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This paper presents an overview of some recent results concerning the emerging theory of minimax LQG control for un-
certain systems with a relative entropy constraint uncertainty description. This is an important new robust control system
design methodology providing minimax optimal performance in terms of a quadratic cost functional. The paper first consid-
ers some standard uncertainty descriptions to motivate the relative entropy constraint uncertainty description. The minimax
LQG problem under consideration is further motivated by analysing the basic properties of relative entropy. The paper then
presents a solution to a worst case control system performance problem which can be generalized to the minimax LQG prob-
lem. The solution to this minimax LQG control problem is found to be closely connected to the problem of risk-sensitive
optimal control.
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1. Introduction

The aim of this paper is to present the main ideas un-
derlying the emerging area of minimax LQG control the-
ory which is a special case of a more general stochas-
tic minimax optimal control theory based on risk sensi-
tive control. In this control problem, a particular class of
stochastic uncertain systems is considered and an output
feedback controller is sought to minimize the worst case
of a cost functional. A complete description of stochas-
tic minimax optimal control theory based on risk sensi-
tive control can be found in the references (Boel et al.,
2002; Dupuis et al., 2000; Petersen et al., 2000a; 2000b;
Ugrinovskii and Petersen, 1997; 1999a; 1999b; 2001a;
2001b; 2002a; 2002b). The main contribution of this pa-
per is to provide a unified presentation of stochastic min-
imax optimal control concentrating on the discrete time
linear quadratic Gaussian case. Our approach enables
us to present straightforward proofs starting from perfor-
mance analysis results and then developing output feed-
back controller synthesis results. Also, we present funda-
mental duality results in a simple finite dimensional set-
ting to allow their significance to be more easily under-
stood.

A key feature of stochastic minimax optimal control
theory described in the above-mentioned papers is the use

† This work was supported by the Australian Research Council.
A preliminary version of this paper appeared at the conference
Methods and Models in Automation and Robotics, Międzyzdroje,
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of relative entropy in the uncertainty description. This en-
ables the minimax optimal control problem to be solved
via the use of risk sensitive control theory. Underlying
this fact is a certain duality between relative entropy and
free energy which arises in probability theory. This idea
is developed in the next section.

Note that the notions of minimax LQG control and
stochastic uncertain systems developed in this paper and
the papers mentioned above can also be extended to other
areas of control and systems theory. For example, the pa-
per (Yoon et al., 2004) uses this approach to solve a prob-
lem of robust filtering, the paper (Yoon and Ugrinovskii,
2003) solves a minimax LQG tracking problem and the
paper (Yoon et al., 2005) considers the worst uncertainty
in a minimax LQG problem. Also, the papers (Xie et al.,
2004a; 2004b; 2005a; 2005b) consider problems of uncer-
tainty modeling and robust state estimation for uncertain
hidden Markov models using a relative entropy constraint
uncertainty description.

2. Uncertainty Descriptions

In order to motivate the relative entropy constraint uncer-
tainty description from a practical point of view, we now
consider the general issue of uncertainty modeling.

In designing any feedback control system, a funda-
mental requirement is that of robustness. Indeed, the en-
hancement of robustness is one of the main reasons for us-
ing feedback, see, e.g., (Horowitz, 1963). The robustness
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of a control system is its ability to maintain an adequate
performance in the face of variations in plant dynamics
and errors in the plant model which is used for controller
design. Thus, in order to design a robust control system,
one must define the type of uncertainties the control sys-
tem is to be robust against. Within the modern control
framework, one approach to designing robust control sys-
tems is to begin with a plant model which not only mod-
els the nominal but also models the type of uncertainties
which are expected. Such a plant model is referred to as
an uncertain system.

There are many types of uncertain system models
and the form of the model to be used depends on the type
of uncertainty to be expected and the tractability of ro-
bust control problem corresponding to this uncertain sys-
tem model. In many cases, it is useful to enlarge the class
of uncertainties in the uncertain system model in order to
obtain a tractable control system design problem. This
process may, however, lead to a conservative control sys-
tem design. Thus, much of robust control theory can be
related to a trade-off between the conservatism of the un-
certain system model used and the tractability of the cor-
responding robustness analysis and robust controller syn-
thesis problems.

Uncertainty in a given plant model may arise from
a number of different sources. Some common sources of
uncertainty are as follows:

(i) Uncertainty in a parameter value in the system
model which may be either constant or time varying,
e.g., uncertainty in a resistance value in an electrical
circuit.

(ii) Uncertainty due to the neglecting of some system
dynamics, e.g., the effect of neglecting parasitic ca-
pacitances in an electrical circuit.

(iii) Uncertainty due to the effect of ignoring nonlineari-
ties in the system.

An important class of uncertain system models involves
separating the nominal system model from the uncertainty
in the system in a feedback interconnection, see Fig. 1.

y(t)

u(t)

Δ
Uncertainty

Nominal
System

Fig. 1. Uncertain system model block diagram.

Such a feedback interconnection between the nominal
model and uncertainty is sometimes referred to as an Lin-
ear Fractional Transformation (LFT), see, e.g., (Doyle et
al., 1991). In such an uncertain system model, the uncer-
tainty operator Δ is typically a quantity which is unknown
but bounded in magnitude. Thus, the class of uncertain
systems is determined by the allowable form of the uncer-
tainty Δ and the way it is bounded in magnitude. Some
common uncertainty classes are as follows:

(i) Δ(t) is a real time-varying uncertain matrix
bounded in norm:

‖Δ(t)‖ ≤ 1 for all t.

(ii) Δ(s) is a stable uncertain transfer function matrix
bounded in norm at all frequencies:

‖Δ(jω)‖ ≤ 1 for all ω > 0.

This amounts to a bound on the H∞ norm of the
transfer function Δ(s).

Here ‖ · ‖ denotes the induced matrix norm.

2.1. Uncertain Systems with Integral Quadratic Con-
straints. The integral quadratic constraint uncertainty
description can be regarded as a deterministic counterpart
to the relative entropy constraint uncertainty description
considered in this paper, see, e.g., (Petersen et al., 2000b).
In order to motivate the integral quadratic constraint un-
certainty description, first consider a transfer function un-
certainty block as shown in Fig. 2, where Δ(s) is a stable
transfer function matrix.

�� zw Δ(s)

Fig. 2. Transfer function uncertainty.

Using Parseval’s theorem, it follows that the frequency do-
main bound

‖Δ(jω)‖ ≤ 1 for all ω > 0

is equivalent to the time domain bound∫ ∞

0

‖w(t)‖2 dt ≤
∫ ∞

0

‖z(t)‖2 dt (1)

for all signals z(t) (provided these integrals exist). The
time domain uncertainty bound (1) is called an Integral
Quadratic Constraint (IQC). Alternatively, if we are only
interested in a finite horizon control problem, we can con-
sider the finite horizon IQC:∫ T

0

‖w(t)‖2 dt ≤
∫ T

0

‖z(t)‖2 dt. (2)
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This time domain uncertainty bound applies equally well
to the case of a time-varying real uncertainty parameter
Δ(t) or a nonlinear mapping. A key feature of the IQC
uncertainty description is that the uncertainty is described
purely in terms of bounds on the signals z(t) and w(t)
rather than bounding the uncertainty Δ directly.

The integral quadratic constraint uncertainty descrip-
tion can be extended to model energy bounded noise act-
ing on the system as well as the uncertainty in system dy-
namics. This situation is illustrated in Fig. 3. Here w̃(t)
represents energy bounded noise acting on the system.

��

��

�
��

z(t)w(t) Uncertainty
Δ

Nominal
System y(t)u(t)

w̃(t) w̄(t)
Σ

Fig. 3. Uncertain system with noise inputs.

To model this situation of both noise and uncertain
dynamics, we would modify the integral quadratic con-
straint (1) to

∫ T

0

‖w(t)‖2 dt ≤ d+
∫ T

0

‖z(t)‖2 dt, (3)

where d > 0 is a constant which determines the bound
on the size of the noise (again assuming that the integrals
exist). If the signal z(t) is zero, the uncertainty block Δ
makes no contribution to the signal w̄(t) (assuming a zero
initial condition on the dynamics of the uncertainty block).
However, w̄(t) can still be nonzero due to the presence of
the noise signal. This IQC modeling of noise corresponds
to an energy bound on the noise rather than a stochastic
white noise description. Also note that the presence of
the d term in the IQC (3) can allow for a nonzero initial
condition on uncertainty dynamics.

The discrete-time version of the IQC uncertainty de-
scription is referred to as the Sum Quadratic Constraint
(SQC) uncertainty description, see, e.g., (Moheimani et
al., 1997). In this case, the constraint (3) is replaced by
the constraint

N∑
k=0

‖w̄(k)‖2 ≤ d+
N∑

k=0

‖z(k)‖2. (4)

2.2. Stochastic Uncertain Systems. In the above IQC
and SQC uncertainty descriptions, noise signals were al-
lowed but they were required to be L2 norm bounded
noises. In many applications, it would be more appro-
priate to consider noise signals which are stochastic white
noise signals. This is particularly true when considering
output-feedback minimax optimal control problems. In
order to consider stochastic white noise signals, we must
introduce a suitable class of stochastic uncertain systems.
Our approach is to extend the IQC or SQC uncertainty de-
scription to a stochastic uncertainty constraint involving
the concept of relative entropy, see, e.g., (Dupuis and El-
lis, 1997). This uncertainty constraint is a constraint on
the probability distribution of the uncertainty and noise
processes for the uncertain system. This is as opposed to
the IQC and SQC uncertainty descriptions, which impose
a constraint on the uncertainty and noise signals them-
selves.

The relative entropy constraint uncertainty descrip-
tion was first proposed in (Petersen et al., 2000a) for
the finite-horizon discrete-time case, and in (Ugrinovskii
and Petersen, 1999a) for the finite-horizon continuous-
time case (see also (Petersen et al., 2000b; Ugrinovskii
and Petersen, 1999a)). The advantage of the relative en-
tropy constraint uncertainty description is that it enables
one to obtain a tractable solution to the corresponding
output feedback minimax LQG optimal control problem.
This is achieved by converting the minimax LQG control
problem into an equivalent risk sensitive control problem
which can be solved using the existing methods.

We consider a discrete-time stochastic uncertain sys-
tem described in terms of a reference or a nominal system
and a perturbed system. The reference system is described
by the following state equations defined on the time inter-
val {0, 1, . . . , N}:

x(k + 1) = Ax(k) +Bu(k) +Dw(k),
(5)

y(k) = Cx(k) + v(k).

Here x(k) ∈ R
n, u(k) ∈ R

m, w(k) ∈ R
p, y(k) ∈ R

l,
and v(k) ∈ R

l. In the above system, the initial condition
and noise input sequence⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

w(0)
w(1)

...

w(N)
v(0)
v(1)

...

v(N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(N+1)(p+l)+n
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is assumed to be a white noise random process defined by
a Gaussian probability density function μ(·):

μ(w0N , v0N , x0) =
N∏

k=0

θ
(
w(k)

) N∏
k=0

η
(
v(k)

)
ψ(x0), (6)

where

θ(w) =
[
(2π)r

]− 1
2 exp

[
− 1

2
‖w‖2

]
,

η(v) =
[
(2π)l

]− 1
2 exp

[
− 1

2
‖v‖2

]
,

ψ(x) =
[
(2π)n det(Σ̄0)

]− 1
2

× exp
[
− 1

2
(x− x̌0)T Σ−1

0 (x − x̌0)
]
.

Here the notations w0N and v0N refer to the noise se-
quences {w(k)}N

k=0 and {v(k)}N
k=0, respectively. Thus,

the initial condition x0 is a Gaussian random variable with
the mean x̌0 and the covariance matrix Σ0 > 0. Note that
it would be straightforward to generalize the results of this
paper to allow for more general covariance matrices for
w0N and v0N , including the coupling between w(k) and
v(k). However, this would lead to a more complicated
algebra describing the minimax LQG optimal controller.

Also, the perturbed system is described by the state
equations

x(k + 1) = Ax(k) +Bu(k) +Dw̄(k),

z(k) = E1x(k) + E2u(k),

y(k) = Cx(k) + v̄(k), (7)

where z(k) ∈ R
q . The x0 initial condition and noise in-

put sequence for the perturbed system is a random process
defined by an unknown probability density function ν(·).
The relative entropy constraint defined below defines the
allowable ‘distance’ between the probability density func-
tions μ(·) and ν(·). Note that the quantity z(k) is a signal
which defines the set of allowable uncertain noise proba-
bility measures via the relative entropy constraint. Note
also that z(k) can be interpreted in a similar way to the
quantity z(t) in Fig. 3 corresponding to the deterministic
IQC uncertainty description. The matrices E1 and E2 in
the equation for z(k) are known matrices which form part
of the uncertain system model.

The following relative entropy constraint for the
above stochastic uncertain system is a natural generaliza-
tion of the SQC (4): Let d > 0 be a given constant. Then
a probability density function ν(·) defines an admissible
perturbed noise random process if

R
(
ν(·)‖μ(·)) − Eν

[
1
2

N∑
k=0

‖z(k)‖2 + d

]
≤ 0. (8)

Here Eν denotes expectation with respect to the proba-
bility density function ν(·). Also, R(ν(·)‖μ(·)) denotes
relative entropy between the probability density functions
μ(·) and ν(·), i.e.,

R
(
ν(·)‖μ(·))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
RM

ν(η) log
ν(η)
μ(η)

dη

if ν(η) << μ(η)& log
ν(η)
μ(η)

∈ L1,

+∞ otherwise.

Note that ν(η) << μ(η) denotes the fact that the prob-
ability density ν(η) is absolutely continuous with respect
to the probability density μ(η). Also, note that the integer
M is the total dimension of the initial condition and noise
sequence space, M = (N + 1)(p+ l) + n. Furthermore,
note that (5) and (7) define the set of admissible uncertain-
ties in terms of admissible noise probability distributions.
This amounts to a stochastic version of the SQC uncer-
tainty description.

For a given output feedback controller K(·), the set
of all admissible probability density functions is denoted
by ΞK. Relative entropy is a measure of the ‘distance’ be-
tween the probability density function ν(η) and the prob-
ability density function μ(η). In the relative entropy con-
straint uncertainty description, the relative entropy is used
to bound the error between the nominal probability dis-
tribution on the noise signal and a perturbed probability
distribution on the noise signal due the presence of uncer-
tainty. Details regarding the description of this stochastic
uncertain system can be found in (Petersen et al., 2000a).

Note that the uncertain system (5), (7) allows for un-
certainties generated as in Fig. 3, where the uncertainty
block satisfies the SQC (4). This issue will be further dis-
cussed in the next section.

3. Optimization and Relative Entropy

Underlying our solution to the minimax LQG control
problem for the above class of stochastic uncertain sys-
tems is a certain duality result from probability theory
known as the duality between relative entropy and free
energy; see also (Dai Pra et al., 1996; Dupuis and El-
lis, 1997). In order to derive this result, we now con-
sider some well-known properties of relative entropy; see
(Dupuis and Ellis, 1997).

Lemma 1. Given any probability density functions ν(η)
and μ(η), R(ν(·)‖μ(·)) ≥ 0 and R(ν(·)‖μ(·)) = 0 if and
only if ν(η) = μ(η) a.e.

Proof. This lemma follows from the fact that s log s ≥
s − 1 for all s ∈ R with equality if and only if s = 1.
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From this, it follows that

R
(
ν(·)‖μ(·)) =

∫
RM

ν(η) log
ν(η)
μ(η)

dη

=
∫

RM

μ(η)
ν(η)
μ(η)

log
ν(η)
μ(η)

dη

≥
∫

RM

μ(η)
(
ν(η)
μ(η)

− 1
)

dη

=
∫

RM

(ν(η) − μ(η)) dη

= 1 − 1 = 0,

where equality holds if and only if ν(η)/μ(η) = 1 a.e.,
i.e., ν(η) = μ(η).

Lemma 2. For a given probability density function μ(·),
R(ν(·)‖μ(·)) is a strictly convex function of ν(·) on the set
of probability density functions {ν(·) : R(ν(·)‖μ(·)) <
∞}
Proof. This lemma follows from the strict convexity of the
function h(s) = s log s for s ∈ [0,∞). Indeed,

R
(
ν(·)‖μ(·)) =

∫
RM

μ(η)
ν(η)
μ(η)

log
ν(η)
μ(η)

dη,

from which strict convexity with respect to ν(·) follows.

Lemma 3. For a given probability density function μ(·)
and a bounded measurable function J(·) : R

M → R:

sup
ν(·)

{∫
RM

J(η)ν(η) dη −R
(
ν(·)‖μ(·))}

= log
∫

RM

eJ(η)μ(η) dη, (9)

where the supremum is taken over all probability density
functions ν(·) on η ∈ R

M .

Proof. Let

ν0(η) = μ(η)
eJ(η)∫

RM eJ(η̃)μ(η̃)dη̃
.

It follows immediately from this definition that ν0(η) is a
probability density function. We will prove that this prob-
ability density function achieves the supremum in (9).

In order to prove the lemma, it suffices to prove (9),
where the supremum is taken over all probability density
functions ν(·) such that R(ν(·)‖μ(·)) < ∞. Now given

any such probability density function ν(·),
∫

RM

J(η)ν(η) dη −R
(
ν(·)‖μ(·))

=
∫

RM

J(η)ν(η) dη −
∫

RM

ν(η) log
ν(η)
μ(η)

dη

=
∫

RM

J(η)ν(η) dη −
∫

RM

ν(η) log
ν(η)
ν0(η)

ν0(η)
μ(η)

dη

=
∫

RM

J(η)ν(η) dη −
∫

RM

ν(η) log
ν0(η)
μ(η)

dη

−
∫

RM

ν(η) log
ν(η)
ν0(η)

dη

=
∫

RM

J(η)ν(η) dη −
∫

RM

ν(η) log
eJ(η)∫

RM eJ(η̃)μ(η̃)dη̃
dη

−R
(
ν(·)‖ν0(·)

)
=

∫
RM

J(η)ν(η) dη −
∫

RM

J(η)ν(η) dη

+
(

log
∫

RM

eJ(η̃)μ(η̃)dη̃
)∫

RM

ν(η) dη−R(ν(·)‖ν0(·))

= log
∫

RM

eJ(η)μ(η) dη −R
(
ν(·)‖ν0(·)

)
.

Using Lemma 1, it follows that R(ν(·)‖ν0(·)) ≥ 0, and
hence∫

RM

J(η)ν(η) dη−R(ν(·)‖μ(·)) ≤ log
∫

RM

eJ(η)μ(η) dη

for all probability density functions ν(·) such that
R(ν(·)‖ν0(·)) <∞. Furthermore, since R(ν(·)‖ν0(·)) =
0 if and only if ν(·) = ν0(·)) a.e., (9) follows.

Note that the above lemma corresponds to the duality
between free energy and relative entropy; see (Dai Pra et
al., 1996; Dupuis and Ellis, 1997). Indeed, the quantity

log
∫

RM

eJ(η)μ(η) dη

is called the free entropy of J(·) with respect to μ(·),
e.g., see (Dai Pra et al., 1996). Then the expression (9)
amounts to the standard Fenchel duality between free en-
ergy and relative entropy in the space of probability mea-
sures. That is, relative entropy is the Legendre transform
of free energy.

Lemma 4. Suppose the probability density functions ν(η)
and μ(η) are both Gaussian with the identity covariance
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matrix and means η̄ and zero, respectively:

ν(η) =
[
(2π)M

]− 1
2 exp

[
− 1

2
‖η − η̄‖2

]
,

μ(η) =
[
(2π)M

]− 1
2 exp

[
− 1

2
‖η‖2

]
.

Then

R
(
ν(·)‖μ(·)) =

1
2
‖η̄‖2,

Proof. We have

R
(
ν(·)‖μ(·))

=
∫

RM

ν(η) log
ν(η)
μ(η)

dη

=
∫

RM

([
(2π)M

]− 1
2 exp

[
− 1

2
‖η − η̄‖2

]

×
[
− 1

2
‖η − η̄‖2 +

1
2
‖η‖2

])
dη

= η̄′
∫

RM

[
(2π)M

]− 1
2 exp

[
− 1

2
‖η − η̄‖2

]
η dη

− 1
2
‖η̄‖2

∫
RM

[
(2π)M

]− 1
2 exp

[
− 1

2
‖η − η̄‖2

]
dη

= η̄′η̄ − 1
2
‖η̄‖2 =

1
2
‖η̄‖2

as required.

3.1. Simple optimization problem. Using the above
properties of relative entropy, we will now solve a sim-
ple optimization problem. In the next section, this static
optimization problem will be extended to a problem of
worst case performance analysis for an uncertain control
system.

Let μ(·) be a given probability density function on
R

M , and let J(η) and F (η) be given real-valued functions
of η ∈ R

M . Also, we suppose there exists a vector η0 ∈
R

M such that
F (η0) < 0, (10)

and also
sup
ν(·)

EνJ(η) = ∞, (11)

where the supremum is over all probability density func-
tions on R

M . This condition amounts to a growth condi-
tion on the cost function J(·).

We wish to calculate

J∗ = sup
ν(·)

{
EνJ(η) : R

(
ν(·)‖μ(·)) ≤ EνF (η)

}
. (12)

Here the supremum is over all probability density func-
tions on R

M subject to the constraint R(ν(·)‖μ(·)) ≤

EνF (η). This problem can be regarded as a problem of
evaluating worst case performance, where EνJ(η) corre-
sponds to the expected cost and the probability density
function ν(·) represents the uncertainty which is subject to
the relative entropy constraint R(ν(·)‖μ(·)) ≤ EνF (η).

In order to solve this constrained optimization prob-
lem, we first introduce a Lagrange multiplier in order to
convert the constrained optimization problem into an un-
constrained optimization problem. This relies on the fol-
lowing lemma, see pages 217–218 of (Luenberger, 1969).

Lemma 5. Let X be a linear vector space and let Ω be a
convex subset of X . Also, let f be a real-valued concave
functional on Ω and let g be a real-valued convex func-
tional on Ω. Assume there exists a point x1 ∈ Ω such that
g(x1) < 0 (this is a constraint qualification condition),
and let

μ0 = sup f(x) subject to x ∈ Ω, g(x) ≤ 0. (13)

If μ0 is finite, then there exists τ ≥ 0 such that

μ0 = sup
x∈Ω

{
f(x) − τg(x)

}
. (14)

In order to apply this lemma to the above optimiza-
tion problem, we define an unconstrained optimization
problem dependent on a Lagrange multiplier parameter τ :

Vτ = sup
ν(·)

{
EνJ(η)−τ [R(ν(·)‖μ(·))−EνF (η)

]}

= sup
ν(·)

{
Eν

[
J(η)+τF (η)

]−τR(ν(·)‖μ(·))} . (15)

Here the supremum is over all probability density func-
tions on R

M .

Theorem 1. J∗ is finite if and only if there exists τ > 0
such that Vτ <∞. In this case,

J∗ = min
τ>0

Vτ . (16)

Proof. We will prove this theorem using Lemma 5 with
X as the linear vector space of functions R

M → R. Ω
is the set of probability density functions on R

M , f(·)
corresponds to EνJ(η) considered as a function of the
probability density function ν(·), and g(·) corresponds to
R(ν(·)‖μ(·)) − EνF (η) considered as a function of the
probability density function ν(·).

We first verify that the conditions of the lemma are
satisfied. Indeed, it follows from the above definitions that
Ω is a convex subset ofX . Also, using Lemma 2, the func-
tions f(·) and g(·) are concave and convex, respectively.
Furthermore, from (10) it follows that the impulsive prob-
ability density function ν0(η) = δ(η − η0) satisfies

g(ν0) = Eν0F (η) = F (η0) < 0.
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Hence, the conditions of the lemma are satisfied.
Now suppose J∗ = c < ∞. It follows directly from

Lemma 5 that there exists τ ∗ ≥ 0 such that

Vτ∗ = c <∞. (17)

Moreover, if τ ∗ = 0, then

Vτ∗ = sup
ν(·)

EνJ(η) = ∞

using (11). However, this contradicts (17) and thus
τ∗ > 0.

Conversely, if there exists τ ∗ > 0 such that

Vτ∗ = c <∞,

then, given any probability density function ν(·) such that
R(ν(·)‖μ(·)) ≤ EνF (η), we have

EνJ(η) ≤ EνJ(η) − τ
[
R
(
ν(·)‖μ(·))− EνF (η)

]
≤ Vτ∗ = c <∞.

Hence,

J∗ = sup
ν(·)

{
EνJ(η) : R

(
ν(·)‖μ(·)) ≤ EνF (η)

}
≤ c <∞.

This completes the proof of the first part of the the-
orem. To establish the second part of the theorem, we
observe that, given any constant τ > 0, it follows that for
any ν(·) satisfying R(ν(·)‖μ(·)) ≤ EνF (η) we have

EνJ(η) − τ
[
R
(
ν(·)‖μ(·))− EνF (η)

] ≥ EνJ(η).

Hence,

Vτ = sup
ν(·)

{
EνJ(η) − τ

[
R
(
ν(·)‖μ(·))− EνF (η)

]}

≥ sup
ν(·)

{
EνJ(η) − τ

[
R
(
ν(·)‖μ(·))− EνF (η)

]
:

R
(
ν(·)‖μ(·)) ≤ EνF (η)

}
≥ sup

ν(·)

{
EνJ(η) : R

(
ν(·)‖μ(·)) ≤ EνF (η)

}
= J∗

for all τ > 0. Also, it follows from Lemma 5 that there
exists τ∗ ≥ 0 such that

Vτ∗ = J∗.

Moreover, if τ ∗ = 0, then

J∗ = Vτ∗ = sup
ν(·)

EνJ(η) = ∞

using (11). However, this contradicts the fact that J ∗ <
∞, and thus τ ∗ > 0. Hence, (16) has been established.

Remark 1. Note that the above theorem allows us to solve
the constrained optimization problem (12) in terms of the
unconstrained optimization problem (15) for τ > 0. Now,
for τ > 0 we can use Lemma 3 to conclude

Vτ

τ
= sup

ν(·)

{
Eν

[J(η)
τ

+ F (η)
]
−R

(
ν(·)‖μ(·))}

= logEμe

[
J(η)

τ +F (η)

]
.

Combining this with Theorem 1, we obtain the following
result:

Theorem 2. J∗ is finite if and only if there exists τ > 0
such that

Eμe
[J(η)/τ+F (η)] <∞.

In this case,

J∗ = min
τ>0

τ logEμe
[J(η)/τ+F (η)]. (18)

3.2. Example. To illustrate the above theorem, we con-
sider an example in which

J(η) =
1
2
‖η‖2, F (η) ≡ 1

2
,

μ(η) =
[
(2π)M

]− 1
2 exp

[
− 1

2
‖η‖2

]
.

For given τ > 1, we calculate

Eμe
[J(η)/τ+F (η)]

=
∫

RM

[
(2π)M

]− 1
2 e[−

1
2‖η|2] × e[

1
2τ ‖η‖2+ 1

2 ] dη

= e
1
2

∫
RM

[
(2π)M

]− 1
2 e−

1
2 [1− 1

τ ]‖η‖2
dη

=
√

e

1 − 1
τ

∫
RM

[
(2π)M

1 − 1
τ

]− 1
2

e−
1
2 [1− 1

τ ]‖η‖2
dη

=
√

e

1 − 1
τ

.

For τ ∈ (0, 1), Eμe
[J(η)/τ+F (η)] = ∞. Hence,

J∗ = min
τ>1

τ log
√

e

1 − 1
τ

=
1
2

min
τ>1

[
τ − τ log

(
1 − 1

τ

)]
= 1.5731.
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Now suppose we consider a set of probability density
functions defined as follows:

Λ =
{
ν(η) =

[
(2π)M

]− 1
2 exp

[
− 1

2
‖η − η̄‖2

]
:

‖η̄‖2 ≤ 1
}
.

Then it follows from Lemma 4 that for every ν(·) ∈ Λ,

R
(
ν(·)‖μ(·)) =

1
2
‖η̄‖2 ≤ 1

2
.

That is, every ν(·) ∈ Λ satisfies the relative entropy con-
straint

R
(
ν(·)‖μ(·)) ≤ EνF (η).

Hence, for this example,

sup
ν(·)

{
EνJ(η) : ν(·) ∈ Λ

}

≤ sup
ν(·)

{
EνJ(η) : R

(
ν(·)‖μ(·)) ≤ EνF (η)

}
= J∗ = 1.5731.

This inequality can be interpreted as follows: Suppose
the set Λ represents the true uncertainty in the problem
being considered and this set is overbounded by the set
of probability distributions satisfying the relative entropy
constraint. The above inequality shows that the quantity
J∗ gives an easy way to calculate an upper bound on the
true worst case value of the cost function. However, in
this example, we can actually calculate the true worst case
cost exactly.

Indeed for ν(η) = [(2π)M ]−
1
2 exp[− 1

2‖η− η̄‖2], we
calculate

EνJ(η) = Eν
1
2
‖η‖2

=
1
2
Eν

{‖η − η̄‖2 + 2η′η̄ − ‖η̄‖2
}

=
1
2
{
1 + 2‖η̄‖2 − ‖η̄‖2

}

=
1
2
{
1 + ‖η̄‖2

}
.

Hence, taking the supremum with respect to η̄ such that
‖η̄‖2 ≤ 1, we obtain

sup
ν(·)

{EνJ(η) : ν(·) ∈ Λ} = 1,

compared to our upper bound of 1.5731. However, nat-
urally our relative entropy constraint uncertainty descrip-
tion allows for a large larger class of perturbations in the
probability measure ν(·) other than mere perturbations in

the mean. From a control systems point of view, the main
advantage of the relative entropy constraint uncertainty
description is fact that the problem of constructing an out-
put feedback controller to minimize the expectation of the
exponential of a quadratic cost is a standard risk sensitive
control problem. This then gives us a way to solve a true
minimax stochastic optimal control problem.

4. Worst Case Performance

In this section, we consider the problem of calculating
the worst case performance for a stochastic uncertain sys-
tem of the form (6)–(8) with u(k) ≡ 0. The solution to
this problem then leads to a solution to the minimax LQG
problem which will be considered in the next section.

We consider a stochastic uncertain system described
by the state equations

x(k + 1) = Ax(k) +Dw̄(k),

z(k) = E1x(k), (19)

the nominal noise probability distribution

μ(w0N ) =
N∏

k=0

θ
(
w(k)

)
, (20)

where

θ(w) =
[
(2π)r

]− 1
2 exp

[
− 1

2
‖w‖2

]
,

and the relative entropy constraint

R
(
ν(·)‖μ(·))− Eν

[
1
2

N∑
k=0

‖z(k)‖2 + d

]
≤ 0. (21)

In this case, the set of all admissible probability density
functions is denoted by Ξ. Also, in this case we assume
that the initial condition x(0) = x̌0 is fixed and known.

As in Section 2.2, μ(·) defines probability distribu-
tion on the initial condition and noise input for the nomi-
nal system. Also, ν(·) defines probability distribution on
the initial condition and noise input for the perturbed sys-
tem.

We first consider the relationship between this sto-
chastic uncertain system and uncertain systems in which
uncertainty is described by an SQC. Indeed, consider the
stochastic uncertain system defined by the state equa-
tion (19), the nominal noise distribution (20) and the sum
quadratic constraint

E

[
1
2

N∑
k=0

(‖w̄(k)‖2 − ‖z(k)‖2
)− d

]
≤ 0. (22)

Here,
w̄(k) = w(k) + w̃(k), (23)
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where w̃(k) is the nominal noise process with probability
distribution defined by μ(·). This uncertainty description
is considered in (Petersen and James, 1996). Using an ar-
gument similar to that in Lemma 4 and the chain rule for
relative entropy (see Dupuis and Ellis, 1997), it follows
that any admissible uncertainty for this uncertain system
is an admissible uncertainty for the uncertain system (20)–
(21). Thus, the relative entropy constraint uncertainty de-
scription includes all those uncertainties satisfying a stan-
dard SQC, including sector bounded nonlinear uncertain-
ties and H∞ norm bounded LTI uncertainties.

We consider the problem of characterizing, for the
stochastic uncertain system (20)–(21), the worst case per-
formance with respect to a cost functional defined to be

J =
1
2

N∑
k=0

x(k)TQx(k). (24)

The problem under consideration is to find

sup
ν(·)∈Ξ

EνJ. (25)

In order to solve this problem, we will require that the
system (7) satisfy the following assumption:

Assumption 1.

sup
ν(·)

Eν{J} = ∞.

In this assumption, we are effectively maximizing the
cost functional (24) with respect to the noise input w(k).
Hence, this assumption amounts to a controllability type
assumption with respect to the input w(k), and an ob-
servability type assumption with respect to the cost func-
tional (24).

As in the previous section, the first step in evaluat-
ing this quantity is to use a Lagrange multiplier technique
to convert the problem from a constrained optimization
problem into an unconstrained optimization one. Indeed,
given a constant τ ∈ R, we define an augmented cost
function as follows:

Jτ =
1
2

N∑
k=0

x(k)TQx(k)

− τ

[
R
(
ν(·)‖μ(·))− Eν

[1
2

N∑
k=0

‖z(k)‖2 + d
]]
.

Now, we define Vτ to be the value of the corresponding
unconstrained optimization problem:

Vτ
�
= sup

ν(·)
Eν{Jτ )}.

Also, we define a set Γ ⊂ R as Γ
�
= {τ ∈ R : τ >

0, & Vτ < ∞}. The following theorem is an application

of Theorem 1 to the current problem of worst case perfor-
mance analysis.

Theorem 3. Consider the stochastic uncertain sys-
tem (19), (21) with the cost functional J . Then the fol-
lowing conditions hold:

(i) The supremum supν(·)∈Ξ EνJ is finite if and only if
the set Γ is non-empty.

(ii) If the set Γ is non-empty, then

sup
ν(·)∈Ξ

EνJ = min
τ∈Γ

Vτ . (26)

Remark 2. For any τ > 0, it is straightforward to verify
that Vτ can be re-written as

Vτ = τ (Wτ + d) , (27)

where

Wτ
�
= sup

ν(·)
Eν

{ 1
2

N∑
k=0

x(k)TQx(k) + τ
2

N∑
k=0

‖z(k)‖2

τ

−R
(
ν(·)‖μ(·))

}
.

Hence, it follows from Theorem 3 that if Γ 
= ∅, we can
write

sup
ν∈Ξ

EνJ = min
τ∈Γ

τ (Wτ + d) . (28)

We now look at a risk sensitive method for evaluating
the quantityWτ . The following result follows using ideas
similar to Lemma 3.

Lemma 6. For each τ > 0,

Wτ = logEμ

{
exp

[ 1
2τ

N∑
k=0

x(k)TQx(k)

+
1
2

N∑
k=0

‖z(k)‖2
]}
.

In this formula, the expectation Eμ is evaluated for the
reference system (5).

Remark 3. By evaluating Wτ using the above formula,
the required worst case cost (25) can be found by solv-
ing the scalar optimization problem corresponding to (28).
Also, note that it follows from (27) and the definition of
Wτ that Vτ is a convex function of τ .

Using some standard results from risk-sensitive con-
trol theory (see, e.g., (Jacobson, 1973; Petersen et al.,
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2000a)), the above formula for Wτ can be evaluated ex-
plicitly as follows:

Wτ =
1
2τ
x̌T

0 Π0x̌0

− 1
2

N∑
k=0

log
[
det

(
I − Πk+1

DDT

τ

)]
, (29)

where

Πk = Q+ τET
1 E1

+AT

(
I − Πk+1

DDT

τ

)−1

Πk+1A,

ΠN+1 = 0, (30)

is such that
ρ(Πk+1DD

T ) < τ

for all k. Here ρ(·) denotes the spectral radius of a matrix.
These formulas can be obtained from the state feed-

back result of (Jacobson, 1973; Eqns. (30)–(35)) by spe-
cializing to the case in which there is no control input. The
formulas in (Jacobson, 1973) are derived using techniques
such as dynamic programming along with the standard al-
gebraic manipulations. For complete details on the deriva-
tion of these risk sensitive results, the reader should refer
to (Collings et al., 1996; Jacobson, 1973; Whittle, 1981).

From the formulas (29) and (27), we calculate Vτ to
be

Vτ =
1
2
x̌T

0 Π0x̌0

− τ

2

N∑
k=0

log
[
det

(
I − Πk+1

DDT

τ

)]
+ τd.

The worst case value of the cost index is then obtained by
optimizing Vτ over the parameter τ > 0 as in (28).

In the problem of worst case performance analysis,
we can also use the results of (Petersen and James, 1996)
to calculate the worst case performance for the stochastic
uncertain system with an SQC uncertainty description de-
fined by the equations (20), (19), (22), (23). Indeed, using
the results of (Petersen and James, 1996), it follows that
the worst case performance for this case is given by

min
τ>0

V̄τ ,

where

V̄τ =
1
2
x̌T

0 Π0x̌0 − 1
2

N∑
k=0

tr
(
Πk+1DD

T
)

+ τd

and Πk is defined as in (30). Here tr (·) denotes the trace
operation. Thus, the relative entropy approach gives a re-
sult very similar to the SQC approach of (Petersen and

James, 1996). However, because of the different defini-
tions of uncertainty in (Petersen and James, 1996) as com-
pared to the uncertainty considered in this paper, slightly
different formulas for the worst case performance are ob-
tained.

The advantage of the relative entropy approach is that
it can be extended to the output feedback controller syn-
thesis case in a tractable fashion. In contrast, the SQC
approach of (Petersen and James, 1996) is tractable only
in the state feedback controller synthesis case.

5. Minimax Optimal Control

In this section, we consider the problem of constructing
an output feedback controller which minimizes the worst
case performance for the stochastic uncertain system (6)–
(8). In this case, our performance index is defined by

J =
1
2
x(N + 1)TQN+1x(N + 1)

+
1
2

N∑
k=0

[
x(k)TQx(k) + u(k)TRu(k)

]
, (31)

where Q ≥ 0 and R > 0.

Admissible Controllers: We consider causal output feed-
back controllers of the form

u(k) = K(k, y(·)|k0), (32)

where u(k) ∈ R
m is the control input at the time k

and y(·)|k0 is the output sequence over the time interval
{0, 1, . . . , k}. The class of all such controllers is denoted
by Λ.

Assumption. For any admissible controller K ∈ Λ, the
resulting closed loop system is such that

sup
ν(·)

EνJ = ∞. (33)

As in the previous section, this assumption is related to
the controllability of the uncertain system with respect to
the uncertainty input and the observability of the uncertain
system with respect to the cost functional.

The minimax control problem under consideration
in this section involves finding an admissible controller
to minimize the worst case of the expectation of the cost
functional (31). That is, we are concerned with the mini-
max control problem

inf
K∈Λ

sup
ν(·)∈ΞK

EνJ. (34)

In the following theorem, we show that this minimax op-
timal control problem can be replaced by a corresponding
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unconstrained stochastic game problem. This stochastic
game problem is defined in terms of the following aug-
mented cost functional:

Jτ =
1
2
x(N + 1)TQN+1x(N + 1)

+
1
2

N∑
k=0

[
x(k)TQx(k) + u(k)TRu(k)

]

− τ

[
R
(
ν(·)‖μ(·)) − d− 1

2

N∑
k=0

‖z(k)‖2

]
,

where τ ≥ 0 is a given constant. In this stochastic game
problem, the maximizing player input is a probability den-
sity function ν(·), and the minimizing player input u(k) is
assumed to be generated by an output feedback controller
of the form (32). We let Ṽτ denote the upper value in this
game problem. That is,

Ṽτ
�
= inf

K∈Λ
sup
ν(·)

Eν [Jτ ]. (35)

Also, we define a set Γ̃ ⊂ R as

Γ̃
�
=
{
τ ∈ R : τ ≥ 0, Ṽτ is finite

}
.

It follows from the above assumption that zero is not con-
tained in the set Γ̃.

The following theorem follows via arguments similar
to the proof of Theorem 2, see (Petersen et al., 2000a).

Theorem 4. Consider the stochastic uncertain system (5),
(7), (8) with the cost functional (31). Then the following
conclusions hold:

(i) For the minimax stochastic optimal control problem

inf
K∈Λ

sup
ν(·)∈ΞK

EνJ, (36)

the value of this optimal control problem is finite if
and only if the set Γ̃ is non-empty.

(ii) If the set Γ̃ is non-empty, then

inf
K∈Λ

sup
ν(·)∈ΞK

EνJ = inf
τ∈Γ̃

Ṽτ . (37)

We now use the duality result developed in the previ-
ous section to convert the unconstrained stochastic game
problem defining Ṽτ into an equivalent output feedback
risk sensitive control problem which can be solved via ex-
isting methods.

For any τ > 0, it is straightforward to verify that

the quantity Ṽτ can be re-written as Ṽτ = τ
(
W̃τ + d

)
,

where

W̃τ
�
= inf

K∈Λ
sup
ν(·)

Eν

{ 1
2τ
x(N + 1)TQN+1x(N + 1)

+
1
2τ

N∑
k=0

[
x(k)TQx(k) + u(k)TRu(k)

]

+
1
2

N∑
k=0

‖z(k)‖2 −R
(
ν(·)‖μ(·))}.

Hence, it follows from Theorem 4 that if Γ̃ 
= ∅, we can
write

inf
K∈Λ

sup
ν∈ΞK

EνJ = inf
τ∈Γ̃

τ
(
W̃τ + d

)
. (38)

The following theorem shows that the quantity W̃τ

can be obtained by solving an equivalent output feedback
risk sensitive optimal control problem. The proof of this
theorem follows along similar lines as the duality result
given in Lemma 3, see (Petersen et al., 2000a).

Theorem 5. Given any constant τ > 0,

W̃τ = inf
K∈Λ

JRS , (39)

where

JRS = logEμ

{
exp

[ 1
2τ
x(N + 1)TQN+1x(N + 1)

+
1
2τ

N∑
k=0

[
x(k)TQx(k) + u(k)TRu(k)

]

+
1
2

N∑
k=0

‖z(k)‖2
]}

and the probability measure μ(·) is as defined by (6) for
the reference system (5).

We now observe that the output feedback risk sen-
sitive optimal control problem (39) is a standard prob-
lem which can be solved using the existing results, see,
e.g., (Collings et al., 1996; Petersen et al., 2000a; Whit-
tle, 1981). The solution to this stochastic optimal control
problem is constructed as follows:

Filter Equations: Consider the following Riccati differ-
ence equation, which is solved forward in time:

Σk+1 = DDT +A
[
Σ−1

k +CTC−Q

τ
−ET

1 E1

]−1

AT ,

(40)
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where the initial condition Σ0 for this difference equation
is defined by the nominal initial condition probability dis-
tribution (6). The solution to this difference equation is
required to satisfy the following conditions:

Σ−1
k + CTC − Q

τ
− ET

1 E1 > 0, Σk > 0, ∀k. (41)

Also, consider the following filter state equations:

x̂(k + 1) = Ax̂(k) +Bu(k) +Kk

[
y(k) − Cx̂(k)

]

+A

[
Σ−1

k + CTC − Q

τ
− ET

1 E1

]−1

×
[
Q

τ
+ ET

1 E1

]
x̂(k), x̂0 = x̌0, (42)

where

Kk = A
[

Σ−1
k + CTC − Q

τ − ET
1 E1

]−1

CT . (43)

State Feedback Equations: As well as the above filter
equations which are solved forward in time, the solution
to the risk sensitive control problem (39) also involves
the following Riccati difference equation, which is solved
backwards in time:

Πk = Q+ τET
1 E1

+ AT
[
lI − Πk+1

DDT

τ

+ Πk+1B
(
R+ τET

2 E2

)−1
BT

]−1

Πk+1A,

ΠN+1 = QN+1. (44)

The solution to this difference equation is required to sat-
isfy the following conditions:

ρ(Πk+1DD
T ) < τ, ∀k, (45a)

ρ(ΠkΣk) < τ, ∀k. (45b)

Applying the results of (Whittle, 1981) and (Collings
et al., 1996) to the risk sensitive control problem (39), we
obtain the following proposition:

Proposition 1. Let the constant τ > 0 be given and sup-
pose Σk, Kk, x̂(k) and Πk are defined as above, and the
conditions (41), (45) are satisfied. Then W̃τ , the optimal
value of the risk sensitive control problem (39), is given

by

W̃τ =
1
2τ
x̌T

0

(
Π−1

0 − Σ0

τ

)−1

x̌0 − 1
2

log[det(Σ0)]

− 1
2

N∑
k=0

log

[
det(Σk+1)

× det
(

Σ−1
k − Q

τ
− ET

1 E1

)]

− 1
2

N∑
k=0

log
[
det

(
I − Λk

τ

)]

− 1
2

log
[
det(Σ−1

N+1 −
QN+1

τ
)
]
, (46)

where

Λk = Kk

[
I + C

(
Σ−1

k − Q

τ
− ET

1 E1

)−1

CT

]

×KT
k

(
I − Πk+1Σk+1

τ

)−1

Πk+1.

Furthermore, the corresponding output feedback optimal
control law is given by

u(k) = −(R+ τET
2 E2)−1BT

[
I + Πk+1

×B
(
R+ τET

2 E2

)−1
BT − Πk+1DD

T

τ

]−1

× Πk+1A

(
I − ΣkΠk

τ

)−1

x̂(k)

for k = 0, 1, . . . , N .

We can use the above proposition to solve the mini-
max optimal control problem (34) in the output feedback
linear quadratic Gaussian case. This is achieved by op-
timizing over the constant τ > 0 to find the minimum
in (38). This formula then defines the minimax optimal
LQG cost. For this optimal value of τ , the correspond-
ing minimax LQG controller is obtained as in the above
proposition.

6. Illustrative Example

In this section, we present an example to illustrate the the-
ory developed above. For the example under considera-
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tion, the perturbed system (7) is defined by the equations

x(k + 1) =

[
1.2709 −0.0553
0.4973 0.9394

]
x(k)

+

[
0.2157
0.4367

]
u(k) +

[
0.2157
0.4367

]
w̄(k),

z(k) = 0.5u(k),

y(k) =
[
−200 100

]
x(k) + v̄(k). (47)

We consider this system on the finite time interval [0, N ]
where N = 500. The reference noise signals w(k) and
v(k) are assumed to be Gaussian white noise signals with
unity covariance matrices. Also, the initial condition x(0)
is assumed to be a zero mean Gaussian random vector
with the covariance matrix Σ0 = 10−4× I . The quadratic
cost functional (24) is such that

Q =
1
4

[
1 −1

−1 1

]
, R = 10−4,

QN+1 = 10−3

[
0.625 −0.275

−0.275 0.125

]
.

We will apply our minimax LQG technique to the
stochastic uncertain system defined by (47) and the cor-
responding relative entropy constraint (8). Also, the con-
stant d > 0 is chosen to be d = 10−8. The motivation for
the uncertainty structure defined by the system (47) can
be seen by recalling that the relative entropy constraint (8)
will be satisfied if the corresponding SQC is satisfied as
in (22). Furthermore, this SQC will be satisfied if we have
w(k) = Δz(k) where Δ is a constant but unknown matrix
which satisfies the norm bound

Δ′Δ ≤ I. (48)

In this example, we write Δ =
[

Δ1
Δ2

]
and then the un-

certain system can be represented as in the block diagram
shown in Fig. 4. In this block diagram, the nominal sys-
tem is described by the state equations (47). In order to
construct a minimax LQG controller for this example, we
solve the Riccati equations (40), (44) for different val-
ues of the parameter τ > 0 so that the optimal minimax
cost can be obtained as in (38). We then plot the quan-

tity τ
(
W̃τ + d

)
as a function of τ . This plot is shown in

Fig. 5. From this plot, we choose the optimal value of the
parameter τ to be τ = 1.17. With the optimal value of
τ , the corresponding minimax optimal LQG controller is
constructed according to the equations (42), (43), (47).

It is of interest to compare the closed loop value of
the cost function (31) for the standard LQG controller
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Fig. 4. Uncertain system block diagram.
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versus the parameter τ .

(which is constructed from the LQR optimal controller
and a Kalman filter), and the minimax LQG controller in
the case of a constant uncertain parameter Δ1 satisfying
the condition (48). We assume that Δ2 = 0 in this com-
parison. A plot of the closed loop cost versus the uncer-
tain parameter Δ1 is shown in Fig. 6. From this plot it
can be seen that for the nominal system corresponding to
Δ1 = 0, the standard LQG controller is slightly better
than the minimax LQG controller. This is to be expected
since the standard LQG controller is optimal for the nom-
inal system. However, when considered over the range of
uncertainties, Δ1 ∈ [−1 1], the minimax LQG controller
is much better than the standard LQG controller.

7. Conclusions

In this paper, we presented an overview of the main ideas
underlying the emerging theory of minimax LQG control.
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Fig. 6. Closed loop cost versus the real uncertain parameter Δ1.

A key feature of this approach to control system design is
the use of a relative entropy constraint uncertainty descrip-
tion. There are two main motivations for this uncertainty
description. First, it provides a natural stochastic general-
ization of the deterministic SQC uncertainty description.
In particular, it constrains the probability distribution of
uncertainty signals rather than the signals themselves as
in the deterministic SQC case. The second main advan-
tage of the relative entropy uncertainty description comes
from the duality between relative entropy and free energy.
This enables the output feedback minimax LQG control
problem to be converted into an equivalent output feed-
back risk sensitive control problem which can be solved
using the standard Riccati equation methods. Thus, the
relative entropy constraint uncertainty description has the
significant advantage that the controller synthesis problem
has a tractable solution even in the output feedback case.

It should also be noted that the ideas of minimax
LQG control can also be extended to problems of min-
imax optimal filtering. This issue is pursued in the pa-
pers (Boel et al., 2002; Ugrinovskii and Petersen, 1999b;
2002b; Yoon et al., 2005).

It is of interest to compare the results presented in
this paper on minimax LQG control with the results which
can be obtained in a deterministic setting. In the paper
(Savkin and Petersen, 1995), a minimax control problem
was considered in a deterministic setting in which un-
certainty was described by integral quadratic constraints.
However, this result was only applicable to the state feed-
back case and also leads to a state feedback control law
which is dependent on the initial condition of the system.
The papers (Savkin and Petersen, 1996; 1997) also con-
sidered the control of deterministic uncertain systems de-
scribed by integral quadratic constraints in order to mini-
mize a quadratic cost functional in the measurement feed-
back case. However, these results were only able to give

bounds on the closed loop cost functional and were not
minimax optimal control results.

It is of interest to note that in the infinite horizon case,
the standard LQG problem can be formulated as a deter-
ministic H2 optimal control problem. To date, there is no
analogous result for the minimax LQG problem consid-
ered in this paper, although this would be an interesting
area for future research.
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