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In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software package for the
evaluation of some eigenvalues of a large sparse symmetric matrix. It implements an efficient and portable Block Lanczos
algorithm for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense
matrices, some of which have been derived by ScaLAPACK library modules. Numerical experiments have been carried out
to evaluate HPEC performance on a cluster of workstations with test matrices from Matrix Market and Higham’s collections.
A comparison with a PARPACK routine is also detailed. Finally, parallel performance is evaluated on random matrices, using
standard parameters.
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1. Introduction

The eigenvalue problem has a deceptively simple formula-
tion and the background theory has been known for many
years, yet the determination of accurate solutions presents
a wide variety of challenging problems. This has been
stated by Wilkinson (1965), and is still true.

Eigenvalue problems are the computational kernel of
a wide spectrum of applications ranging from structural
dynamics and computer science, to economy. The rel-
evance of those applications has lead to painstaking ef-
forts in developing numerical software in sequential envi-
ronments. The results of this intensive activity are both
single routines in general and special purpose libraries,
such as Nag, IMSL and Harwell Library, and specific
packages, such as LANCZOS (Cullum and Willoughby,
2002), LANSO (Parlett and Scott, 1979), LANZ (Jones
and Patrick, 1989), TRLAN (Wu and Simon, 1999b), and
IRBLEIGS (Baglama et al., 2003).

If we look at sequential algorithms, we see that
nearly all of them are based on the well-known Krylov
subspace methods (Parlett, 1980; Saad, 1992). The rea-
sons for this are the demonstrated computational effi-
ciency and the excellent convergence properties which can
be achieved by these procedures. In spite of some numer-
ical difficulties arising from their implementation, they

form the most important class of methods available for
computing the eigenvalues of large, sparse matrices. It is
worth noting that a broad class of applications consists of
problems that involve a symmetric matrix and require the
computation of few extremal eigenvalues. For this class
the Lanczos algorithm (Lanczos, 1950) appears to be the
most promising solver.

The availability and widespread diffusion of low
cost, off-the-shelf clusters of workstations have increased
the request of black box computational solvers, which
can be embedded in easy-to-use problem solving environ-
ments. To achieve this goal, it is necessary to provide sim-
ple application programming interfaces and support rou-
tines for input/output operations and data distribution. At
present, little robust software is available and a straight-
forward implementation of the existing algorithms does
not lead to an efficient parallelization, and new algorithms
have yet to be developed for the target architecture. The
existing packages for sparse matrices, such as PARPACK
(Lehoucq et al., 1998), PNLASO (Wu and Simon, 1999a),
SLEPc (Hernandez et al., 2003) and TRLAN, implement
Krylov projection methods and exploit parallelism at the
matrix-vector products level, i.e., level 2 BLAS opera-
tions. Nevertheless, for dense matrices, some packages
have been implemented with level 3 BLAS (Webster and
Lo, 1996).
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In this work we present efficient and portable soft-
ware for the computation of few extreme eigenvalues of a
large sparse symmetric matrix based on a reorganization
of the block Lanczos algorithm for distributed memory
multicomputers, which allows us to exploit a larger grain
parallelism and to harness the computational power of the
target architecture.

The rest of this work is organized as follows: in Sec-
tion 2, we describe the block version considered and we
show how we reorganize the algorithm in order to reduce
data communication. In Section 3, we deal with its paral-
lel implementation, providing computational and commu-
nication complexity and implementation details. In Sec-
tion 4, we focus on the specification and architecture of
the implemented software. In Section 5, we present the
numerical experiments that have been carried out to com-
pare the performance of HPEC with PARPACK software
on test matrices from Matrix Market and Higham’s collec-
tions. Finally, parallel performance evaluation, in terms of
efficiency on random matrices, is also shown.

2. Block Lanczos Algorithm

The Lanczos algorithm for computing the eigenvalues of
a symmetric matrix A ∈ R

m×m is a projection method
that allows us to obtain a representation of an operator
in the Krylov subspace spanned by the set of orthonor-
mal vectors, called Lanczos vectors. In this subspace, the
representation of a symmetric matrix is always tridiago-
nal. Assuming m = rs, the analysed block Lanczos algo-
rithm, proposed in (Golub and Van Loan, 1989), generates
a symmetric banded block tridiagonal matrix T having the
same eigenvalues of A:

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

M1 BT
1

B1 M2 BT
2

. . .
. . .

. . .

Br−2 Mr−1 BT
r−1

Br−1 Mr

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Mj ∈ R
s×s and Bj ∈ R

s×s are upper triangular.
T is such that

QT AQ = T,

where

Q = [X1 X2 . . . Xr], Xi ∈ R
m×s

is an orthonormal matrix, and its columns are Lanczos
vectors. A direct way to evaluate Mj , Bj and Xj (Golub
and Van Loan, 1989; Saad, 1992) is described as Algo-
rithm 1. At the step j, Algorithm 1 produces a symmetric
banded block tridiagonal matrix Tj of the order (j+1)×s
satisfying

QT
j AQj = Tj

(
Qj = [X1 X2 . . . Xj+1]

)
,

Algorithm 1: Block Lanczos algorithm
(1-st version).

Choose X1 ∈ R
m×s such that

XT
1 X1 = Is, X0 ≡ 0, B0 ≡ 0

M1 = XT
1 AX1

for j = 1 to r − 1

Rj = AXj − Xj−1B
T
j−1 − XjMj

Rj = Xj+1Bj (QR factorization)

Mj+1 = XT
j+1AXj+1

end for

where QT
j Qj = I . In fact, when j increases, extremal

eigenvalues of Tj , called the Ritz values of A, form an
increasingly better approximation of extremal eigenvalues
of A.

Block versions permit approximations of eigenvalues
with multiplicities greater than one, while in single vec-
tor algorithms difficulties can be expected since the pro-
jected operator, in finite precision, is unreduced tridiago-
nal, which implies that it cannot have multiple eigenvalues
(Golub and Van Loan, 1989).

The numerical stability of the block Lanczos algo-
rithm (Bai, 1994; Paige, 1976) can be derived from the one
for the single vector version. As we have shown in (Guar-
racino and Perla, 1995b), the following theorem holds:

Theorem 1. (Block Lanczos Error Analysis) Let A be an
m × m real symmetric matrix with at most nza nonzero
entries in any row and column. Suppose that the block
Lanczos algorithm with the starting matrix X1 ∈ R

m×s,
implemented in floating-point arithmetic with machine
precision εM , reaches the j-th step without breakdown.
Let the computed M̃j , B̃j and X̃j+1 satisfy

AQ̃j = Q̃jT̃j + X̃j+1B̃jE
T
j + Fj ,

where

Ej = [0, 0, . . . , Is]T ∈ R
s×sj ,

Q̃j = [X̃1, . . . , X̃j],

and

T̃j =

⎛
⎜⎜⎜⎜⎜⎜⎝

M̃1 B̃T
1

B̃1 M̃2 B̃T
2

. . .
. . .

. . .

B̃j−2 M̃j−1 B̃T
j−1

B̃j−1 M̃j

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Then

|Fj | ≤ [m(1 + sG1) + 3]γ|A||Q̃j|
+[s(1 + sG1) + 3]γ|Q̃j||T̃j | + O(ε2M )

with ‖G1‖F = 1 and γ = max{εM , cmεM

1−cmεM
}, where c is

a small integer constant whose value is unimportant.

3. Parallel Implementation

3.1. Modified Block Lanczos Algorithm. In previous
works (Guarracino and Perla, 1994;1995a), we proposed
a parallel implementation of the symmetric block Lanc-
zos algorithm for MIMD distributed memory architec-
tures configured as a 2-D mesh. We showed that a direct
parallelization of Algorithm 1 in the computational envi-
ronments considered has efficiency values that deteriorate
when sparsity decreases. This loss of efficiency is due
to the amount of communication with respect to computa-
tional complexity required in matrix-matrix multiplication
when the first factor is A sparse. This kind of behavior de-
pends on ScaLAPACK (Choi et al., 1996) implementation
choices for matrix-matrix operations, since the first matrix
is involved in global communications and the second one
only in one-to-one communications. Then, to avoid these
phenomena, we reorganized the algorithm in such a way
that the sparse A is the second factor in all matrix-matrix
products, so that it is not involved in global communica-
tions. This was achieved formally substituting each ma-
trix appearing in Algorithm 1 by its transpose. Since A
is a symmetric matrix, and so Mj , j = 1, . . . , r − 1, we
obtained the version of the block Lanczos algorithm em-
bodied by Algorithm 2.

Algorithm 2: Block Lanczos algorithm
(2-nd version).

Choose XT
1 ∈ R

s×m such that

XT
1 X1 = Is, X0 ≡ 0, B0 ≡ 0

M1 = XT
1 AX1

for j = 1 to r − 1

RT
j = XT

j A − Bj−1X
T
j−1 − MjX

T
j

Rj = Xj+1Bj (QR fact., obtaining XT
j+1)

Mj+1 = XT
j+1AXj+1

end for

Substituting the sparse matrix-matrix operation AXj

by the evaluation of the product X T
j A, we obtained that

XT
j was involved in communication instead of A and,

therefore, there was a reduction in terms of execution
times and communication complexity, and a gain in terms
of speed-up and efficiency, as shown in (Guarracino and
Perla, 1995a). Algorithm 2 has the same numerical prop-
erties as Algorithm 1, since the use of transposed factors
does not alter its behavior with respect to round-off errors.

3.2. Data Distribution. Now, in order to obtain good
performances on different MIMD distributed memory ar-
chitectures, in particular on cluster architectures, we have
to consider a suitable connection topology, and, con-
sequently, an appropriate data distribution of matrices
among nodes.

We assume the target architecture to consist of p
nodes, logically configured as a P × Q grid, indexed by
an ordered pair (I, J), where 0 ≤ I < P and 0 ≤ J < Q.
Each node is equipped with a CPU and local memory. The
nodes are connected by some communication network that
allows broadcasting messages within rows and columns,
in addition to point-to-point communication. In this envi-
ronment, it is natural to develop a parallel algorithm in
terms of loosely synchronous processes performing the
same task on different nodes.

Since in Algorithm 2 the basic operations are level 3
BLAS (Dongarra et al., 1990), and considered connection
topology the is a 2-D mesh, we choose the block scat-
ter decomposition (Choi et al., 1996) for all matrices in-
volved in the algorithm, including the sparse one, since
this strategy allows using ScaLAPACK. For the memo-
rization scheme of sparse A we use a data structure, per
process, usually referenced as the CSC – Compress Sparse
Column (see, e.g., Saad, 1992), consisting of three arrays,
containing respectively:

(i) non-zero entries of A columns parts in the subblocks
that are assigned to the process;

(ii) rows indices in A of each element in the first array;

(iii) pointers to the position in the first array of the first
non-zero entry of each column part.

Therefore, the global sparse matrix storage is a block
scattered CSC. This memorization scheme is redundant
for a symmetric matrix, but it provides faster memory ac-
cess to data, an easier localization of a whole column and
a decrease in global communications.

3.3. Implemented Algorithm. If we look at Algo-
rithm 2, we see that the linear algebra operations involved
are essentially matrix-matrix multiplications, eventually
with a transposed factor or a sparse factor, and a QR
factorization. Before implementing Algorithm 2, accord-
ing to the described 2-D mesh approach, we observe that
global transposition of the matrix RT

j is needed at each
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iteration before evaluating the QR factorization. Since
transposition operations in a message passing environ-
ment are extremely time consuming, due to the access
needed to non-local memories, we substitute the QR fac-
torization by the LQ factorization, which allows us to ac-
cess the matrix RT

j without transposition. Then, the im-
plemented version is given as Algorithm 3. It represents
the computational kernel of the software, which will be
described in detail in the next section.

Algorithm 3: Block Lanczos algorithm
(3-rd version).

Choose XT
1 ∈ R

s×m such that

XT
1 X1 = Is, X0 ≡ 0, B0 ≡ 0

M1 = XT
1 AX1

for j = 1 to r − 1

RT
j = XT

j A − Bj−1X
T
j−1 − MjX

T
j

RT
j = BjX

T
j+1 (LQ fact.)

Mj+1 = XT
j+1AXj+1

end for

3.4. Computational and Communication Complexi-
ties. In this section we deal with the computational and
communication aspects of the implemented block Lanc-
zos algorithm.

Let nza be the number of non-zero entries of the
sparse A ∈ R

m×m, and s the number of Lanczos vec-
tors. The operation count for each complete step of the
sequential block algorithm asymptotically is

7m × s2 + 2nza× s − 2s3/3
floating-point operations.

For each of p computing nodes, the cost of a complete step
of the parallel implementation of Algorithm 3 is

(7m × s2 + 2nza× s − 2s3/3)/p

floating-point operations,

4m × s + 2nza

one-to-one communications,

m × s + s2

one-to-all communications.

When nza increases, the number of operations in-
volving the sparse factor becomes dominant. It is also
worth noticing that the operation count is not affected

by parallelization. Furthermore, the communication com-
plexity is by one order of magnitude less than computa-
tional complexity, which is generally considered a target
in parallel algorithms for linear algebra.

4. Software Description

4.1. Software Architecture. HPEC uses standard mes-
sage passing libraries, i.e., BLACS (Dongarra and Wha-
ley, 1995) and MPI (Gropp et al., 1999), and standard
numerical linear algebra software, PBLAS (Choi et al.,
1995) and ScaLAPACK, obtaining software as portable as
PARPACK.

A PBLAS routine used in Algorithm 3 to evalu-
ate matrix-matrix multiplications with dense factors is
PDGEMM. Routines for matrix factorization are not in-
cluded in PBLAS, but they are covered by ScaLAPACK.
At each iteration, the evaluation of Bj is then performed
by using the routine PDGELQF, and the routine PDOR-
GLQ is used to compute the matrix X T

j+1 of the LQ fac-
torization.

We developed the PDMASPMA routine to evaluate
matrix-sparse matrix products, using the same scattered
decomposition on which PDGEMM is based. On each
node, the computational kernel is a sequential matrix-
sparse matrix product in which the access to the elements
of the sparse factor is done according to the data lay-
out scheme. Since the sparse factor is not involved in
communication, the advantage is that the overhead does
not depend on sparsity. On the other hand, the perfor-
mance depends on the distribution of nonzero entries in
the sparse matrix; if those elements are uniformly distrib-
uted, each processor will execute a comparable number of
operations, thus balancing the workload.

Since all matrices involved in the algorithm are dis-
tributed among processing nodes, no replication of data
occurs.

4.2. Software Specification. The proposed HPEC is
implemented in C and Fortran 77. It uses a reverse com-
munication strategy for the sparse matrix A. The driver
routine is named LANCZOS, and its header is the follow-
ing:

SUBROUTINE LANCZOS (S, M, A, LMA, AI,
1 AJ, XT1, LDXT1, MB, CONTXT,
2 NUMSEA, NUMAUT, W, ORFAC,
3 ABSTOL, NMAX, IFND, IIFAIL)

DOUBLE PRECISION A(*), XT1(LDXT1,*),
1 W(*), ORFAC, ABSTOL

INTEGER S, M, LMA, AI(*), AJ(*),
1 LDXT1, MB, CONTXT

INTEGER NUMSEA, NUMAUT, NMAX,
1 IFND(*), IIFAIL
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Table 1. Characteristics of test matrices.

Name Size nza Average nza Longest (nza) Shortest (nza) Frobenius
per col. col. col. norm

PLATZ1919 1919 32399 17 682 (19) 63 (3) 22

WATHEN(100,100) 30401 471601 8.2 3 (11) 30401 (1) 1.5 e+04

The user needs to provide the sparse matrix A in
the block CSC format, an initial block XT1 consist-
ing of S Lanczos vectors, and the required absolute tol-
erance ABSTOL. With respect to other packages, e.g.,
PARPACK, which require a user supplied matrix-vector
product, the HPEC user needs to provide the sparse ma-
trix A either in a data file, or via a function to compute A
blocks, for given row and column indexes.

HPEC supports different input sparse matrix formats:

Compress Sparse Column: described in Section 3.2.

Coordinate Storage Scheme: records each nonzero en-
try together with its row and column index.

RSA Harwell-Boeing format: each column is held as a
sparse vector, represented by a list of row indices of
the entries in an integer array and a list of the corre-
sponding values in a separate array; a multiple line
header contains information about the matrix.

HPEC has two utility routines for the management of
distributed matrices: PDMATDIS implements the block
scattered decomposition and distribution of a dense matrix
on a 2-D mesh topology, while PDSPMDIS executes the
same operations on a sparse matrix.

5. Numerical Experiments

All numerical experiments described in the present section
refer to a cluster of 8 AMD Athlon XP 2400+ processors
with 384MB DDR RAM connected by a 100 Megabit/s
Fast Ethernet switch, operated by the University of Naples
Parthenope; clustering middleware is Oscar 3.0, which
includes gcc-3.3.2, MPICH 1.2.5.10, BLACS 1.1 and
ScaLAPACK 1.7.

We firstly compare numerical results and execution
times of HPEC and the PDSDRV1 PARPACK driver on
two test matrices. We briefly recall that PARPACK is a
parallel version of the ARPACK software and it is tar-
geted for multicomputers. It is written in Fortran 77 and
implements the Implicitly Restarted Arnoldi Method for
solving large sparse eigenvalue problems. PARPACK uses
a single-vector version of the algorithm, thus exploiting
parallelism on a matrix-vector product level. PDSDRV1
needs a parallel sparse matrix-vector routine coherent
with the PARPACK internal data distribution. Among

the available software, we decided to use the F11XBFP
routine from the de facto standard NAg Parallel Library
(http://www.nag.com/numeric/FD/manual/html/
FDlibrarymanual.asp). Our choice has been moti-
vated by the fact the it uses the same cyclic row block
distribution as PARPACK. We wish to emphasize that
for an unskilled user, the task of finding and using
a parallel sparse matrix-vector code can be difficult,
since publicly available software, such as P-SPARSLIB
(Saad and Malevsky, 1995) and PSBLAS (Filippone
and Colajanni, 2000), has been motivated by particular
numerical problems and implemented within larger
software projects, and thus computational kernels are
not easy to include in other packages. Parallel software
libraries that contain general purpose low level modules,
such as the NAg parallel software library and PESSL
(http://publib.boulder.ibm.com/doc_link/
en_US/a_doc_lib/sp34/essl/essl02.html), are
commercial products.

Numerical experiments were performed on two test
matrices taken from the Matrix Market (Boisvert et al.,
1997) and the Test Matrix Toolbox for Matlab (Higham,
1995). Matrix Market provides convenient access to a
repository of test data for use in comparative studies of al-
gorithms for numerical linear algebra. Matrices as well as
matrix generation software and services are provided. The
Test Matrix Toolbox was implemented by N.J. Higham.
Not only does it contain test matrices, but it also provides
various tools for visualising and generating test problems
in Matlab.

The two selected matrices have the sizes, numbers of
nonzero entries, sparsity patterns and conditioning prop-
erties shown in Table 1. The PLATZ matrix (Cline et al.,
1976) is a finite-difference model for shallow wave equa-
tions for the Atlantic and Indian Oceans (Fig. 1). The orig-
inal matrix is derived as the (negative) square of a purely
imaginary skew-symmetric matrix. Hence, the eigenval-
ues occur in pairs (except for an isolated singleton at zero).

Tables 2 and 3 show execution times in seconds ob-
tained on one and four processors, respectively, to seek 1,
2, 4 and 10 largest eigenvalues as regards the magnitude
of PLATZ1919 with PARPACK and HPEC, with a fixed
user tolerance in the order of machine (double) precision
for the computed eigenvalues.
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Fig. 1. PLATZ1919 pattern and element magnitudes.

Table 2. Execution times in seconds for the
PLATZ1919 matrix on one processor.

Eigenvalues 1 2 4 10

PARPACK 12.02 (32) 12.25 (64) 16.89 (32) 31.51 (32)

HPEC 9.40 (16) 9.40 (16) 9.40 (16) 10.24 (32)

Table 3. Execution times in seconds for the
PLATZ1919 matrix on 4 processors.

Eigenvalues 1 2 4 10

PARPACK 4.60 (64) 4.65 (64) 6.34 (32) 10.04 (32)

HPEC 6.42 (16) 6.42 (16) 7.17 (16) 10.24 (16)

We report the best execution time of PARPACK us-
ing 16, 32, 64 and 128 Arnoldi vectors and, in brackets,
the number of vectors for which it was obtained. A similar
methodology was used to determine the number of Lanc-
zos vectors for HPEC, and very often the best choice is 16
vectors. The block algorithm implemented by HPEC al-
lows us to compute multiple eigenvalues at the same time,
as can be observed in Table 2.

We observe that in all cases execution times of
the two tested software packages are comparable. Fi-
nally, since the problem is very small, no significant
performance gain was observed on a larger number of
processors.

WATHEN(NX,NY) is a sparse random N -by-N fi-
nite element matrix where N = 3*NX*NY + 2*NX +
2*NY + 1. It is precisely the ‘consistent mass matrix’ for a
regular NX-by-NY grid of 8-node (serendipity) elements
in 2 space dimensions. WATHEN(NX,NY) is symmetric
positive definite for any (positive) values of the ‘density’,
RHO(NX,NY), which is chosen randomly in this exam-
ple. In particular, if D = DIAG(DIAG(A)), then 0.25 ≤
EIG(INV(D)*A) ≤ 4.5 for any positive integers NX and
NY and any densities RHO(NX,NY).

Fig. 2. WATHEN(100,100) nonzero pattern.

Since the eigenproblems have the worst conditioning
with respect to the previous examples, user tolerance has
been set to .1D-7 to limit the number of iterations.

As reported in Tables 4 and 5, execution time de-
creases as the number of processors increases. On one
processor, the HPEC execution time is sensibly less than
for PARPACK, due both to greater granularity in dense
operations and the absence of reorthogonalization steps.

We note the number of Arnoldi and Lanczos vectors
to optimize execution time, which is something strictly
related to the problem and cannot be estimated a priori,
as we can see from Tables 4 and 5, and indeed software
libraries usually leave the choice to users.

All tests confirm that the algorithm implemented in
HPEC preserves the same well-known numerical proper-
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Table 4. Execution times in seconds for the WATHEN(100,100)
matrix on 1 processor.

1 2 4 10

PARPACK 6042 (32) 8642 (32) 15611 (32) 24691 (32)

HPEC 1210 (32) 1533 (32) 2874 (64) 5402 (32)

Table 5. Execution times in seconds for the WATHEN(100,100)
matrix on 8 processors.

1 2 4 10

PARPACK 782 (64) 1104 (32) 1507 (64) 6567 (64)

HPEC 580 (32) 732 (32) 1320 (32) 2504 (64)

ties of the block Lanczos algorithm and, in particular, the
ability to evaluate multiple eigenvalues, and the capability
to evaluate eigenvalues of ill-conditioned problems.

5.1. Parallel Performance Evaluation. In this section
we evaluate the performance of parallel implementation,
using standard parameters. In particular, we wish to esti-
mate the gain in terms of execution time when an increas-
ing number of processors is used, while fixing the problem
size, sparsity and number of Lanczos vectors. Since their
number cannot be chosen to fit all problems, we tested
different block sizes.

The following tests were performed on randomly
generated matrices of the order m = 8192, 16384, 32768,
with the percentage of non-zero entries nzp = .5%, 1%,
and three values for the number of Lanczos vectors s =
32, 64, 128. The performance of the algorithm is evalu-
ated using p = 1, 2, 4, 8 nodes logically configured as a
grid of 1 × 1, 1 × 2, 2 × 2 and 2 × 4 nodes, respectively.
To evaluate the effect of parallelization, we use the classi-
cal parameter efficiency (Ep):

Ep =
T1(m, s, nzp)

p · Tp(m, s, nzp)
,

where Tj(m, s, nzp) is the execution time of the 10-th
iteration on j nodes for a fixed size problem.1 As we
showed in Section 3.4, the operation count for each iter-
ation of the algorithm depends on s2 and, therefore, the
execution time of a single iteration increases accordingly.
For this reason, we choose the 10-th iteration, which pro-
vides sufficient granularity for the dense operations to jus-
tify the use of multiple processors.

We note that the efficiency values on 2 nodes for all
tests never drop below 0.75, while they are at least 0.47
on 4 nodes and at most 0.60 on 8 processors. The effi-
ciency values grow for fixed m and s when nzp increases:

1 All execution times were obtained using the MPICH routine
MPI_WTIME().

this is an expected result, since in the analysis of com-
munication and computation complexities shown in Sec-
tion 3.4, one-to-all communication does not involve the
sparse factor A. Further, efficiency increases for larger
values of m, which provides a hint that software can be
efficient for a growing number of processors.

All results show the implemented parallelization
strategy allows us to reduce execution times using more
than one processor, and that HPEC is efficient on the target
architectures for problems of an appropriate dimension.

6. Summary

We have presented HPEC, a freely available parallel soft-
ware based on a variant of the block Lanczos algorithm for
real, sparse symmetric eigenvalue problems. The software
is based on the linear algebra library ScaLAPACK and the
BLACS communication library. It provides a simple ap-
plication programming interface and supplies decompo-
sition and distribution routines for dense and sparse ma-
trices. The results of numerical experiments and perfor-
mance evaluation confirm numerical and efficiency quali-
ties of the proposed software.
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