations of the smallest set which are guar-
anteed to contain the estimated quantities x∗(k), γ∗, and
s∗ (k + 1), respectively. The sets Ωx(k)(k), Ωs(k+1)(k)

and Ωγ(k) are defined by

Ωx(k)(k)
Δ=

[
xmin

1 (k), xmax
1 (k)

]

× · · · × [
xmin

i (k), xmax
i (k)

]

× · · · × [
xmin

nx
(k) , xmax

nx
(k)

] ∈ R
nx, (22a)

Ωγ(k)
Δ=

[
γmin
1 (k), γmax

1 (k)
]

× · · · × [
γmin

i (k) , γmax
i (k)

]

× · · · ×
[
γmin

nγ
(k), γmax

nγ
(k)

]
∈ R

nγ, (22b)

Ωs(k+1)(k)
Δ=

[
smin
1 (k + 1) , smax

1 (k + 1)
]

× · · · × [
smin

i (k + 1) , smax
i (k + 1)

]

× · · · ×
[
smin

ns
(k + 1) , smax

ns
(k + 1)

] ∈ R
ns .

(22c)

Clearly, the following holds:

Ωx(k),γ,s(k+1)(k) ⊂ Ωx(k)(k) ×Ωγ (k) ×Ωs(k+1) (k) .
(23)

The Cartesian products of the sets Ωx(k)(k), Ωs(k+1)(k)
and Ωγ (k) constitute outer approximations of the set
Ωx(k),γ,s(k+1)(k) determined by solving the following
optimisation tasks:

min(max)
{
q0

(
X(k), γ, s(k + 1)

)
= xi(k)

(
or γi or si(k + 1)

)}

subject to
(
X(k), γ, s(k + 1)

) ∈ Ω(k),

(24)

where q0 is an objective function for determining the
lower and upper bounds of the outer approximation set.

4. Recursive Estimation Algorithms

4.1. Dynamic Joint Recursive Estimation of Variables
and Parameters with Standard Recursion. The for-
mulation (19) and (24), called the batch estimation, is not
suitable for on-line applications. We shall now derive a
recursive formulation. Let us compare the sets Ω(k) and
Ω (k − 1), which constitute the information bases for the
estimation at k and k − 1, respectively. The new informa-
tion available at k is the measurement information gath-
ered at k. Moreover, at k, the new variables x(k) and
s (k + 1) are to be estimated. Accordingly, at the time in-
stant k, the following information is added to the set Ω(k):
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the static a-priori information about variables and para-
meters at k given by (6), the dynamic a-priori information
about variables and parameters changeable at k given by
(8) and the measurement information given by (14). This
new piece of information can be then expressed as

ω(k) =
{(

x(k), γ, s (k + 1)
)

:

Ms

(
x(k), γ

) ≤ 0, p(k)
(
x(k)

) ≤ 0,

eM,l
d (k) ≤ s (k + 1) − fM

(
x(k), γ, k

)

≤ eM,u
d (k)

}
. (25)

The set Ω(k) can now be written in the recursive form as

Ω(k) =
{(

X(k), γ, s (k + 1)
)

:

(
X (k − 1) , γ, s (k)

) ∈ Ω (k − 1) ,

(
x(k), γ, s (k + 1)

) ∈ ω(k)
}

. (26)

Comparing the sets Ω (k − 1) and ω(k) in (26), it
can be stated that the parameters γ and variables s(k) oc-
cur in both these sets as a component of the vector x(k).
Knowledge about the parameter vector γ and state vector
s(k) resulting from the estimation at the time instant k−1
is represented by the sets Ωγ (k − 1) and Ωs(k) (k − 1).
According to (23), we have

Ωx(k−1),γ,s(k) (k − 1) ⊂ Ωx(k−1) (k − 1)

× Ωγ (k − 1) × Ωs(k) (k − 1) . (27)

Hence, the sets Ωγ (k − 1) and Ωs(k) (k − 1) are only
outer approximations of the sets representing information
about γ and s(k) that are contained in the set Ω (k − 1).
At the time instant k, the recursive form of the estimation
algorithm generates the interval estimates by solving the
following optimisation tasks:

min(max)
{

q0

(
X(k), γ, s(k + 1)

)
= xi(k)

(
or γi or si(k + 1)

)}

subject to (x(k), γ, s (k + 1)) ∈ ω(k),
γ ∈ Ωγ(k − 1),
s(k) ∈ Ωs(k) (k − 1) ,

(28)

where the set estimates Ωγ (k − 1) and Ωs(k) (k − 1) are
known from the estimation at k − 1.

The estimation at k = 1 uses the initial state esti-
mates s0 ∈ S0 known a priori at the time instant k = 0.
Hence Ωs(1) (0) = S0. Similarly, Ωγ (0) = Γ0, where
Γ0 is a-priori knowledge about a set bound γ. It should
be noted that the state prediction s (k) obtained at k − 1

is improved by the estimation algorithm at k as a result of
using the new measurement information gathered at k.

Notice that due to (23) and (27), a conservatism ex-
ists in the estimates defined by (28) when compared with
the batch estimates, and this is the price to be paid for the
recursive structure of the estimation algorithm. This con-
servatism may produce an unstable process of generating
points that are not consistent with the available informa-
tion.

4.2. Dynamic Joint Recursive Estimation of Variables
and Parameters with a Moving Measurement Window.
The stability of the recursive estimation algorithm may be
regained by directly introducing a number of past mea-
surements into the estimation task that is performed at k.
They form a measurement window with L past measure-
ments. In the recursive algorithm (28), L = 0. Since
the measurement information is coupled with the a-priori
information through the model (see (19)), the overall in-
formation that is utilised for the estimation at k can be
decomposed into the information used to perform the es-
timation at k − L − 1 that means Ω (k − L − 1) and the
new information over the window ω (k − L, k). Hence,

ω (k−L, k)=
{(

X (k − L, k) , γ, s (k + 1)
)

:

Ms

(
x

(
j
)
, γ

) ≤ 0, j = k − L, k;

P (k − L, k)
(
X (k − L, k)

) ≤ 0;

eM,l
d (j) ≤ s (j + 1) − fM (x (j) , γ, j)

≤ eM,u
d (j) , j = k − L, k

}
, (29)

where X (k − L, k) is the set of all variable trajectories
over the time period Ξ−L = k − L, k.

Hence, the information base Ω(k)for the estimation
performed at k can be written in the form equivalent
to (19) and (26) as follows:

Ω(k) =
{(

X(k), γ, s (k + 1)
)

:

(
X (k−L−1) , γ, s (k−L)

) ∈ Ω (k−L−1)

(
X (k−L, k) , γ, s (k+1)

) ∈ ω (k−L, k)
}
,

(30)

where the set Ω (k − L − 1) is the information base for
the estimation task that is solved at k − L − 1.

Notice that knowledge about the parameter γ and
state s (k − L) gathered as a result of the estimation per-
formed at k − L − 1 and based on the set Ω (k − L − 1)
is expressed by the sets Ωx(k−L−1) (k − L − 1),
Ωγ (k − L − 1) and Ωs(k−L) (k − L − 1). The first set
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has no influence on the estimation results at k. Hence, the
recursive algorithm with a moving measurement window
of the length L can be formulated at k as follows:

min (max)
{
q0

(
X (k − L, k) , γ, s (k + 1)

)
= xi(k)

(
or γi or si (k + 1)

)}

subject to
(
X(k − L, k), γ, s(k + 1)

) ∈ ω(k − L, k),
γ ∈ Ωγ (k − L − 1) ,

s (k − L) ∈ Ωs(k−L) (k − L − 1) ,
(31)

where the sets Ωs(k−L) (k − L − 1) and Ωγ (k − L − 1)
come from the estimation performed at k − L − 1.

Let us notice that the original information inequali-
ties, but not their external approximations, are processed
over the window. This has the above-mentioned stabilis-
ing impact on the estimates. The prediction Ωs(k+1)(k)
of the state s (k + 1) determined at k will be used during
the estimation carried out at k + L + 1 as an estimate of
the initial condition. At k + 1, the window moves ahead
by one time step and the state s (k + 1) will enter the win-
dow. Hence, the set Ωs(k+1)(k) can be used at k + 1 as
an additional constraint bounding s(k). Introducing the
constraint

s(k) ∈ Ωs(k)) (k − 1) (32)

into the constraint set of (31) does this.
Remaining within the window for some time cre-

ates an opportunity for smoothing the past estimates based
on information about the new measurements. However,
this requires solving additional optimisation tasks. The
smoothing, although expensive, may vastly improve the
tightness of estimates. We shall limit ourselves to exploit-
ing only one possibility. During the estimation performed
at k, the state s (k − L + 1) becomes an initial state con-
dition for the estimation to be carried out at k + 1. It is
therefore beneficial for the estimation performance at k+1
to estimate this state also at k. By including this and (32)
into (31), the following estimation algorithm is obtained:

min (max)
{

q0

(
X(k − L, k), γ, s(k + 1)

)
= xi(k)

or si(k − L + 1) or γi or si(k + 1)
}

subject to
(
X(k − L, k), γ, s(k + 1)

) ∈ ω (k − L, k) ,

γ ∈ Ωγ (k − L − 1) ,

s (k − L) ∈ Ωs(k−L) (k − L − 1) ,

s(k) ∈ Ωs(k) (k − 1) . (33)

We have then Ωs(k−L) (k − L − 1) = Ωs(k) (k − 1) if
L = 0. A routine state prediction is then sufficient in (33).
Hence, the beneficial smoothing of the initial condition
can be achieved only when the moving measurement win-
dow is applied to the estimation algorithm.

5. Simulation Results for a Case Study

A case study regarding the drinking water network of
Fig. 1 will be investigated. The operators FM (·) and
fM (·) can be defined by the following discrete equations
for the current time instant k:

 

i j 
l(ij) 

Δhl(ij), Ql (ij) 

Er 

Et 

Ei 
hi hj 

yt 

Δhp = f(Qp), Qp 

Δhv = f(Qv), 
 Qv 

St = f(yt) 

 
 

Quantities: 
  Q – pipe flow 
  E – reservoir or tank elevation 
  y – water level in a tank 
  h – head at a junction node 
  Δh – change of the head along a link 
  S – cross area of a tank 

Subscripts: 
  t – tank 
  r – reservoir 
  v – valve 
  p – pump 
  i,j – node number 
  l – pipe number 

Fig. 1. Drinking water network.

1. Flow continuity law:

∀i :
∑

l∈P+
i

Ql(ji)(k) −
∑

l∈P−
i

Ql(ij)(k) = di(k), (34)

where P +
i is the inflow (flow toward the junction node) of

the i-th node and P −
i stands for the outflow (flow from the

junction node) of the i-th node, and d i signifies the water
demand at the i-th node.

2. Generalized link equation:

∀l (ij) : hi(k) − hj(k) = Δhl(ij)(k), (35)

where the water head h or its change Δh are determined
according to the type of node or the type of link.

For a tank node, we have

ht(k) = Et + yt(k), (36)

yt (k + 1) = yt(k) +
1
St

Qt(it)(k)Δt, (37)

where Δt is the a hydraulic time step.
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For a reservoir node, we get

hr(k) = Er(k). (38)

For a pipe link (the Hazen-Williams formula),

Δhl(ij)(k) = RlQ
1.852
l(ij) (k), (39)

where R is the resistance of the pipe.
For a pump link, we have

Δhp(ij)(k) = ApQ
2
p(ij)(k)+BpQp(ij)(k)+hu,p, (40)

where A, B and hu are parameters of the pump curve.
For a valve link

Δhv(ij)(k) = RvQ
2
v(ij)(k), (41)

where R is the resistance of a valve.
The relations (34), (35) and (38)–(41) constitute the

static part of the network model defining the operator
FM (·), cf. (3). The tank is a dynamic element that is
modelled by the relations (36) and (37) defining the oper-
ator fM (·), cf. (8).

The paper considers a case study of a distribution
system of a medium size city of Lębork in Poland. The
network variables to be monitored are flows through the
pipes, pressures at the network, tank nodes and water de-
mands. The pipe resistances are model parameters. The
measurements are typically limited due to the cost of sen-
sor maintenance, and unmeasured quantities need to be
estimated by using the model and hard measurements. A
skeleton of the system considered is shown in Fig. 2.
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Fig. 2. Lębork case study network.

The distribution system consists of 19 demand nodes,
24 pipes and one tank. In Fig. 2, the estimated vari-
ables are marked he for the nodal heads and Qe for the
pipe flows, while the parameters are marked by Re. All

other nodal demands, pipe flows and nodal heads are mea-
sured. The measurement error bounds are: flow ±3%,
nodal head ±3%, pipe resistance ±10% and demand
±10%. The computations were performed on an IBM PC
equipped with a PIII 933 MHz processor, using the GAMS
v.19.6 package. The solver used in solving the optimisa-
tion tasks was MIP CPLEX.

The nonlinear non-convex optimisation tasks of the
estimation problem (33) were first converted into an ap-
proximated piecewise linear form and then solved by ap-
plying a mixed integer linear solver (Brdyś et al., 2001;
Duzinkiewicz, 2005) to produce the desired global op-
tima. The linearisation error was handled by introducing
the error into the formulation of the estimation problem as
a modelling error.

The piecewise linearisation introduces additional
variables, and the number of these new variables rapidly
increases if the original variable domains (ranges) in-
crease. In order to maintain the linearisation ranges as
small as possible, flow balance equations are utilised to
predict the ranges for the next time instant (Brdyś et al.,
2001). This is called a dynamic grid allocation, which is
crucial for on-line applications.

A simple recursive algorithm with L = 0 and recur-
sive estimation with a moving measurement window of
the window length L = 1 and L = 2 were applied to
estimate the pipe flows, nodal heads and pipe resistances.
The results for L = 0 and L = 2 are shown in Figs. 3–12.
Stable and tight estimating bounds were obtained that are
illustrated by upper and lower bounding envelopes. The
true trajectories of the estimated flows and heads lie within
the envelopes and the resistance bounds get closer.

Differences in recursive estimation with the moving
measurement window method for various window lengths
can be easily seen in the resistance, tank level and pipe
flow estimation processes. For example, according to the
a-priori knowledge about the resistance R17_18, its value
was between 0 and 0.7. After 24 hours of recursive es-
timation carried out during the normal system operation
and, hence, without applying specially designed identifi-
cation inputs, the uncertainty in the resistance value was
reduced to the interval [0.085, 0.18] for the window length
L = 0, [0.09, 0.18] for L = 1 and [0.13, 0.17] for L = 2.

One can also notice some distortion in the estima-
tion results, especially for nodal heads. They appear be-
cause only a suboptimal value of the integer component of
the optimized variables was found in order to improve the
computational efficiency of the algorithm. Therefore, the
resulting estimates constitute a compromise between the
quality of the estimates and computational performance.
As has been expected, better estimates are produced for
L = 2. Nevertheless, an approach to the selection of the
appropriate values for windows length L needs further in-
vestigations.
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Fig. 3. Estimated bounds on the resistance
of the pipe 17_18; L = 0.
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Fig. 4. Estimated bounds on the resistance
of the pipe 17_18; L = 2.
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Fig. 5. Estimated bounds on the pipe flow Q17_18; L = 0.
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Fig. 6. Estimated bounds on the pipe flow Q17_18; L = 2.
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Fig. 7. Estimated bounds on the tank level; L = 0.
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Fig. 8. Estimated bounds on the tank level; L = 2.
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Fig. 9. Estimated bounds on the nodal head H17; L = 0.
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Fig. 10. Estimated bounds on the nodal head H17; L = 2.
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Fig. 11. Estimated bounds on the nodal head H29; L = 0.
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Fig. 12. Estimated bounds on the nodal head H29; L = 2.

6. Conclusions

The paper considered a set membership joint estimation
of variables and parameters in dynamic networks. A re-
cursive estimation algorithm suitable for on-line network
monitoring was derived. It was validated on a case-study
water distribution network. The results showed signifi-
cant improvements of the estimates produced by estima-
tion with moving measurement window. An analysis of
rigorous criteria for the selection of the window length in
order to reach a desired trade-off between estimation accu-
racy and computing effort are under research. The appli-
cation of the recursive algorithm with a moving measure-
ment window to a joint estimation of integrated quality
and quantity in complex drinking water distribution net-
works is described in (Duzinkiewicz, 2005).
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