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A REALIZATION PROBLEM FOR POSITIVE CONTINUOUS–TIME SYSTEMS
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A realization problem for positive, continuous-time linear systems with reduced numbers of delays in state and in control
is formulated and solved. Sufficient conditions for the existence of positive realizations with reduced numbers of delays
of a given proper transfer function are established. A procedure for the computation of positive realizations with reduced
numbers of delays is presented and illustrated by an example.
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1. Introduction

In positive systems inputs, state variables and outputs
take only nonnegative values. Examples of positive sys-
tems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems,
compartmental systems, water and atmospheric pollution
models. A variety of models having positive linear sys-
tems behaviour can be found in engineering, management
science, economics, social sciences, biology and medi-
cine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive systems
is more complicated and less advanced. An overview of
the state of the art in positive systems theory is given in the
monographs (Farina and Rinaldi, 2000; Kaczorek, 2002).
Recent developments in positive systems theory and some
new results are given in (Kaczorek, 2003). Realization
problems of positive linear systems without time-delays
were considered in many papers and books (Benvenuti
and Farina, 2004; Farina and Rinaldi, 2000; Kaczorek,
2002).

An explicit solution of equations describing discrete-
time systems with time-delay was given in (Busłowicz,
1982). Recently, the reachability, controllability and min-
imum energy control of positive linear discrete-time sys-
tems with time-delays were considered in (Busłowicz and
Kaczorek, 2004; Kaczorek and Busłowicz, 2006; Xie and
Wang, 2003). The realization problem for positive mul-
tivariable discrete-time systems with one time-delay was
formulated and solved in (Kaczorek, 2004) and (Kaczorek
and Busłowicz, 2004). The realization problem for posi-
tive continuous-time systems with delays in state was con-

sidered in (Kaczorek, 2005a), and with delays in state and
control in (Kaczorek, 2005b). The methods presented in
(Kaczorek, 2005a; 2005b) enable us to find positive real-
izations with the numbers of delays equal to the highest
powers of the variables s and w in given transfer func-
tions.

The main purpose of this paper is to present a method
for the computation of positive realizations for positive
continuous-time systems with reduced numbers of time-
delays in state and control. Sufficient conditions for the
solvability of the realization problem will be established
and a procedure for the computation of a positive realiza-
tion of a proper transfer function will be presented. To the
best of the author’s knowledge, the realization problem
for positive continuous-time linear systems with reduced
numbers of delays in the state vector and control has not
been considered yet.

2. Preliminaries and Problem Formulation

Consider the multivariable continuous-time system with h
delays in state and q delays in control:

ẋ(t) =
h∑

i=0

Aix(t − id) +
q∑

j=0

Bju(t − jd),

y(t) = Cx(t) + Du(t),

(1)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state,

input (control) and output vectors, respectively, and A i ∈
R

n×n, i = 0, 1, . . . , h, Bj ∈ R
n×m, j = 0, 1, . . . , q,

C ∈ R
p×n, D ∈ R

p×m and d > 0 is a delay. The initial
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conditions for (1) are given by

x0(t) for t ∈ [−hd, 0] and u0(t) for t ∈ [−hq, 0). (2)

Let R
m×n
+ be the set of m × n real matrices with

nonnegative entries and R
m
+ = R

m×1
+ .

Definition 1. The system (1) is called (internally) positive
if for every x0(t) ∈ R

n
+, t ∈ [−hd, 0], u0(t) ∈ R

m
+ ,

t ∈ [−qh, 0) and all inputs u(t) ∈ R
m
+ , t ≥ 0 we have

x(t) ∈ R
n
+ and y(t) ∈ R

p
+ for t ≥ 0.

Let Mn be the set of n×n Metzler matrices, i.e., the
set of n × n real matrices with nonnegative off diagonal
entries.

Theorem 1. The system (1) is positive if and only if A0

is a Metzler matrix and the matrices Ai, i = 1, . . . , h,
Bj , j = 0, 1, . . . , q, C, D have nonnegative entries, i.e.,

A0 ∈ Mn, Ai ∈ R
n×n
+ , i = 1, . . . , h,

Bj ∈ R
n×m
+ , j = 0, 1, . . . , q,

C ∈ R
p×n
+ , D ∈ R

p×m
+ .

(3)

Proof. The proof is given in (Kaczorek, 2005a).

The transfer function of the system (1) is given by

T (s, w) = C[Ins − A0 − A1w − · · · − Ahwh]−1

×[B0 + B1w + · · · + Bqw
q] + D,

w = e−ds. (4)

Definition 2. The matrices (3) are called a positive re-
alization of a given transfer function T (s, w) if they sat-
isfy the equality (4). A realization is called minimal if the
dimension n × n of the matrices Ai, i = 0, 1, . . . , h is
minimal among all realizations of T (s, w).

The positive realization problem under consideration
can be stated as follows: Given a proper transfer matrix
T (s, w), find a positive realization with reduced numbers
of delays of T (s, w). In this paper, sufficient conditions
for the solvability of the problem will be established and
a procedure for the computation of a positive realization
with reduced numbers of delays will be proposed.

3. Problem Solution

The transfer matrix (4) can be rewritten in the form

T (s, w)

=
C

(
Adj H(s, w)

)
(B0+B1w+· · ·+Bqw

q)
det H(s, w)

+D

=
N(s, w)
d(s, w)

+ D, (5)

where

H(s, w) = [Ins − A0 − A1w − · · · − Ahwh], (6)

N(s, w) = C
(
Adj H(s, w)

)
(B0 + B1w + · · · + Bqw

q),

d(s, w) = detH(s, w). (7)

From (5) we have

D = lim
s→∞ T (s, w) (8)

since lims→∞H−1(s, w) = 0. The strictly proper part of
T (s, w) is given by

Tsp(s, w) = T (s, w) − D =
N(s, w)
d(s, w)

. (9)

Therefore, the positive realization problem has been re-
duced to finding matrices

A0 ∈ Mn, Ai ∈ R
n×n
+ , i = 1, . . . , h,

Bj ∈ R
n×m
+ , j = 0, 1, . . . , q, ∈ R

p×n
+

(10)

for a given strictly proper transfer matrix (9).
To simplify the notation, we shall consider a single-

input single-output (SISO) system described by Eqn. (1)
for m = p = 1. Let a given strictly proper, irreducible
transfer function have the form

T (s, w) =
n(s, w)
d(s, w)

, (11a)

where

n(s, w) = bn−1(w)sn−1 + · · · + b1(w)s + b0(w)

bk(w) = bkmwm + · · · + bk1w + bk0,

k = 0, 1, . . . , n − 1 (11b)

d(s, w) = sn − an−1(w)sn−1 − · · · − a1(w)s − a0(w)

ak(w) = akmwm + · · · + ak1w + ak0,

k = 0, 1, . . . , n − 1. (11c)

The solution of the positive realization problem
for (11) is based on the following two lemmas:

Lemma 1. Let pk = pk(w) for k = 1, . . . , 2n−1 be some
polynomials in w with nonnegative coefficients and

P (w) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 pn

p1 0 · · · 0 pn+1

0 p2 · · · 0 pn+2

. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · pn−1 p2n−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (12)
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Then

det
[
Ins−P (w)

]
= sn−p2n−1s

n−1−pn−1p2n−2s
n−2

− · · · − p2p3 · · · pn−1pn+1s − p1p2 · · · pn. (13)

Proof. The expansion of the determinant with respect to
the n-th column yields

det
[
Ins − P (w)

]
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s 0 · · · 0 −pn

−p1 s · · · 0 −pn+1

0 −p2 · · · 0 −pn+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · s −p2n−2

0 0 · · · −pn−1 s − p2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= sn − p2n−1s
n−1 − pn−1p2n−2s

n−2

− · · · − p2p3 · · · pn−1pn+1s − p1p2 · · · pn.

Lemma 2. Let Rn(w) be the n-th row of the adjoint ma-
trix Adj [Ins − P (w)]. Then

Rn(w) = [p1p2 · · · pn−1, p2p3 · · · pn−1s,

p3p4 · · · pn−1s
2, . . . , pn−1s

n−2, sn−1]. (14)

Proof. Using the well-known equality (Adj[Ins−P (w)])
×[Ins−P (w)] = In det[Ins−P (w)] and (14), it is easy
to verify that

Rn(w)
[
Ins−P (w)

]
=[ 0 · · · 0 1 ] det

[
Ins−P (w)

]
.

(15)
From Lemma 1 and 2 it follows that if

P (w) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 p2

p1 0 · · · 0 p3

0 p1 · · · 0 p4

. . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · p1 pn+1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (16)

then

det
[
Ins − P (w)

]

= sn − pn+1s
n−1 − · · · − p3p

n−2
1 s − p2p

n−1
1 (17)

and

Rn(w) = [pn−1
1 , pn−2

1 s, . . . , p1s
n−2, sn−1]. (18)

It is assumed that for a given denominator (11c) there
exist polynomials

pk = pk(w)

= pkhwh+· · ·+pk1w+pk0, k=1, . . . , 2n−1, (19)

with nonnegative coefficients pkj , j = 0, 1, . . . , h, such
that

an−1(w) = p2n−1, an−2(w) = pn−1p2n−2, . . . , a1(w)

= p2p3 · · · pn−1pn+1,

a0(w) = p1p2 · · · pn. (20)

In particular, if the matrix P (w) has the form (16),
then (20) takes the form

ak(w) = pn−k−1
1 pk+2 for k = 0, 1, . . . , n − 1. (21)

Note that, if the assumption (20) is satisfied, then for
a given denominator d(s, w) of (11a) we may find the
matrix (12) and next the corresponding matrices A i ∈
R

n×n
+ , i = 0, 1, . . . , h since

Ins − P (w) = Ins −
h∑

i=0

Aiw
i. (22)

The matrix C is chosen in the form

C = [ 0 · · · 0 1 ] ∈ R
1×n. (23)

Taking into account (14), (22) and (7), we may write

C
(
Adj

[
Ins − P (w)

])
(B0 + B1w + · · · + Bqw

q)

= Rn(w) (B0 + B1w + · · · + Bqw
q)

=
[
p1p2 · · · pn−1, p2p3 · · · pn−1s, . . . , pn−1s

n−2, sn−1
]

× (B0 + B1w + · · · + Bqw
q) = n(s, w). (24)

Comparing the coefficients at the same powers of s and w
of (24), we obtain the following set of algebraic equations:

Hx = f, (25)

where H ∈ R
N×M , x ∈ R

M , f ∈ R
N .

The entries of H depend on the matrices Ai, i =
0, 1, . . . , h, the components of f depend on the coeffi-
cients bkj (k = 0, 1, . . . , n − 1, j = 0, 1, . . . , m) of the
polynomial n(s, w), and the components of x are the en-
tries of Bl, l = 0, 1, . . . , q.

If
rank [H, f ] = rankH, (26)

then Eqn. (25) has a nonnegative solution x ∈ R
M
+ if

(Kaczorek, 2004):

r∑
i=1

uT
i HT fui

si
≥ 0 for all si > 0, i = 1, . . . , r (27)

(r = rankHHT ), where si is an eigenvalue of HT H and
ui is the i-th eigenvector associated with si, i.e.,

HT Hui = siui (‖ui‖ = 1). (28)
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From (24) it follows that the minimal number q of
delays in control should satisfy the condition

q degw Rn(w) ≥ degw n(s, w)(
if degw Rn(w) = 0 then q = degw n(s, w)

)
, (29)

where degw( · ) denotes the degree of ( · ) with respect
to w.

Theorem 2. Let the assumption (20) be satisfied. Then
there exists a positive realization (3) with m = p = 1 of
T (s, w) if the following conditions are satisfied:

(i) lim
s→∞ T (s, w) ∈ R+.

(ii) The coefficients aij (i = 0, 1, . . . , n − 1, j =
0, 1, . . . , m) of the polynomial d(s, w) are nonneg-
ative except an−1,0, which can be arbitrary.

(iii) The conditions (26) and (27) are satisfied.

Proof. From (8) it follows that the condition (i) implies
D ∈ R+. If the assumption (20) and the condition (ii)
are satisfied, then from (22) we have Ai ∈ R

n×n
+ for

i = 1, . . . , h, and A0 is a Metzler matrix for arbitrary
an−1,0. If (26) and (27) are met, then (25) has a nonneg-
ative solution x ∈ R

M
+ and Bj ∈ R

n
+ for j = 0, 1, . . . , q.

The matrix C of the form (23) has always nonnegative en-
tries.

If the conditions of Theorem 2 are satisfied, then a
positive realization (3) of T (s, w) can be found with the
use of the following procedure:

Procedure.

Step 1. Using (8) and (9), find D and the strictly proper
transfer function Tsp(s, w).

Step 2. For a given denominator d(s, w) of (11a), find the
polynomials (19) and the matrices Ai ∈ R

n×n
+ , i =

1, . . . , h and A0 ∈ M.

Step 3. Using (29), choose q and, equating the coeffi-
cients at the same powers of s and w of the equal-
ity (24), find the entries of H and f .

Step 4. Find the solution x ∈ R
M
+ of (25), the matrices

Bj ∈ R
n
+ for j = 0, 1, . . . , q and C of the form (23).

Theorem 3. Let p1 = 1 in (16). Then there exists a posi-
tive realization (3) of T (s, w) if

(i) The first two conditions of Theorem 2 are satisfied.

(ii) The coefficients bij (i = 0, 1, . . . , n − 1, j =
0, 1, . . . , m) of the numerator n(s, w) of (11) are
nonnegative.

Proof. If p1 = 1, then Rn(w) defined by (18) has the form
Rn(w) = [1, s, . . . , sn−1]. In this case, from (29) we have
q = degw n(s, w) and Bj ∈ R

n
+, j = 0, 1, . . . , q if the

coefficients of n(s, w) are nonnegative.

4. Example

Find a positive realization (3) of the transfer function

T (s, w) =
n(s, w)
d(s, w)

, (30)

where n(s, w) = (3w2+w+2)s2+(w3+2w2+3w+2)s+
2w4+3w3+w2, d(s, w) = s3−(2w2+3w−1)s2−(w3+
3w2+2w)s −(w5+2w4+3w3+2w2).

In this case

d(s, w) = s3 − a2(w)s2 − a1(w)s − a0,

n(s, w) = b2(w)s2 + b1(w)s + b0(w),

a2(w) = 2w2 + 3w − 1,

a1(w) = w3 + 3w2 + 2w,

a0(w) = w5 + 2w4 + 3w3 + 2w2,

b2(w) = 3w2 + w + 2,

b1(w) = w3 + 2w2 + 3w + 2,

b0(w) = 2w4 + 3w3 + w2.

We shall consider three cases of the choice of the polyno-
mials (19).

Case 1.

Step 1. The transfer function (30) is strictly proper. Thus
D = 0 and Tsp(s, w) = T (s, w).

Step 2. In this case we choose the polynomials (19) of the
form

p1 = w2, p2 = w + 1, p3 = w2 + w + 2,

p4 = w2 + 2w, p5 = 2w2 + 3w − 1,
(31)

and the matrix (12) is equal to

P (w) =

⎡
⎢⎣

0 0 p3

p1 0 p4

0 p2 p5

⎤
⎥⎦

=

⎡
⎢⎣

0 0 w2 + w + 2
w2 0 w2 + 2w

0 w + 1 2w2 + 3w − 1

⎤
⎥⎦ . (32)

Using (32), we obtain

P (w) = A0 + A1w + A2w
2,
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where

A0 =

⎡
⎢⎣

0 0 2
0 0 0
0 1 −1

⎤
⎥⎦ , A1 =

⎡
⎢⎣

0 0 1
0 0 2
0 1 3

⎤
⎥⎦ ,

A2 =

⎡
⎢⎣

0 0 1
1 0 1
0 0 2

⎤
⎥⎦ . (33)

Step 3. Using (29) and taking into account the fact that

Rn(w) = [p1p2, p2s, s2] = [w3 + w2, (w + 1)s, s2],

we choose q = 2. Thus, using (24) and (30), we ob-
tain

[
w3+w2, (w+1)s, s2

]
⎡
⎢⎣

b01+b11w+b21w
2

b02+b12w+b22w
2

b03+b13w+b23w
2

⎤
⎥⎦

= (3w2+w+2)s2+(w3+2w2+3w+2)s+2w4+3w3+w2.
(34)

Equating the coefficients at the same powers of s and
w in (34), we obtain
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b01

b02

b03

b11

b12

b13

b21

b22

b23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
1
2
1
2
3
2
0
2
3
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

Step 4. The solution of (35) is

b01 = 1, b02 = 2, b03 = 2,

b11 = 2, b12 = 1, b13 = 1,

b21 = 0, b22 = 1, b23 = 3.

Therefore, j = 0, 1, 2,

B0 =

⎡
⎢⎣

b01

b02

b03

⎤
⎥⎦ =

⎡
⎢⎣

1
2
2

⎤
⎥⎦ , B1 =

⎡
⎢⎣

b11

b12

b13

⎤
⎥⎦ =

⎡
⎢⎣

2
1
1

⎤
⎥⎦ ,

B2 =

⎡
⎢⎣

b21

b22

b23

⎤
⎥⎦ =

⎡
⎢⎣

0
1
3

⎤
⎥⎦ (36)

and
C =

[
0 0 1

]
. (37)

The desired positive realization of (30) is given
by (33), (36), (37) and D = 0.

Case 2. If we choose the polynomials (19) of the forms

p1 = p2 = w,

p3 = w3 + 2w2 + 3w + 2,

p4 = w2 + 3w + 2,

p5 = 2w2 + 3w − 1,

(38)

then

P (w) =

⎡
⎢⎣

0 0 p3

p1 0 p4

0 p1 p5

⎤
⎥⎦

=

⎡
⎢⎣

0 0 w3 + 2w2 + 3w + 2
w 0 w2 + 3w + 2
0 w 2w2 + 3w − 1

⎤
⎥⎦

= A0 + A1w + A2w
2 + A3w

3,

where

A0 =

⎡
⎢⎣

0 0 2
0 0 2
0 0 −1

⎤
⎥⎦ , A1 =

⎡
⎢⎣

0 0 3
1 0 3
0 1 3

⎤
⎥⎦ ,

A2 =

⎡
⎢⎣

0 0 2
0 0 1
0 0 2

⎤
⎥⎦ , A3 =

⎡
⎢⎣

0 0 1
0 0 0
0 0 0

⎤
⎥⎦ .

In this case, using (29) and (24), we obtain q = 2 and

[
w2 ws s2

]
⎡
⎢⎣

b01 + b11w + b21w
2

b02 + b12w + b22w
2

b03 + b13w + b23w
2

⎤
⎥⎦

=(3w2+w+2)s2+(w3+2w2+3w+2)s+2w4+3w3+w2.

The comparison of the polynomials in w at s yields the
equality

w
[
b02 + b12w + b22w

2
]

= w3 + 2w2 + 3w + 2,

which cannot be satisfied for any w.
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Therefore, under the choice (38) of the polynomi-
als (19), a positive realization (3) of the transfer func-
tion (30) does not exist.

Case 3. If we choose the polynomials (19) as follows:

p1 = p2 = 1, p3 = w5 + 2w4 + 3w3 + 2w2,

p4 = w3 + 3w2 + 2w, p5 = 2w2 + 3w − 1, (39)

then

P (w) =

⎡
⎢⎣

0 0 p3

1 0 p4

0 1 p5

⎤
⎥⎦

=

⎡
⎢⎣

0 0 w5 + 2w4 + 3w3 + 2w2

1 0 w3 + 3w2 + 2w

0 1 2w2 + 3w − 1

⎤
⎥⎦

= A0 + A1w + A2w
2 + A3w

3 + A4w
4 + A5w

5,

where

A0 =

⎡
⎢⎣

0 0 0
1 0 0
0 1 −1

⎤
⎥⎦ , A1 =

⎡
⎢⎣

0 0 0
0 0 2
0 0 3

⎤
⎥⎦ ,

A2 =

⎡
⎢⎣

0 0 2
0 0 3
0 0 2

⎤
⎥⎦ , A3 =

⎡
⎢⎣

0 0 3
0 0 1
0 0 0

⎤
⎥⎦ , (40)

A4 =

⎡
⎢⎣

0 0 2
0 0 0
0 0 0

⎤
⎥⎦ , A5 =

⎡
⎢⎣

0 0 1
0 0 0
0 0 0

⎤
⎥⎦ .

In this case, q = 4 and

[
1 s s2

]
⎡
⎢⎣

b01 + b11w + b21w
2 + b31w

3 + b41w
4

b02 + b12w + b22w
2 + b32w

3 + b42w
4

b03 + b13w + b23w
2 + b33w

3 + b43w
4

⎤
⎥⎦

=(3w2+w+2)s2+(w3+2w2+3w+2)s+2w4+3w3+w2.
(41)

The comparison of the coefficients at the same powers of
s and w of (41) yields

B0 =

⎡
⎢⎣

b01

b02

b03

⎤
⎥⎦ =

⎡
⎢⎣

0
2
2

⎤
⎥⎦ , B1 =

⎡
⎢⎣

b11

b12

b13

⎤
⎥⎦ =

⎡
⎢⎣

0
3
1

⎤
⎥⎦ ,

B2 =

⎡
⎢⎣

b21

b22

b23

⎤
⎥⎦ =

⎡
⎢⎣

1
2
3

⎤
⎥⎦ , B3 =

⎡
⎢⎣

b31

b32

b33

⎤
⎥⎦ =

⎡
⎢⎣

3
1
0

⎤
⎥⎦ ,

B4 =

⎡
⎢⎣

b41

b42

b43

⎤
⎥⎦ =

⎡
⎢⎣

2
0
0

⎤
⎥⎦ (42)

and
C =

[
0 0 1

]
. (43)

In this case the desired positive realization of (30) is given
by (40), (42), (43) and D = 0.

5. Concluding Remarks

A method for the computation of positive realizations for
continuous-time systems with reduced numbers of delays
in state and in control was proposed. Sufficient condi-
tions for the existence of a positive realization for a given
proper transfer function were established and a procedure
for the computation of positive realization was proposed.
The details of the method were presented for single-input
single-output systems, but it can be easily extended to
multi-input multi-output systems. It is worth underlining
that the conditions for the existence of a positive realiza-
tion with a smaller number of delays are more restrictive
than the ones for a larger number of delays (Theorems 2
and 3). The deliberations can be also extended for 2D sys-
tems (Gałkowski, 2001).
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