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This paper proposes two methods for nonlinear observer design which are based on a partial nonlinear observer canonical
form (POCF). Observability and integrability existence conditions for the new POCF are weaker than the well-established
nonlinear observer canonical form (OCF), which achieves exact error linearization. The proposed observers provide the
global asymptotic stability of error dynamics assuming that a global Lipschitz and detectability-like condition holds. Exam-
ples illustrate the advantages of the approach relative to the existing nonlinear observer design methods. The advantages of
the proposed method include a relatively simple design procedure which can be broadly applied.
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1. Introduction

We consider the observer design problem for a SISO sys-
tem

ẋ = f(x) + g(x, u), y = h(x) (1)

with smooth vector fields f : R
n → R

n, g : R
n × R →

R
n, and smooth output functions h : R

n → R. Ex-
act error linearization is a well-established observer de-
sign method based on an observer canonical form (OCF)
which yields linear time-invariant error dynamics in some
state coordinates. Since the initial work in (Bestle and
Zeitz, 1983; Krener and Isidori, 1983), many variations on
and extensions to this design method have been proposed
(Kazantzis and Kravaris, 1998; Krener and Respondek,
1985; Krener et al., 1991; Krener and Xiao, 2002, Lynch
and Bortoff, 2001; Marino and Tomei, 1995; Phelps, 1991,
Respondek et al., 2004; Rudolph and Zeitz, 1994; Wang
and Lynch, 2005;2006; Xia and Gao, 1988;1989.) In the
single-output case, the aforementioned work relies on the
assumption

dim span{dh, dLfh, . . . , dLn−1
f h}(x) = n (2)

for all x in a suitable set. The function Lfh = ∂h
∂xf in (2)

is the Lie derivative of h along f . Repeated Lie derivatives
are defined as Lk

fh = Lf (Lk−1
f h), k ≥ 1 with L0

fh = h.

The differential or gradient of a function λ : R
n → R

is denoted by dλ and has a local coordinate description
dλ = ∂λ

∂x = ( ∂λ
∂x1

, . . . , ∂λ
∂xn

). The condition (2) ensures a
form of observability for the unforced system (Hermann
and Krener, 1977), and is necessary to ensure the exis-
tence of the OCF (Krener and Isidori, 1983). It is well
known that OCF-based methods can be difficult to apply
due to restrictive existence conditions. Also, the condi-
tion (2) does not always hold globally or even on a suffi-
ciently large set to avoid a singular observer gain in many
canonical form designs. In an effort to address these draw-
backs, we propose an observer based on a partial non-
linear observer canonical form (POCF) which requires a
weaker condition

dim span{dh, dLfh, . . . , dLr−1
f h}(x) = r,

1 ≤ r < n (3)

to hold for all x in a suitable set. Additionally, less restric-
tive integrability conditions than those for an OCF will be
required. To ensure the convergence of the estimate error,
we impose Lipschitz and detectability-like conditions.

Jo and Seo (2002) also consider observer design with
the weaker observability condition (3). They propose an
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observer design based on

ż0 = A0z0 + γ0(y, u), (4a)

ż0̄ = A0̄0z0 + f0̄(y, z0̄) + γ0̄(y, u), (4b)

y = cT0 z0, (4c)

whereA0 ∈ R
r×r and c0 ∈ R

r×1 are in a dual Brunovsky
form (Brunovsky, 1970):

A0 =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 0
1 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎠ ,

cT0 =
(

0 · · · 0 1
)
. (5)

The system (4) is divided into two parts: the first subsys-
tem (4a) is isolated from the second one and is in an OCF.
On the other hand, the second subsystem (4b) contains the
term f0̄ which allows for a nonlinear dependence on both
the second subsystem state z0̄ and the output. The output
depends linearly on the first subsystem state z0. Although
the existence conditions for (4) are weaker than the OCF,
in this paper we propose a POCF which exists under less
restrictive conditions and is suitable for observer design.
Two observer designs based on POCF coordinates are pro-
posed. The first design has an advantage of a simpler gain
expression. The second design leads to a simpler error
convergence proof but involves a more complicated gain
calculation.

This paper is organized as follows: Section 2
presents the existence conditions for the POCF. Section 3
presents two observers and a theorem for the global as-
ymptotic convergence of their error dynamics. Section 4
presents examples.

2. Partial Nonlinear Observer Canonical
Form (POCF)

First, we investigate the existence conditions for a diffeo-
morphism T transforming (1) into a partial nonlinear ob-
server canonical form (POCF) of index r∈{1, . . . , n−1}:

ż = Az + α(y, zr+1, . . . , zn, u), (6a)

y = cT z, (6b)

with z = (z1, . . . , zn)T , and α = α1
∂

∂z1
+ · · · + αn

∂
∂zn

is a smooth vector field. The matrix A ∈ R
n×n and the

vector c ∈ R
n×1 have the form

A =

(
A0 0
0 0

)
and cT =

(
cT0 0

)
,

where c0 and A0 are defined in (5).

We recall the following result on simultaneous recti-
fication:

Theorem 1 (Nijmeijer and van der Schaft, 1990,
Thm. 2.36). Let X1, . . . , Xr be linearly independent vec-
tor fields defined on a neighbourhood of ξ0 ∈ R

n. Sup-
pose that on a neighbourhoodU ⊆ R

n of ξ0

[Xi, Xj] = 0, 1 ≤ i, j ≤ r.

Then there exist coordinates (x1, . . . , xn) defined on U
such that on U

Xi =
∂

∂xi
, 1 ≤ i ≤ r.

We remark that when applying Theorem 1 later we
will choosen−r linearly independent vector fieldsX i, r+
1 ≤ i ≤ n to Xi, 1 ≤ i ≤ r such that about ξ0

[Xi, Xj ] = 0, 1 ≤ i, j ≤ n.

This choice is nonunique and affects the expressions for
the system in the new coordinates. The observer design
method presented in (Jo and Seo, 2002) imposes addi-
tional constraints on the choice of Xi, r + 1 ≤ i ≤ n,
which are not required here. These additional constraints
can limit the applicability of that approach.

In order to define the POCF, we need to define the
so-called starting vector field. If r < n, the matrix

Qr =

⎛
⎜⎜⎝

dh
...

dLr−1
f h

⎞
⎟⎟⎠ (7)

is called the reduced observability matrix. When n = r,
we call (7) the observability matrix. A smooth solution v
of

Qr · v =

⎛
⎜⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎟⎠ =: er ∈ R

r (8)

is called the starting vector field. Before giving sufficient
conditions for the existence of the POCF (6), we define
some notation. The Lie bracket of two vector fields f and
g is defined as [f, g] = ∂g

∂xf− ∂f
∂xg. Repeated Lie brackets

are defined as adk
fg = [f, adk−1

f g], k ≥ 1 with ad0
fg = 0.

Theorem 2. There exists a diffeomorphism T : U → R
n

defined on a neighbourhoodU of x0 transforming (1) into
POCF (6) of index r if

(C1) rankQr = r,

(C2) [adi
fv, adj

fv] = 0, 0 ≤ i, j ≤ r − 1,
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(C3) [g, adi
fv] = 0, 0 ≤ i ≤ r − 2,

in some neighbourhood of x0. The diffeomorphism T is
global if the conditions C1–C3 hold on R

n and, in addi-
tion,

(C4) adi
−fv, 0 ≤ i, j ≤ r − 1 are complete vector fields.

Proof. The proof is divided into two parts. In Part A we
show that there exists a change of coordinates ζ = Ψ(x)
which transforms (1) into

ζ̇ = Aζ + η(ζr , ζr+1, . . . , ζn, u), (9a)

y = cT ζ + β(ζr+1, . . . , ζn), (9b)

with a smooth vector field η = η1
∂

∂ζ1
+ · · · + ηn

∂
∂ζn

,

a smooth map β, and ζ = (ζ1, . . . , ζn)T . In Part B we
construct a second coordinate system in which β ≡ 0.

Part A: Assume that the conditions C1–C3 of Theorem 2
are satisfied. The condition C1 implies that (8) has a solu-
tion v defined on some neighbourhood of x0 ∈ R

n. Equa-
tion (8) can be rewritten as

LvL
i
fh =

{
0 for 0 ≤ i ≤ r − 2,
1 for i = r − 1.

From (Isidori, 1995, Lem. 4.1.2), this implies that⎛
⎜⎜⎝

dh
...

dLr−1
f h

⎞
⎟⎟⎠( v ad−fv · · · adr−1

−f v
)

=

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 1
... . .

.

. .
. ∗

0 . .
.

. .
. ...

1 ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎠ (10)

in a neighbourhood of x0. Therefore, the vector fields
v, adfv, . . . , adr−1

f v are linearly independent in some
neighbourhood of x0. Using the condition C2 and Theo-
rem 1, we deduce that there exists a local diffeomorphism
ζ = Ψ(x) such that

Ψ∗adi
−fv =

∂

∂ζi+1
, 0 ≤ i ≤ r − 1, (11)

where Ψ∗ = ∂Ψ/∂x. For clarity, the representations of
f, g, and h in the ζ-coordinates are denoted by

f̄(ζ) = Ψ∗f(x) |x=Ψ−1(ζ),

ḡ(ζ, u) = Ψ∗g(x, u) |x=Ψ−1(ζ),

h̄(ζ) = h(x) |x=Ψ−1(ζ) .

Owing to (10), we have

Ladi
−fvh =

∂h̄

∂ζi+1
=

{
0 for 0 ≤ i ≤ r − 2,
1 for i = r − 1.

Therefore, the gradient of h̄ has the form

∂h̄

∂ζ
=
(

0 · · · 0 1 ∗ · · · ∗
)
, (12)

where the leading one on the right-hand-side of (12) ap-
pears in the r-th column. Hence, in the ζ-coordinates the
output map h̄ has the form given in (9b). Next, we con-
sider the drift vector field

f̄(ζ) = f̄1(ζ)
∂

∂ζ1
+ · · · + f̄n(ζ)

∂

∂ζn
.

Due to (11), for 1 ≤ i ≤ r − 1 we have

∂

∂ζi+1
= Ψ∗adi

−fv

= Ψ∗[−f, adi−1
−f v]

= [−Ψ∗f,Ψ∗adi−1
−f v]

= [−Ψ∗f,
∂

∂ζi
]

= [−f̄ , ∂
∂ζi

]

=
n∑

j=1

∂f̄j

∂ζi

∂

∂ζj
. (13)

Comparing both sides of (13) yields

∂f̄j

ζi
= 0 for 1 ≤ j ≤ n, j = i+ 1,

1 ≤ i ≤ r − 1,

∂f̄i+1

ζi
= 1 for 1 ≤ i ≤ r − 1.

(14)

This means that the Jacobian matrix of f̄ has the form

∂f̄

∂ζ
(ζ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ∗ ∗ · · · ∗
1

. . .
...

...
...

...
. . . 0

...
...

...

0 1 ∗ ∗ · · · ∗
0 · · · 0 ∗ ∗ · · · ∗
...

...
...

...
...

0 · · · 0 ∗ ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)
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Finally, we consider the input-dependent vector field ḡ.
Because of the condition C3 and (11), for 0 ≤ i ≤ r − 2
we have

0 = Ψ∗[g, adi
−fv]

= [Ψ∗g,Ψ∗adi
−fv]

=
[
ḡ,

∂

∂ζi+1

]

= −
n∑

j=1

∂ḡj

ζi+1

∂

∂ζj
.

This implies

∂ḡj

∂ζi+1
= 0, 1 ≤ j ≤ n, 0 ≤ i ≤ r − 2. (16)

Hence, the Jacobian matrix of ḡ looks like

∂ḡ

∂ζ
(ζ, u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ∗ ∗ · · · ∗
...

...
...

...
...

0 · · · 0 ∗ ∗ · · · ∗
0 · · · 0 ∗ ∗ · · · ∗
...

...
...

...
...

0 · · · 0 ∗ ∗ · · · ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (17)

From (14) and (16) (or, equivalently, (15) and (17)), we
can conclude that the right-hand side of the transformed
system has the form (9).

Part B: In this part we construct a second change of co-
ordinates transforming (9) into (6). Let z = Φ(ζ) be a
global diffeomorphism defined by

zi = ζi, i 	= r, 1 ≤ i ≤ n,

zr = ζr + β(ζr+1, . . . , ζn).

From (9b), we have (6b):

y = cT z.

The dynamics transform into (6a) with

αi(y, zr+1, . . . , zn, u)

= ηi

(
zr − β(zr+1, . . . , zn), zr+1, . . . , zn, u

)
,

i 	= r, 1 ≤ i ≤ n,

αr(y, zr+1, . . . , zn, u)

= ηr

(
zr − β(zr+1, . . . , zn), zr+1, . . . , zn, u

)
+

n∑
j=r+1

∂β

∂ζj
ηj(ζ, u)

∣∣∣
ζ=Φ−1(z)

.

Therefore, the diffeomorphism T which transforms (1)
into the POCF (6) is a composition of the transformations
given in Part A and B: T = Φ ◦ Ψ. Part A fixes the de-
pendence of the system on the first r coordinates without
specifying the dependence on the remaining n − r coor-
dinates. Part B only changes the dependence in the r-th
coordinates to ensure that the output equals zr.

If the conditions C1–C3 hold globally, the condi-
tion C4 on the completeness of the vector fields implies
the existence of a global diffeomorphism (Respondek,
1986).

We remark that, if r = n, the conditions in The-
orem 2 are the same as those of the OCF (Krener and
Isidori, 1983). Evidently, for r < n the proposed exis-
tence conditions are satisfied by a larger class of systems
than those admitting an OCF.

When n = 2, we can only have a POCF of index
r = 1. In this case, only the condition C1 (i.e., dh 	= 0)
must be checked since C2 and C3 are always satisfied.

As is mentioned in the proof of Theorem 2, the con-
dition C1 implies that a solution of (8) exists but is not
unique. This nonuniqueness can be used to simplify the
vector fields adi

−fv, 1 ≤ i ≤ r − 1. Simpler expressions
for these vector fields lead to a less complex observer de-
sign. A particular solution of (8) is given by v = Q+

r er,
where Q+

r = (QT
r Qr)−1QT

r denotes the Moore-Penrose
inverse (Moore, 1920).

3. Observer Design and Error Convergence

We consider two observer designs which are based on the
POCF (6). The first design has an advantage of a simpler
expression for its gain. The second design requires the
knowledge of the POCF coordinates to compute its gain.

When discussing observers and their convergence, it
is convenient to introduce an alternative notation for the
POCF. We split (6) into two subsystems:

ż1 = A0z1 + α1(y, z2, u),

ż2 = α2(y, z2, u),

y = cT0 z1,

where z1 denotes the first r components of z, and z2

stands for the last n − r components of z. Similarly, α1

denotes the first r components of α, and α2 signifies the
last n− r components of α.

3.1. Observer Design No. 1. We consider a
Luenberger-like observer structure

˙̂x = f(x̂) + g(x̂, u) + k(x̂)
(
y − h(x̂)

)
, (18)
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where the gain vector k depends on the estimated state
alone. Assuming that the system (1) satisfies the condi-
tions of Theorem 2, we can express the observer (18) in
the POCF coordinates(

˙̂z1
˙̂z2

)
=

(
A0ẑ1 + α1(ŷ, ẑ2, u)

α2(ŷ, ẑ2, u)

)

+ (S′(ẑ))−1 k
(
S(ẑ)

)(
y − h(x̂)

)
,
(19)

whereS = T−1, S′ = ∂x/∂z and ŷ = cT0 ẑ1. We consider
the choice

k
(
S(ẑ)

)
= S′(ẑ)

(
l

0

)
(20)

with l = (p0, . . . , pr−1)T , and below, in Section 3.3, we
will appropriately assign the roots of

det
(
λI−(A0− lcT0 )

)
= p0+p1λ+ · · ·+pr−1λ

r−1+λr.
(21)

Substituting (20) into (19), we obtain

˙̂z1 = A0ẑ1 + α1(ŷ, ẑ2, u) + l(y − cT0 ẑ1), (22a)

˙̂z2 = α2(ŷ, ẑ2, u). (22b)

The estimation error z̃ = z−ẑ of this observer is governed
by

˙̃z1 = (A0 − lcT0 )z̃1 + α1(y, z2, u) − α1(ŷ, ẑ2, u), (23a)

˙̃z2 = α2(y, z2, u) − α2(ŷ, ẑ2, u). (23b)

An observer is typically implemented in the original x-
coordinates and, ideally, to simplify the design procedure,
the gain k can be computed without requiring expressions
for the POCF coordinates or related functions α1 and α2.
Since S is the inverse of T , we can rewrite (11) in the form

adi
−fv(x) = S′(T (x)

)
ei+1, 0 ≤ i ≤ r − 1.

Hence from (20) we have a simple expression for the ob-
server gain:

k(x̂) = p0v(x̂) + p1ad−fv(x̂) + · · · + pr−1adr−1
−f v(x̂).

(24)

3.2. Observer Design No. 2. If we choose the observer
structure

˙̂x = f(x̂) + g(x̂, u) + k(x̂, y, u) (25)

and require a cascade or triangular form error dynamics

˙̃z1 = (A0 − lcT0 )z̃1 + α1(y, z2, u) − α1(y, ẑ2, u), (26a)

˙̃z2 = α2(y, z2, u) − α2(y, ẑ2, u), (26b)

then this implies that in the z-coordinates the observer is

˙̂z1 = A0ẑ1 + α1(y, ẑ2, u) + l(y − cT0 ẑ1), (27a)

˙̂z2 = α2(y, ẑ2, u), (27b)

and the gain in (25) is

k
(
S(ẑ), y, u

)
= S′(ẑ)

(
α(y, ẑ2, u) − α(ŷ, ẑ2, u) + lcT0 z̃1

)
, (28)

where the constant gain vector l is chosen below, in Sec-
tion 3.3, to assign the roots of (21).

Comparing (22) and (27), we remark that the ob-
servers differ in that the second one uses y in place of
ŷ. From this one might expect that the second design uses
more exact system information and might lead to better
convergence.

3.3. Error Dynamics Convergence. Next, we demon-
strate the convergence of the observers (18), (24) and (25),
(28). We treat the convergence of the observers in separate
theorems and consider (18), (24) first.

3.3.1. Observer Design No. 1. We begin with the fol-
lowing assumptions:

(A1) The input u is bounded, i.e., there exists a positive
constant γ0 such that |u(t)| ≤ γ0, t ≥ 0.

(A2) The map α1 is globally Lipschitz in y and z2, uni-
formly in u, i.e., there exist positive constants γ1, γ2

such that

‖α1(y, z2, u) − α1(ŷ, ẑ2, u)‖ ≤ γ1‖ỹ‖ + γ2‖z̃2‖

for all y, ŷ ∈ R, z2, ẑ2 ∈ R
n−r, and any bounded u.

As in (Amicucci and Monaco, 1998), we require a steady-
state solution property of the system. The next assumption
is the uniform robust steady-state solution property with
respect to y:

(A3) There exist a positive definite matrix P2 ∈
R

(n−r)×(n−r) and positive constants γ3, γ4 such
that for V2(z̃2) = z̃T

2 P2z̃2 we have

∂V2(z̃2)
∂z̃2

(
α2(y, z2, u) − α2(ŷ, ẑ2, u)

)
= 2z̃T

2 P2

(
α2(y, z2, u) − α2(ŷ, ẑ2, u)

)
≤ γ3‖ỹ‖2 − γ4‖z̃2‖2 (29)

for all y, ŷ ∈ R, z2, ẑ2 ∈ R
n−r, and any boundedu.
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The function V2 is also called an exponential-decay
output-to-state stable (OSS) Lyapunov function (Sontag
and Wang, 1997).

Before stating the convergence theorem, we intro-
duce a lemma from (Röbenack and Lynch, 2004) which
is a slightly different form of a result in (Gauthier et al.,
1992).

Lemma 1. Given A0 and c0 defined in (5), consider the
Lyapunov equation

AT
0 P (θ) + P (θ)A0 + θP (θ) = c0c

T
0 , (30)

where θ is a positive number and P ∈ R
r×r. Then there

exists θ̄ > 0 such that the Lyapunov equation (30) has a
positive definite solution

P (θ) > 0 with P 2(θ) ≤ P (θ), ∀θ ≥ θ̄ . (31)

Proof. It can directly be verified that the (i, j)-th entry of
P satisfying (30) is given by

pij =
(−1)i+j

θ2r−i−j+1
· (2r − i− j)!
(r − i)! (r − j)!

, 1 ≤ i, j ≤ r.

(32)
Moreover, this solution of (30) is unique and positive defi-
nite. Therefore, all eigenvalues of P are real and positive.
Due to (32), all entries of P converge to 0 as θ → ∞.
Hence, the eigenvalues of P also converge to 0 as θ → ∞
and there exists θ̄ > 0 such that the eigenvalues of P are
less than 1 for all θ ≥ θ̄.

Theorem 3. Consider the system (1) together with the ob-
server (18) and the observer gain (24). Assume that the
conditions C1–C4 hold and, under Assumptions A1–A3,
there exists a vector l ∈ R

r such that

lim
t→∞ ‖x̂(t) − x(t)‖ = 0

for all initial values x(0) and x̂(0) of (1) and (18), re-
spectively.

Proof. Our proof is based on the work (Gauthier et al.,
1992). Assuming that the conditions C1–C4 hold, conver-
gence can be analysed in the POCF coordinates. We have
to show that the equilibrium z̃ = 0 of (23) is globally as-
ymptotically stable. Let P ∈ R

r×r be a positive definite
matrix which will be specified later, and take the positive
definite matrix P2 from Assumption A3. Then the candi-
date Lyapunov function

V (z̃1, z̃2) = V1(z̃1) + V2(z̃2)

with

V1(z̃1) = z̃T
1 P z̃1 and V2(z̃2) = z̃T

2 P2z̃2

is positive definite and radially unbounded. The time
derivative of V1 along (23a) is

d
dt
V1(z̃1)

∣∣∣
(23a)

= z̃T
1

[
(A0 − lcT0 )TP + P (A0 − lcT0 )

]
z̃1

+ 2z̃T
1 P
[
α1(y, z2, u) − α1(ŷ, ẑ2, u)

]
. (33)

We choose the gain vector as

l =
ν

2
P−1c0 with ν > 0. (34)

Hence we have

(A0 − lcT0 )TP +P (A0 − lcT0 ) = AT
0 P +PA0 − ν c0c

T
0 .

(35)
Using A2, we obtain

2z̃T
1 P
[
α1(y, z2, u) − α1(ŷ, ẑ2, u)

]
≤ 2

∣∣z̃T
1 P
[
α1(y, z2, u) − α1(ŷ, ẑ2, u)

]∣∣
≤ 2 ‖P z̃1‖ · ‖α1(y, z2, u) − α1(ŷ, ẑ2, u)‖
≤ 2 ‖P z̃1‖ · (γ1‖ỹ‖ + γ2‖z̃2‖)

≤ 2γ1 ‖P z̃1‖ · ‖cT0 z̃1‖ + 2γ2 ‖P z̃1‖ · ‖z̃2‖ (36)

≤ γ2
1 z̃

T
1 P

2z̃1+z̃T
1 c0c

T
0 z̃1+

γ2
2

μ
z̃T
1 P

2z̃1+μ z̃T
2 z̃2 (37)

≤
(
γ2
1 +

γ2
2

μ

)
z̃T
1 P

2z̃1 + z̃T
1 c0c

T
0 z̃1 + μ z̃T

2 z̃2 (38)

for all μ > 0. Going from (36) to (37) we have used

ab ≤ (δa)2 + (b/δ)2, ∀δ ∈ R\{0}, a, b ∈ R .

Combining (33), (35), and (38) results in

d
dt
V1(z̃1)

∣∣∣
(23a)

≤ z̃T
1

(
AT

0 P + PA0

)
z̃1 + μz̃T

2 z̃2

+z̃T
1

((
γ2
1 +

γ2
2

μ

)
P 2 − (ν − 1)c0cT0

)
z̃1. (39)

Using Assumption A3, a bound on the time derivative
of V2 along (23b) is given by (29):

d
dt
V2(z̃2)

∣∣∣
(23b)

≤ γ3‖ỹ‖2 − γ4‖z̃2‖2

≤ γ3z̃
T
1 c0c

T
0 z̃1 − γ4z̃

T
2 z̃2. (40)

From (39) and (40) we collect the terms with ‖z̃2‖2:

(μ− γ4)‖z̃2‖2. (41)
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This quadratic form is negative definite for any μ ∈
(0, γ4). Next, we collect the terms with z̃1 occurring
in (39) and (40) and obtain

z̃T
1

[
AT

0 P + PA0 − (ν − 1 − γ3)c0cT0

+
(
γ1 +

γ2
2

μ

)
P 2
]
z̃1. (42)

Take θ̄ from Lemma 1 and choose

θ > max
{
θ̄, γ1 +

γ2
2

μ

}
and ν > γ3.

Using Lemma 1, the matrix P is the unique solution of

AT
0 P (θ) + P (θ)A0 + θP (θ) = c0c

T
0 .

Then the quadratic form (42) can be bounded as

z̃T
1

[
AT

0 P + PA0−(ν−1−γ3)c0cT0 +
(
γ1+

γ2
2

μ

)
P 2
]
z̃1

≤ z̃T
1

[(
γ1 +

γ2
2

μ

)
P 2 − θP − (ν − γ3)c0cT0

]
z̃1

≤ z̃T
1

[(
γ1 +

γ2
2

μ

)
P 2 − θP

]
z̃1

≤ z̃T
1

[(
γ1 +

γ2
2

μ
− θP

)
P

]
z̃1, (43)

where we employed (31). Since (41) and (43) are both
negative definite, we conclude that

V̇ (z̃1, z̃2)
∣∣∣
(23)

< 0 for (z̃1, z̃2) 	= (0, 0).

Therefore, V is a Lyapunov function of (23) and the equi-
librium (z̃1, z̃2) = (0, 0) is globally asymptotically stable.

3.3.2. Observer Design No. 2. We require Assumption
A1 and the following two modified versions of Assump-
tions A2 and A3:

(A4) The map α1 is globally Lipschitz in z2 uniformly in
y and u, i.e., there exists a positive constant γ2 > 0
such that

‖α1(y, z2, u) − α1(y, ẑ2, u)‖ ≤ γ2‖z̃2‖

for all y ∈ R, z2, ẑ2 ∈ R
n−r, and any bounded u.

(A5) There exist a positive definite matrix P2 ∈
R

(n−r)×(n−r) and a positive constant γ4 such that

for V2(z̃2) = z̃T
2 P2z̃2 we have

∂V2(z̃2)
∂z̃2

(α2(y, z2, u) − α2(y, ẑ2, u))

= 2z̃T
2 P2 (α2(y, z2, u) − α2(y, ẑ2, u)) ≤ −γ4‖z̃2‖2

(44)

for all y ∈ R, z2, ẑ2 ∈ R
n−r, and any bounded u.

The convergence result for the error dynamics (26) is
given by the following theorem, whose proof is based on
Theorem 3.

Theorem 4. Consider the system (1) together with the
observer (25), where the observer gain is given by (28).
Assume that the conditions C1–C4 hold. Under Assump-
tions A1, A4, and A5, there exists a vector l ∈ R

r such
that

lim
t→∞ ‖x̂(t) − x(t)‖ = 0

for all initial values x(0) and x̂(0) of (1) and (25), re-
spectively.

Proof. The proof is identical to that of Theorem 3 with
γ1 = γ3 = 0. Hence we require

θ > max
{
θ̄,
γ2
2

μ

}
, and ν > 2

and, as before, μ ∈ (0, γ4). With the values of θ and ν
satisfying these inequalities, we can compute l using (30)
and (34).

It is important to note that although the stability re-
sults in Theorem 3 and 4 are stated globally, following the
results in (Gauthier et al., 1992) or (Shim et al., 2001), we
can obtain semi-global stability results with weaker con-
ditions, sufficient for most practical applications. In par-
ticular, we do not require a global Lipschitz assumption
for a semi-global result.

4. Examples

4.1. Synchronous Machine. Neglecting damper wind-
ings, armature resistance, time derivatives of stator flux
linkages and back-emf in stator voltage expressions, a
synchronous motor can be expressed in state space form as
follows (Birk and Zeitz, 1988; Keller, 1986; Mukhopad-
hyay and Malik, 1972):

ẋ1 = x2,

ẋ2 =B1 −A1x2 −A2x3 sinx1 − 1
2
B2 sin(2x1),

ẋ3 = u−D1x3 +D2 cosx1,

y = x1,

(45)
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k(x̂, y) =

⎛
⎜⎝ (p1 −A1)(y − x̂1)

(p0 −A1p1 +A2
1)(y − x̂1) −A2x̂3(sin y − sin x̂1) −B2

D2(cos y − cos x̂1)

(
sin(2y) − sin(2x̂1)

)⎞⎟⎠ . (48)

The measured output and the first state component x1 de-
note the rotor position, x2 is the rotor velocity, and x3 is
the field winding flux linkage. The control u is propor-
tional to the voltage applied to field winding.

The observability matrix

Q3(x)

=

⎛
⎜⎝ 1 0 0

0 1 0
−A2x3 cosx1 −B2 cos(2x1) −A1 −A2 sinx1

⎞
⎟⎠

is not regular for x1 ∈ πZ. The unique starting vector
field for Q3 satisfying (8) is

v(x) =

⎛
⎜⎜⎜⎝

0
0

− 1
A2 sinx1

⎞
⎟⎟⎟⎠ ,

which is not defined for x1 ∈ πZ. Since [ad1
−fv,

ad2
−fv] 	= 0, the integrability condition for the OCF is

not fulfilled (Krener and Isidori, 1983). Further, adding
an output transformation does not lead to an OCF.

We consider the observer design proposed in Sec-
tion 3.1 with the index r = 2. We remark that, in general,
the proposed method allows for a range of choice for r.
The reduced observability matrix Q2 has the form

Q2 =

(
1 0 0
0 1 0

)
.

A starting vector field satisfying (8) is v = Q+
2 e2 =

(0, 1, 0)T . This v results in ad−fv = (1,−A1, 0)T . We
supplement this vector with the vector w1 = (0, 0, 1)T so
that the Jacobian matrix

S′(z) =

⎛
⎜⎝ 0 1 0

1 −A1 0
0 0 1

⎞
⎟⎠

is nonsingular.
We compute the transformations x = S(z) and z =

T (x) that are linear:

x1 = z2

x2 = z1 −A1z2

x3 = z3

and

z1 = A1x1 + x2,

z2 = x1,

z3 = x3.

Applying this transformation to (45) yields

⎛
⎜⎝ ż1

ż2

ż3

⎞
⎟⎠ =

⎛
⎜⎝ 0 0 0

1 0 0
0 0 0

⎞
⎟⎠
⎛
⎜⎝ z1

z2

z3

⎞
⎟⎠

+

⎛
⎜⎜⎝

B1 −A2z3 sin z2 − B2

2
sin(2z2)

−A1z2

u−D1z3 +D2 cos z2

⎞
⎟⎟⎠

︸ ︷︷ ︸
α(z2, z3, u)

,

y = z2. (46)

The second subsystem has the form

ż3 = u−D1z3 +D2 cos z2. (47)

This system is linear if we consider the signals u and z2

as time-dependent inputs. Its “unforced dynamics” have
an asymptotically stable equilibrium at z3 = 0 for D1 =
0.3222 > 0. The observer gain (28) has the form (48).
For the simulation parameters A1 = 0.2703,A2 = 12.01,
B1 = 39.19, B2 = −48.04, D1 = 0.3222, D2 = 1.9,
and u ≡ 1.933 were used. The initial conditions are
x(0) = (0.8, 0.1, 10)T and x̂(0) = (0, 0, 0)T (all vari-
ables are per unit). The observer eigenvalues were placed
at −10, i.e., p0 = 100 and p1 = 20. The simulation
results are shown in Fig. 1. The slow convergence of the
proposed observer is due to exp(−D1t) resulting from the
second subsystem (47).

It is important to note that the example does not ad-
mit an OCF (Krener and Isidori, 1983) or a partial nonlin-
ear observer form (Jo and Seo, 2002). Also, extended Lu-
enberger observer design leads to very large expressions
(Birk and Zeitz, 1988). We remark that the observability
condition (2) is only satisfied locally and there are advan-
tages to not having the observer depend on the inverse of
the observability matrix as this avoids singularities in the
observer gain. This inverse appears in most high-gain de-
signs and other related methods based on canonical forms.
Finally, the example illustrates the computationally simple
nature of the design.

4.2. Magnetic Levitation System. Under standard
modelling assumptions, a one degree-of-freedom mag-
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Fig. 1. Trajectories of the motor example.

netic levitation system can be modelled by

f(x)=

⎛
⎜⎜⎜⎜⎝
x1x3

x2
− Rx1x2

2β
x3

g − βx2
1

mx2
2

⎞
⎟⎟⎟⎟⎠, g(x, u)=

⎛
⎜⎜⎝
x2

2β
0
0

⎞
⎟⎟⎠u,

y = h(x) = x2.

(49)

Here x1 is the coil current, x2 the shifted rotor position, x3

the rotor velocity (Schweitzer et al., 1994), and g,m,R, β
are positive constants. As the rotor makes physical con-
tact with the coil at x2 = c > 0, we must have x2 ≥ c. An
OCF does not exist for the system (49). This can be seen
by first transforming the system to observable form coor-
dinates ξ1 = ψ(x2), ξ2 = Lfξ1 = ψ′(x2)x3, ξ3 = L2

fξ2,
which include an output transformation denoted by ψ
(Krener and Respondek, 1985). We transform the input
vector field g into the observable form coordinates

g̃(x) =
∂ξ

∂x
g(x) =

⎛
⎜⎜⎝

0
0

−x1ψ
′(x2)

mx2

⎞
⎟⎟⎠ ,

where g̃ is the representation of g in the ξ = (ξ1, ξ2, ξ3)T

coordinates. Since the Jacobian matrix ∂ξ
∂x has the form

∂ξ

∂x
=

⎛
⎜⎝ 0 ψ′(x2) 0

0 ψ′′(x2)x3 ψ′(x2)
∗ ∗ ∗

⎞
⎟⎠ ,

we necessarily have ∂ξ3
∂x1

	= 0 for ∂ξ
∂x to be nonsingular.

Since the starting vector in observable form coordinates is

v = ∂
∂ξ3

, we have

[v, g̃](x) =

⎛
⎜⎜⎝

0
0

− ∂

∂ξ3

(
x1ψ

′(x2)
mx2

)
⎞
⎟⎟⎠ 	= 0.

Therefore an OCF including an output transformation
does not exist (Krener and Respondek, 1985).

We consider a transformation to the POCF of index
r = 2. We have v = Q+

2 e2 = (0, 0, 1)T and ad−fv =
(x1/x2, 1, 0)T . Defining the complete vector field w1 =
(x2, 0, 0)T as the last column of the Jacobian matrix

S′(z) =

⎛
⎜⎝ 0 x1/x2 x2

0 1 0
1 0 0

⎞
⎟⎠ ,

we ensureS ′ to be nonsingular for x2 ≥ c and [v, w1] = 0,
[ad−fv, w1] = 0. Letting Ψt

v(x0) denote the flow of the
vector field v, we have

Ψz1
v (x0) =

⎛
⎜⎝x10

x20

z1

⎞
⎟⎠ ,

Ψz2
ad−f v(x0) =

⎛
⎜⎜⎝
x10

x20
(z2 + x20)

z2 + x20

x30

⎞
⎟⎟⎠ ,

Ψz3
w1

(x0) =

⎛
⎜⎝x20z3 + x10

x20

x30

⎞
⎟⎠ .

Taking the composition of these flows and letting x0 =
(0, c, 0)T , we obtain

x = S(z) = Ψz1
v ◦ Ψz2

ad−f v ◦ Ψz3
w1

(x0) =

⎛
⎜⎝z3(z2 + c)

z2 + c

z1

⎞
⎟⎠ ,

z = T (x) =

⎛
⎜⎝ x3

x2 − c

x1/x2

⎞
⎟⎠ ,

see (Nijmeijer and van der Schaft, 1990, Thm. 2.36). The
transformation T is a diffeomorphism on {x ∈ R

3 :
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x2 > c}. Transforming (49) into a POCF, we obtain⎛
⎜⎝ ż1

ż2

ż3

⎞
⎟⎠ =

⎛
⎜⎝ 0 0 0

1 0 0
0 0 0

⎞
⎟⎠
⎛
⎜⎝ z1

z2

z3

⎞
⎟⎠

+

⎛
⎜⎜⎜⎜⎝

g − βz2
3

m
0

u−R(c+ z2)z3
2β

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
α(z2, z3, u)

,

y = z2.

We consider the second observer design described in Sec-
tion 3.2. The second subsystem is

ż3 =
u−R(c+ z2)z3

2β
(50)

and, since z2 ≥ 0, (50) has an exponentially stable equi-
librium at z3 = 0 when u = 0, and hence it satisfies
Assumption A5. Although Assumption A4 is not satisfied
globally, we have ensured global error convergence as the
first error dynamics subsystem is LTI driven by a decaying
“input”,

(
˙̃z1
˙̃z2

)
=

(
0 −l1
1 −l2

)(
z̃1

z̃2

)
+

⎛
⎝ β

2m
(z2

3 − ẑ2
3)

0

⎞
⎠ ,

and hence for all (z̃1, z̃2)T (0) ∈ R
2, (z̃1, z̃2)T → 0 as

t→ ∞.
Simulations were performed using estimated state

feedback to implement state state feedback linearizing
control which tracks a square wave-like reference trajec-
tory shown in Fig. 2. The parameter values were iden-
tified from an actual physical system: g = 9.81 m/s2,
β = 76600 kg m3/(s2A2), c = 4 mm, m = 0.068 kg,
R = 11 Ω. The observer eigenvalues were taken at −500
which leads to p0 = 2.5× 105 and p1 = 1000. The initial
conditions were taken at x̃(0) = (0.5 A, 0, 0)T . The cor-
responding estimate error trajectories are shown in Fig. 3.

5. Conclusion

This paper has presented two observer designs for non-
linear systems based on a new partial nonlinear observer
canonical form (POCF), a detectability condition, and a
Lipschitz assumption. The POCF exists under weaker
conditions than the well-established OCF (Krener and
Isidori, 1983) and the existing partial observer canonical
forms (Jo and Seo, 2002). Two observer designs are pro-
vided. The first design has an advantage of a simple gain
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Fig. 3. Estimate errors for the magnetic levitation example.

expression. The second design leads to a simpler error
convergence proof but requires a more complicated gain
formula. Two examples illustrate the design method. The
synchronous generator example involves an observability
matrix which is only locally nonsingular; it illustrates how
the proposed design avoids the problems of inverting this
matrix. This inversion is required in many canonical form
designs and is not possible at points where the system is
not observable. Hence, the proposed designs can admit a
wide region of operation. Neither of the examples admits
an OCF, as Lie bracket conditions do not hold. As the pro-
posed approach involves weaker Lie bracket conditions, it
is also more broadly applicable for this reason.
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