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In this paper we introduce a new modeling paradigm for shortest path games representation with Petri nets. Whereas
previous works have restricted attention to tracking the net using Bellman’s equation as a utility function, this work uses
a Lyapunov-like function. In this sense, we change the traditional cost function by a trajectory-tracking function which is
also an optimal cost-to-target function. This makes a significant difference in the conceptualization of the problem domain,
allowing the replacement of the Nash equilibrium point by the Lyapunov equilibrium point in game theory. We show that the
Lyapunov equilibrium point coincides with the Nash equilibrium point. As a consequence, all properties of equilibrium and
stability are preserved in game theory. This is the most important contribution of this work. The potential of this approach
remains in its formal proof simplicity for the existence of an equilibrium point.
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1. Introduction

Decision making (Bellman, 1957; Howard, 1960; Puter-
man, 1994) is the study of identifying and choosing strate-
gies which guide the selection of actions that lead a deci-
sion maker to the final decision state. Decisions involve a
choice based on a set of predefined criteria and the iden-
tification of alternatives. The available alternatives influ-
ence the criteria we apply to them, and, similarly, the cri-
teria we establish influence the alternatives we will con-
sider.

The optimal control of such systems needs to take
into account different circumstances and preferences and,
in addition, the treatment of the uncertainty of future
events (Hernández-Lerma, 1996; Hernández-Lerma and
Lasserre, 1999). In most real applications, the optimum
performance is an impossible goal. On the contrary, cer-
tain problems present a particular structure that allows us
to avoid complexity and to achieve optimality efficiently.
This creates the need for extending the decision-making
framework to make good decisions efficiently finding the
shortest-path and the minimum cost-to-target.

Markov decision processes are commonly used to an-
alyze shortest-path and minimum cost-to-target problems
in which a natural form of termination guarantees that the
expected future costs are bounded, at least under some

policies. The stochastic shortest path problem (Bertsekas
and Shreve, 1978; Bertsekas, 1987; Blackwell, 1967; Der-
man, 1970; Kushner, 1971; Strauch, 1966; Whittle, 1983)
is a generalization through which each node has a proba-
bility distribution over all possible successor nodes. Given
a starting node and a selection of distributions, we wish
that the path led to a final point with probability one hav-
ing the minimum expected length. Note that if it assigned
a probability one to every probability distribution of each
single successor node, then a deterministic shortest path
problem is obtained.

In this sense, finite action-state and action-transient
Markov decision processes with positive cost functions
were first formulated and studied by Eaton and Zadeh
(1962). They called it a problem of pursuit that consists
of intercepting in a minimum expected time a target that
moves randomly among a finite number of states. In the
study, they established the idea of a proper policy and sup-
posed that at each state, except the final state, the set of
controls is finite. Pallu de la Barriere (1967) supported
and improved these results. Derman (1970) also extended
these results under the title of first passage problems, ob-
serving that the finite-state Markovian decision problem is
a particular case. Veinott (1969) obtained similar results to
that of Eaton and Zadeh (1962) proving that dynamic pro-
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gramming mapping is a contraction under the assumption
that all stationary policies are proper (transient). Kushner
(1971) enhanced the results of Eaton and Zadeh (1962)
letting the set of controls to be infinite at each state, and
restricting the state space with a compactness assumption.
Whittle (1983), under the name transient programming,
supported the results obtained by Veinott (1969). He ex-
tended the problem presented by Veinott to an infinite state
and control spaces under uniform boundedness conditions
on the expected termination time.

Bertsekas and Tsistsiklis (Bertsekas and Shreve,
1978; Bertsekas, 1987; Bertsekas and Tsitsiklis, 1989),
denoting the problem as the stochastic shortest path prob-
lem, improved the results of Eaton and Zadeh (1962);
Veinott (1969) and Whittle (1983), by weakening the con-
dition that all policies be transient. They established that
every stationary deterministic policy can have a value
function associated, which is unbounded from above.
Bertsekas and Tsistsiklis (1991), in a subsequent work,
strengthened their previous result by relaxing the condi-
tion that the set of actions available in each state be finite.
They assumed that the set of actions available in each state
is compact, the transition kernel is continuous over the set
of actions available in each state, and the cost function is
semi-continuous (over the set of actions available in each
state) and bounded. Hinderer and Waldmann (2003; 2005)
improved the result presented by Mandl (1969), Veinott
(1969) and Rieder (1975) for finite Markovian decision
processes with an absorbing set. They were interested in
the critical discount factor, defined as the smallest number
such that for all discount factors β smaller than this value,
the limit v of the n-stage β-discounted optimal value func-
tion exists and is finite for each choice of the one-stage re-
ward function. Pliska (1978) assumed that the cost func-
tion was bounded and that all policies were transient, ad-
ditionally to the well-known assumptions of a compact
action space, a continuous transition kernel, and a lower
semi-continuous cost function. It is important to note that
this work was the first one to extend the problem to Borel
states and action spaces. Hernandez-Lerma et al. (1999)
expanded the results of Pliska by weakening the condition
that the cost function was bounded and supposing that it
was dominated by a given function.

The optimal stopping problem is directly related to
the stochastic shortest-path problem and was investigated
by Dynkin (1963), and Grigelionis and Shiryaev (1966),
and considered extensively in the literature by others
(Derman, 1970; Kushner, 1971; Shiryaev, 1978; Whittle,
1983). It is a special type of the transient Markov deci-
sion process where a state-dependent cost is incurred only
when invoking a stopping action which leads the system
to the destination (finish); all costs are zero before stop-
ping. For optimal stopping problems, the associated value
function of the policy (under which the stopping action is

never taken) is equal to zero at all states: however, it is not
transient.

Shortest path games are usually conceptualized as
two-player, zero-sum games. On the one hand, the “min-
imizing” player seeks to drive a finite-state dynamic sys-
tem to reach a terminal state along the least expected cost
path. On the other hand, the “maximizer” player seeks
to maximize the expected total cost interfering with the
minimizer’s progress. In playing the game, the players
implement actions simultaneously at each state, with a
full knowledge of the state of the system but without any
knowledge of each other’s current decision.

Shapley (1953) provided the first work on shortest
path games. In his paper, two players are successively
faced with matrix-games of mixed strategies where both
the immediate cost and transition probabilities to new
matrix-games are influenced by the decisions of the play-
ers. In this conceptualization, the state of the system is the
matrix-game currently being played. Kushner and Cham-
berlain (1969) took into account undiscounted, pursuit,
stochastic games. They assumed that the state space is
finite with a final state corresponding to the evader being
trapped, and they considered pure strategies over compact
action spaces. Under these considerations, they proved
that there exists an equilibrium cost vector for the game
which can be found through value iteration. Van der Wal
(1981) explored a particular case of the research by Kush-
ner and Chamberlain (1969), producing error bounds for
updates in the value iteration, considering restrictive as-
sumptions about the capability of the pursuer to capture
the evader. Kumar and Shiau (1981), for the case of a non-
negative additive cost, proved the existence of an extended
real equilibrium cost vector in non-Markov randomized
policies. They showed that the minimizing player can
achieve the equilibrium using a stationary Markov ran-
domized policy. In addition, for the case where the state
space is finite, the maximizing player can play ε-optimally
using stationary randomized policies.

Patek and Bertsekas (Patek, 1997; Patek and Bert-
sekas, 1999) analyzed the case of two players, where one
player seeks to drive the system to termination along a
least cost path and the other seeks to prevent the termina-
tion altogether. They did not assume the non-negativity of
the costs, and the analysis, being much more complicated
than the corresponding analysis of Kushner and Cham-
berlain (1969), generalized (to the case of two players)
those for stochastic shortest path problems (Bertsekas and
Tsitsiklis, 1991). Patek and Bertsekas proposed alterna-
tive assumptions which guarantee that, at least under opti-
mal policies, the terminal state is reached with probability
one. They considered undiscounted additive cost games
without averaging, admitting that there are policies for
the minimizer which allow the maximizer to prolong the
game indefinitely at an infinite cost to the minimizer. Un-
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der assumptions which generalize deterministic shortest
path problems, they established (i) the existence of a real-
valued equilibrium cost vector achievable with stationary
policies for the opposing players and (ii) the convergence
of the value iteration and the policy iteration to the unique
solution of Bellman’s equation (Bellman, 1957). The re-
sults of Patek and Bertsekas did imply the results of Shap-
ley (1953), as well as those of Kushner and Chamberlain
(1969). Because of their assumptions relating to termina-
tion, they were able to derive conclusions stronger than
those made by Kumar and Shiau (1981) for the case of a
finite state space. In a subsequent work, Patek (2001) re-
examined the stochastic shortest path formulation in the
context of Markov decision processes with an exponential
utility function.

Whereas previous works have restricted attention to
track the net using Bellman’s equation as a utility func-
tion (Bellman, 1957), this paper introduces a modeling
paradigm for developing a decision process representa-
tion called the Game Petri Net (GPN). The idea is to use
a trajectory function that is non-negative and converges
in an optimal way to the equilibrium point. In this equi-
librium, each player chooses a strategy with a trajectory
value equal to the value that this strategy is a best reply
to a strategy profile chosen by the opponents. The ad-
vantage of this approach is that fixed-point conditions for
the game are given by the definition of the Lyapunov-like
function: however, formally it is not necessary for a fixed-
point theorem to satisfy Nash equilibrium conditions as
usual. In addition, new properties of equilibrium and sta-
bility (Clempner, 2005) are consequently introduced for
finite n-player games.

The game Petri net extends the place-transitions
Petri net theoretic approach including Markov decision
processes, using a trajectory-tracking function as a tool for
path planning. Although both perspectives are integrated
in a GPN, they work at different execution levels. That is,
the operation of the place-transition Petri net is not modi-
fied and the trajectory function is used exclusively for es-
tablishing a trajectory tracking in the place-transition Petri
net.

In the GPN we introduce the well-known Nash equi-
librium point concept. We also introduce an alternative
definition to the Nash equilibrium point that we call the
steady-state equilibrium point in the sense of Lyapunov.
The steady-state equilibrium point is represented in the
GPN by the optimum point. We show that the optimum
point (the steady-state equilibrium point) and the Nash
equilibrium point coincide. It is interesting to note that the
steady-state equilibrium point lends necessary and suffi-
cient conditions of stability to the game (Clempner, 2005).

The paper is structured in the following manner: The
next section presents the necessary mathematical back-
ground and terminology needed to understand the rest of

the paper. Section 3 describes the GPN, and all structural
assumptions are introduced. Section 4 discusses the main
results of the paper, giving a detailed analysis of equilib-
rium conditions for the GPN. Finally, in Section 4 some
concluding remarks are provided.

2. Preliminaries

In this section, we present some well-established defini-
tions and properties which will be used later.

Notation 1. N = {0, 1, 2, . . .}, R+ = [0,∞), Nn0+ =
{n0, n0 + 1, . . . , n0 + k, . . . } , n0 ≥ 0. We represent by
0̄ the vector (0, . . . , 0) ∈ R

d and by C̄ the vector of con-
stants (C, . . . , C) ∈ R

d. Given x, y ∈ R
d, we usually

denote the relation “≤” to mean componentwise inequal-
ities with the same relation, i.e., x ≤ y is equivalent to
xi ≤ yi, ∀i. A function f(n, x), f : R

d → R
d is called

nondecreasing in x if, given x, y ∈ R
d such that x ≥ y

and n ∈ Nn0+, we have f(n, x) ≥ f(n, y).

2.1. Petri Nets. Petri nets are a tool for the study of
systems. Petri net theory allows a system to be modeled
by a Petri net, a mathematical representation of the sys-
tem. The analysis of the Petri net then can, hopefully,
reveal important information about the structure and dy-
namic behavior of the modeled system. This information
can then be used to evaluate the modeled system and to
suggest improvements or changes.

A Petri net is the quintuple PN =
{P, Q, F, W, M0}, where P = {p1, p2, . . . , pm} is
a finite set of places, Q = {q1, q2, . . . , qn} is a finite set
of transitions, F ⊆ (P × Q) ∪ (Q × P ) is a set of arcs,
W : F → N

+
1 is a weight function, M0: P → N is the

initial marking, P ∩ Q = ∅ and P ∪ Q �= ∅.
A Petri net structure without any specific initial

marking is denoted by N . A Petri net with the given
initial marking is denoted by (N, M0). Notice that if
W (p, q) = α (or W (q, p) = β), then this is often rep-
resented graphically by α, (β) arcs from p to q (q to p)
each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number of
tokens) at the place pi ∈ P at the time k, and let Mk =
[Mk(p1), . . . , Mk(pm)]T denote the marking (state) of
PN at the time k. A transition qj ∈ Q is said to be en-
abled at the time k if Mk(pi) ≥ W (pi, qj) for all pi ∈ P
such that (pi,qj) ∈ F . It is assumed that at each time k,
there exists at least one transition to fire, i.e., it is not pos-
sible to block the net. If a transition is enabled, then it can
fire. If an enabled transition qj ∈ Q fires at the time k,
then the next marking for pi ∈ P is given by

Mk+1(pi) = Mk(pi) + W (qj , pi) − W (pi, qj).

Let A = [aij ] denote an n × m matrix of integers
(the incidence matrix), where aij = a+

ij − a−
ij with a+

ij =
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W (qi, pj) and a−
ij = W (pj , qi). Let uk ∈ {0, 1}n denote

a firing vector, where if qj ∈ Q is fired, then its cor-
responding firing vector is uk = [0, . . . , 0, 1, 0, . . . , 0]T

with “1” in the j-th position in the vector and zeros every-
where else. The matrix equation (non-linear difference
equation) describing the dynamical behavior represented
by a Petri net is

Mk+1 = Mk + AT uk, (1)

where if at the step k, a−
ij < Mk(pj) for all pj ∈ P,

then qi ∈ Q is enabled, and if this qi ∈ Q fires, then its
corresponding firing vector uk is utilized in the difference
equation (1) to generate the next step. Notice that if M

′

can be reached from some other marking M , and if we fire
some sequence of d transitions with corresponding firing
vectors u0, u1, . . . , ud−1, we obtain

M
′
= M + AT u, u =

d−1∑
k=0

uk. (2)

Definition 1. The set of all markings (states) reachable
from some starting marking M is called the reachability
set, and is denoted by R(M).

Let (Nn0+, d) be a metric space where d : Nn0+ ×
Nn0+ → R+ is defined by

d(M1, M2) =
m∑

i=1

ζi | M1(pi) − M2(pi) |,

ζi > 0, i = 1, . . . , m.

2.2. Bellman’s Equation. We assume that every dis-
crete event system with a finite set of states P to be con-
trolled can be described as a fully-observable, discrete-
state Markov decision process (Bellman, 1957; Howard,
1960; Puterman, 1994). To control the Markov chain,
there must exist a possibility of changing the probability
of transitions through an external interference. We sup-
pose that there exists a possibility to carry out the Markov
process by N different methods. In this sense, we suppose
that the controlling of the discrete event system has a fi-
nite set of actions Q available which cause stochastic state
transitions. We denote by pq(s, t) the probability that ac-
tion q generates a transition from the state s to the state t
where s, t ∈ P .

A stationary policy π : P → Q denotes a particular
strategy or a course of action to be adopted by a discrete
event system, with π(s, q) being the action to be executed
whenever the discrete event system is in the state s ∈ P .
We refer to Bellman (1957), Howard (1960) and Puterman
(1994) for a description of policy construction techniques.

Hereafter, we will consider having the possibility to
estimate every step of the process through a utility func-
tion that represents the utility generated by the transition

from the state s to the state t in the case of using an action
q. We assume an infinite time horizon, and that the dis-
crete event system accumulates the utility associated with
the states it enters.

Let us define Vπ(s) as the maximum utility starting
at the state s that guarantees choosing the optimal course
of action π(s, q). Let us suppose that at the state s we
have an accumulated utility R(s) and the previous transi-
tions have been executed in an optimal form. In addition,
let us assume that the transition of going from the state
s to the state t has a probability of pπ(s,q)(s, t). Because
the transition from the state s to the state t is stochastic,
it is necessary to take into account the possibility of go-
ing through all the possible states from s to t. Then the
utility of going from the state s to state t is represented by
Bellman’s equation (Bellman, 1957):

Vπ(s) = R(s) + β
∑
t∈P

pπ(s,q)(s, t)Vπ(t), (3)

where β ∈ [0, 1) is the discount rate (Howard, 1960).
The value of π at any initial state s can be computed

by solving this system of linear equations. A policy π is
optimal if Vπ(t) ≥ Vπ′(t) for all t ∈ P and policies π′.
The function V establishes a preference relation.

3. Game Petri Nets

The aim of this section is to associate to any shortest
path game a game Petri net (Clempner, 2005, 2006). The
GPN structure will represent all possible strategies exist-
ing within the game.

Definition 2. A game Petri net is the 8-tuple GPN =
(N , P, Q, F, W, M0, π, U), where

• N = {1, 2, . . . , n} denotes a finite set of players,

• P = P1 ×P2 × · · · × Pn is the set of places that
represents the Cartesian product of states (each tuple
is represented by a place),

• Q = Q1 × Q2 × · · · × Qn is the set of transitions
that represents the Cartesian product of the condi-
tions (each tuple is represented by a transition),

• F ⊆ I ∪ O is a set of arcs where I ⊆ (P × Q) and
O ⊆ (Q×P ) such that P ∩Q = ∅ and P ∪Q �= ∅,

• W : F → Nn is a weight function,

• M0: P → Nn is the initial marking,

• π : I → R
n
+ is a routing policy representing the

probability of choosing a particular transition (rout-
ing arc), such that for each pi ∈ P∑

qjι:(piι,qjι)∈I

π((piι, qjι)) = 1, ∀ι ∈ N ,

• U : P → R
n
+ is a trajectory function.
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Interpretation: The previous behavior of the GPN is de-
scribed as follows: When a token reaches a place, it is
reserved for the firing of a given transition according to
the routing policy determined by U . A transition q must
fire as soon as all places p1 ∈ P contain enough tokens
reserved for the transition q. Once the transition fires,
it consumes the corresponding tokens and immediately
produces an amount of tokens in each subsequent place
p2 ∈ P . The satisfaction of π(δ) = 0 for δ ∈ I means
that there are no arcs in the place-transitions Petri net.

Fig. 1. Routing policy, Case 1.

Fig. 2. Routing policy, Case 2.

In Figs. 1 and 2 partial routing policies π for a given
player ι ∈ N are represented with respect to a game Petri
net GPN that generates a transition from the state p1 to
the state p2 where p1, p2 ∈ P :

• Case 1. In Fig. 1 the probability that q1 generates
a transition from the state p1 to p2 is 1/3. But, be-
cause the q1 transition to the state p2 has two arcs,
the probability to generate a transition from the state
p1 to p2 is increased to 2/3. Note that one token is re-
quired in p1 to fire the transition q1, and two tokens
are generated in p2.

• Case 2. In Fig. 2 we set by convention the probabil-
ity that q1 generates a transition from the state p1 to
p2 as 1/3 (1/6 plus 1/6). However, because the transi-
tion q1 to state p2 has only one arc, the probability to
generate a transition from state p1 to p2 is decreased
to 1/6. Note that two tokens are required in p1 to fire
the transition q1, and one token is generated in p2.

• Case 3. Finally, we have the trivial case when there
exists only one arc from p1 to q1 and from q1 to p2.

Remark 1. The previous definition in no way changes the
behavior of the place-transition Petri net, and the routing
policy is used to calculated the trajectory value at each
place of the net.

Remark 2. It is important to note that the trajectory value
can be re-normalized after each transition or time k of the
net.

Remark 3. For the case of n players, we will represent
the routing policies π using the Cartesian product, i.e.,
(1/3, 1/5, 1/16, . . . ).

It is important to note that, by definition, the trajec-
tory function U is employed only for establishing trajec-
tory tracking, working in a different execution level of that
of the place-transition Petri net. The trajectory function U
changes in no way the place-transition Petri net’s evolu-
tion or performance.

Uk(·) denotes the trajectory value at the place pi ∈ P
at the time k. Let [Uk] = [Uk(·), . . . , Uk(·)]T denote
the trajectory value state of the GPN at the time k.
FN : F → R+ is the number of arcs from place p to
the transition q (the number of arcs from the transition q
to the place p). The rest of GPN functionality is as de-
scribed in PN preliminaries.

Let us recall some basic notions in game theory. We
denote by Sι = {si} the set of pure strategies for the
player ι (strategies are represented by the probability that
a transition can be fired in the GPN ). For notational
convenience, we write S =

∏
ι∈N Sι (the pure strate-

gies profile), and S−ι =
∏

j∈N|{ι} Sj (the pure strate-
gies profile of all the players but for the player ι). For
an action tuple s = (s1, . . . , sn) ∈ S we write s−ι =
(s1, . . . , sι−1, sι+1, . . . , sn) and, with an abuse of nota-
tion, s = (sι, s−ι).

Similarly, we denote by Γι = {σi} the set of mixed
strategies for the player ι, identified with the routing pol-
icy representing the probability of choosing a particular
transition. Analogously, we use Γ =

∏
ι∈N Γι to denote

the mixed strategies profile that combines strategies, one
for each player, and Γ−ι =

∏
j∈N|{ι} Γj to denote the

mixed strategies profile of all the players except for the
player ι. For a strategy tuple σ = (σ1, . . . , σn) ∈ Γ we
write σ−ι = (σ1, . . . , σι−1, σι+1, . . . , σn) and, with an
abuse of notation, σ = (σι, σ−ι). For a strategy profile
σ−ι, we write σ−ι =

∏
j∈N|{ι} σj , the probability iden-

tified with the routing policy π that the opponents of the
player ι play the strategy profile s−i ∈ S−i. We restrict
our attention to independent strategy profiles. For our con-
struction of the GPN , a strategy profile determines an
outcome representing the corresponding trajectory value
of each player.

Then, formally, we introduce the following defini-
tions:

Definition 3. A final decision point pf ∈ P with respect
to a game Petri net GPN = (N , P, Q, F, W, M0, π, U)
is a place p ∈ P where the infimum is asymptotically
approached (or the minimum is attained), i.e., U(p) = 0̄
or U(p) = C̄.

Definition 4. An optimum point p� ∈ P with respect
a game Petri net GPN = (N , P, Q, F, W, M0, π, U) is
a final decision point pf ∈ P where the best choice is
selected ‘according to some criteria’.

Property 1. Every game Petri net GPN =
(N , P, Q, F, W, M0, π, U) has a final decision point.



J. Clempner392

Definition 5. A strategy with respect a game Petri net
GPN = (N , P, Q, F, W, M0, π, U) is identified by σ
and consists of the routing policy transition sequence rep-
resented in the GPN graph model such that some point
p ∈ P is reached.

Definition 6. An optimum strategy with respect to a game
Petri net GPN = (N , P, Q, F, W, M0, π, U) is identi-
fied by σ� and consists of the routing policy transition
sequence represented in the GPN graph model such that
an optimum point p� ∈ P is reached.

Remark 4. It is important to note that a strategy can be
conceptualized in a different manner depending on the im-
plementation point of view. It can be implemented as the
probability that a transition can be fired, as usual, or, more
generally, as a chain of such probabilities. Both perspec-
tives are correct, but in the latter case we only have to
give an interpretation of strategy optimality in terms of
the chain of transitions.

Consider arbitrary pi ∈ P and for each fixed tran-
sition qj ∈ Q that forms an output arc (qj , pi) ∈ O.
We look at all previous places ph of the place pi de-
noted by the list (set) pηij = {ph : h ∈ ηij}, where
ηij = {h : (ph, qj) ∈ I & (qj , pi) ∈ O}, which ma-
terialize all input arcs (ph, qj) ∈ I and form the sum∑

h∈ηij

(〈
σhj(pi) ∗ U

σhj

k (ph)
〉)

ι
(4)

where

σhj(pi) =

(
π(ph1 , qj1) ∗

FN(qj , pi)
FN(ph, qj)

, π(ph2 , qj2)

∗ FN(qj , pi)
FN(ph, qj)

, . . . , π(phn , qjn) ∗ FN(qj , pi)
FN(ph, qj)

)
,

(〈∗〉)ι representing the product of the vector element by
element, i.e., (〈(a1, a2, . . . , an) ∗ (b1, b2, . . . , bn)〉)ι =
(a1b1, a2b2, . . . , anbn). phι is the ι-th element of the tu-
ple routing policy π, and the index sequence j ι is the set
{jι : ∀ι qjι ∈ (phι , qjι) ∩ (qjι , piι) & phι running over
the set pηij}. The quotient FN(qj , pi)/FN(ph, qj) is
used for normalizing the routing policies π. Note that
in the formula of σhj(pi) it is not necessary to spec-
ify ∀ι : FN(qjι , piι) and FN(phι , qjι) for calculating
FN(qjι , piι)/FN(phι , qjι) because the number of arcs
(FN(·, ·)) is the same for all players.

Proceeding with all qjs for a given player ι ∈ N , we
form the vector indexed by the sequence j identified by
(j0, j1, . . . , jf ) as follows:

α =
[

αj0 , . . . , αjf

]
, (5)

where

αj�
=

∑
h∈ηij�

(〈
σhj�

(pi) ∗ U
σhj�

k (ph)
〉)

ι
.

Intuitively, the vector (5) represents all possible trajecto-
ries through the transitions qj to a place pi for a fixed i
and a given player ι ∈ N .

Continuing the construction of the definition of the
trajectory function U , let us introduce the following defi-
nition:

Definition 7. Let L : R
n → R+ be a continuous map

and let x be the state of a realized trajectory. Then, L
is a vector Lyapunov-like function (Kalman and Bertram,
1960; Lakshmikantham and Martynyuk, 1990; Laksh-
mikantham et al., 1991) if it satisfies the following prop-
erties:

1. L(x1, . . . , xn) =
[
L1(x1), . . . , Ln(xn)

]
,

2. if ∃x∗
i such that ∀i Li(x∗

i ) = 0, then L(x∗
1, . . . , x

∗
n)

= 0̄,

3. if Li(xi) > 0 for ∀xi �= x∗
i then L(x1, . . . , xn) > 0̄,

4. if Li(xi) → ∞ when xi → ∞, then L(x1, . . . , xn)
→ ∞,

5. if ΔLi = Li(xi) − Li(yi) < 0 for all
(y1, . . . , yn) ≤U (x1, . . . , xn) and (x1, . . . , xn),
(y1, . . . , yn) �= (x∗

1, . . . , x
∗
n), then ΔL =

L(x1, . . . , xn) − L(y1, . . . , yn) < 0̄.

From the previous definition we have the following
remark:

Remark 5. In Definition 7, Point 4 we state that if
Li(xi) → ∞ when xi → ∞, then L(x1, . . . , xn) → ∞,
meaning that there is no x∗ reachable from some x.

Then, formally we define the trajectory function U as
follows:

Definition 8. The trajectory function U for a given
player ι ∈ N with respect a game Petri net GPN =
(N , P, Q, F, W, M0, π, U) is represented as

U
σhj

k,ι (pi) =

⎧⎪⎨
⎪⎩

Uk(p0) if i = 0, k = 0,

L(α) if i > 0, k = 0
or i ≥ 0, k > 0,

(6)

where the vector function L : D ⊆ R
n
+ → R

n
+ is a vec-

tor Lyapunov-like function which optimizes the trajectory
value through all possible strategies (i.e., through all pos-
sible trajectories defined by the different qjs), D is the
decision set formed by the js (0 ≤ j ≤ f ) of all those
possible transitions (qj , pi) ∈ O, and α is given in (5).
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Fig. 3. GPN — iterated prisoner’s dilemma.

Remark 6. From the previous definition we have the fol-
lowing remarks:

• The vector Lyapunov-like function L associated with
Definition 4 regarding an optimum point guarantees
that the optimal course of action is followed. In ad-
dition, the vector function L establishes a preference
relation because, by definition, L is asymptotic and
the criteria established in Definition 4 give the deci-
sion maker an opportunity to select a path that opti-
mizes the trajectory value.

• The iteration over k for U is as follows:

1. for i = 0 and k = 0 the trajectory value is
U0(p0) at place p0 and for the rest of the places
pi the value is 0̄,

2. for i ≥ 0 and k > 0 the trajectory value is
U

σhj

k (pi) at each place pi, and it is computed
by taking into account the value of the previous
places ph for k and k − 1 (when needed).

The prisoner’s dilemma (Axelrod, 1984) is used as a
first approach in game theory to conceptualize the conflict
between mutual support and selfish exploitation among in-
teracting players. The game can be illustrated by an ex-
ample where two men are arrested for a crime. The police
tell each suspect separately that if he testifies against the
other, he will be rewarded for cooperating. Each prisoner
has two possible strategies (Table 1): to testify (cooperate)
or to defect with the police (not to testify). If no player co-
operates, there is a mutual punishment with a score of P

Table 1. Prisoner’s dilemma

Player 1 \ Player 2 Cooperate
(testify)

Defect
(not testify)

Cooperate (testify) R, R S, T

Defect (not testify) T, S P, P

(the punishment corresponding to mutual defection, in this
particular case equal to zero, given that there is suppos-
edly no proof to convict either of the two). If both testify,
there is a mutual reduction in punishment, resulting in a
penalty value of R. However, if one testifies and the other
does not, the testifier receives a considerable punishment
reduction (the penalty of T , the temptation for defection),
and the other player receives the regular punishment (the
penalty of S, the “sucker” penalty for attempting to coop-
erate against defection). This game has usually two equi-
librium points: one non-cooperative (neither of the pris-
oners testifying) and the other cooperative (both prisoners
testify to the police).

Let us suppose that T > R > P > S. It is easy to
see that we have the structure of a dilemma like the one
in the story. On the one had, let us suppose that Player 2
testifies. Then Player 1 obtains R for cooperating and T
for defecting, and so the is better off defecting. On the
other hand, let us suppose that Player 2 does not testify.
Then Player 1 obtains S for cooperating and P for de-
fecting, and so he is again better off defecting. The move
‘not to testify’ for Player 1 is said to strictly dominate the
move ‘testify’: whatever his opponent does, he is better
off choosing ‘not testify’ than ‘testify’. By symmetry, ‘not
to testify’ also strictly dominates ‘testify’ for Player 2.
Thus, two “rational” players will defect and receive a pay-
off of P , while two “irrational” players can cooperate and
receive a greater payoff R.

Example 1. The Iterated Prisoner’s Dilemma (IPD), rep-
resented by Fig. 3, is played in the same manner as the
classical prisoner’s dilemma, but assumes that the play-
ers will interact with each other more than once. Axelrod
(1984) demonstrates that strategies that allow for coopera-
tion will usually have higher scores than strategies of pure
non-cooperation. A player applying the Tit-for-Tat (TFT)
strategy will cooperate at the beginning, and when he is
exploited, will return to the last action of his/her oppo-
nent.
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For the prisoner’s dilemma, a Lyapunov equilibrium
point is particularly interesting when the players have no
motivation to unilaterally deviate from it and improve
their outcome (as the Nash property requires) nor coop-
eration. In this sense, the Lyapunov equilibrium point im-
proves the Nash equilibrium point to the fact that it is re-
sistant to cooperation deviations between players. This is
because the stability achieved by the Nash equilibrium is
defined to avoid only unilateral deviations of each player.
The best-response against TFT with respect to the trajec-
tory function implemented as a Lyapunov-like function
U

(σι,σ−ι)
ι (p) is always ‘not to cooperate’.

A strategy σ for a time k = 0, i ≥ 0 is⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
σ(10,20),(11,21)((p11, p21)) 0 0 0 0
σ(10,20),(11,22)((p11, p22)) 0 0 0 0
σ(10,20),(12,21)((p12, p21)) 0 0 0 0
σ(10,20),(12,22)((p12, p22)) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

U((p10, p20))
U((p11, p21))
U((p11, p22))
U((p12, p21))
U((p12, p22))

⎤
⎥⎥⎥⎥⎥⎥⎦ .

A strategy σ
′

leading to the cooperative equilibrium
in the place (p12, p22) for a time k = 1, i ≥ 0 is⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 B

σ(10,20),(11,21)((p11, p21)) 0 0 0 0
σ(10,20),(11,22)((p11, p22)) 0 0 0 0
σ(10,20),(12,21)((p12, p21)) 0 0 0 0
σ(10,20),(12,22)((p12, p22)) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

U((p10, p20))
U((p11, p21))
U((p11, p22))
U((p12, p21))
U((p12, p22))

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where B = σ(12,21),(12r,22r)((p10, p20)).
A strategy σ

′′
leading to the non-cooperative equi-

librium in the place (p11, p21) for a time k ≥ 2, i ≥ 0
is

⎡
⎢⎢⎢⎢⎢⎢⎣

1 D 0 0 0
σ(10,20),(11,21)((p11, p21)) 0 0 0 0
σ(10,20),(11,22)((p11, p22)) 0 0 0 0
σ(10,20),(12,21)((p12, p21)) 0 0 0 0
σ(10,20),(12,22)((p12, p22)) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

U((p10, p20))
U((p11, p21))
U((p11, p22))
U((p12, p21))
U((p12, p22))

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where D = σ(11,21),(11r,21r)((p10, p20)). �
In most cases there is more than one best-response

strategy. For example, cooperation with TFT can be
achieved by the strategy ‘always cooperate’, by another
TFT or by many other cooperative strategies. Notice that
the strategies in the IPD will depend on the two premises
(a rational belief about other players’ strategies, the cor-
rectness of belief) under which the game is being played.

Notation 2. With the intention to further facilitate the no-
tation, we will represent the trajectory function U as fol-
lows:

1. Uk(pi)
�
= U

σhj

k (pi) for any transition and any strat-
egy,

2. U�
k (pi)

�
= U

σ�
hj

k (pi) for an optimum transition and
an optimum strategy,

3. σhj by σ, and we will specify hj when it is neces-
sary to describe the trajectory of the strategy σ in the
GPN ,

4. Uk,ι by Uι representing the trajectory function of
player ι, and we will specify the index k denoting
the trajectory value as Uk when it is needed.

The reader will easily identify which notation is used
depending on the context.

Property 2. The continuous function U(·) satisfies, more-
over, the following properties:

1. There exists p� ∈ P such that

(a) if there exists an infinite sequence {pi}∞i=1 ∈
P with pn →

n→∞ p� such that 0̄ ≤ · · · <

U(pn) < U(pn−1) < · · · < U(p1), then
U(p�) is the infimum, i.e., U(p�) = 0̄ ,

(b) if there exists a finite sequence p1, . . . , pn ∈ P
with p1, . . . , pn → p� such that C̄ = U(pn) <
U(pn−1) < · · · < U(p1), then U(p�) is
the minimum, i.e., U(p�) = C̄, where C̄ ∈
R

n, (p� = pn),

2. max
{
U(p) > 0̄, U(p) > C̄

}
where C̄ ∈ R

n, ∀p ∈
P such that p �= p� ,

3. ∀pi, pi−1 ∈ P such that pi−1 ≤U pi. Then ΔU =
U(pi) − U(pi−1) < 0̄.

From the previous property we have the following
remark:

Remark 7. In Property 2, Point 3 we state that ΔU =
U(pi)−U(pi−1) < 0̄ for determining the asymptotic con-
dition of the Lyapunov-like function.

Property 3. The trajectory function U : P → R
n
+ is a

vector Lyapunov-like function.

Remark 8. From Properties 2 and 3 we have that

• U(p�) = 0̄ or U(p�) = C̄ means that a final state
is reached. Without lost generality we can say that
U(p�) = 0̄ by means of a translation to the origin.

• In Property 2 we determine that the vector Lyapunov-
like function U(p) approaches a infimum/minimum
when p is large thanks to Point 4 of Definition 6.
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• In Property 2, Point 3 is equivalent to the fol-
lowing statement: ∃ {ε̄i} , ε̄i > 0̄ such that
|U(pi) − U(pi−1)| > ε̄i, where ∀pi, pi−1 ∈ P we
have that pi−1 ≤U pi.

Explanation. Intuitively, a Lyapunov-like function can be
considered as a routing function and an optimal cost func-
tion. In our case, an optimal discrete problem, the cost-to-
target values are calculated using a discrete Lyapunov-like
function. Every time a discrete vector field of possible ac-
tions is calculated over the decision process. Each applied
optimal action (selected via some ‘criteria’) decreases the
optimal value, ensuring that the optimal course of action
is followed and establishing a preference relation. In this
sense, the criteria change the asymptotic behavior of the
Lyapunov-like function by an optimal trajectory tracking
value. It is important to note that the process finishes when
the equilibrium point is reached. This point determines a
significant difference with Bellman’s equation.

Definition 9. Let GPN = (N , P, Q, F, W, M0, π, U)
be a game Petri net. A trajectory ω is an (finite or infi-
nite) ordered subsequence of places pς(1) ≤Uk

pς(2) ≤Uk

· · · ≤Uk
pς(n) ≤Uk

· · · such that a given strategy σ holds.

Definition 10. Let GPN = (N , P, Q, F, W, M0, π, U)
be a game Petri net. An optimum trajectory ω is an (fi-
nite or infinite) ordered subsequence of places p ς(1) ≤U�

k

pς(2) ≤U�
k

· · · ≤U�
k

pς(n) ≤U�
k

· · · such that the opti-

mum strategy σ� holds.

Theorem 1. Let GPN = (N , P, Q, F, W, M0, π, U) be
a non-blocking game Petri net (unless p ∈ P is an equi-
librium point). Then we have

U�
k (p�) ≤ Uk(p), ∀σ, σ�.

Proof. Let U be defined as in (6). Then, starting from p0

and proceeding with the iteration, eventually the trajectory
ω given by p0 = pς(1) ≤Uk

pς(2) ≤Uk
· · · ≤Uk

pς(n) ≤Uk

· · · which converges to p�, i.e., the optimum trajectory
is obtained. Since at the optimum trajectory the opti-
mum strategy σ� holds, we have that U�

k (p�) ≤ Uk(p),
∀σ, σ�.

Remark 9. The inequality U�
k (p�) ≤ Uk(p) means that

the trajectory value is optimum when the optimum strat-
egy is applied.

Corollary 1. Let GPN = (N , P, Q, F, W, M0, π, U) be
a non-blocking game Petri net (unless p ∈ P is an equi-
librium point), and let σ� be an optimum strategy. Set

L =
[

min
i=1,...,|α|

{αi}, . . . , min
i=1,...,|α|

{αi}
]
. Then

U�
k (p) =⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σ�
0jm

(pς(0)) σ�
1jm

(pς(0)) · · · σ�
njm

(pς(0))

σ�
0jn

(pς(1)) σ�
1jn

(pς(1)) · · · σ�
njn

(pς(1))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ�
0jv

(pς(i)) σ�
1jv

(pς(i)) · · · σ�
njv

(pς(i))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
σ�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Uk(p0)

Uk(p1)

· · ·
Uk(pi)
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
U

,

(7)

where p is a vector whose elements are those places
which belong to the optimum trajectory ω given by p0 ≤
pς(1) ≤Uk

pς(2) ≤Uk
· · · ≤Uk

pς(n) ≤Uk
· · · which con-

verges to p�.

Proof. Since at each step of the iteration, U �
k (pi) is equal

to one of the elements of vector α, we have that the rep-
resentation that describes the dynamical trajectory behav-
ior of tracking the optimum strategy σ� is given in (7),
where jm, jn, . . . , jv, . . . represent the indexes of the op-
timal routing policy, defined by the qjs.

4. Lyapunov-Nash Equilibrium Point

The interaction among players obliges each player to de-
velop a belief about the possible strategies of the other
players. Nash equilibria (Nash, 1951, 1996, 2002) are
supported by two premises: (i) each player behaves ratio-
nally given the beliefs about the other players’ strategies;
and (ii) these beliefs are correct. Both premises allow us
to regard the Nash equilibrium point as a steady state of
the strategic interaction. In particular, the second premise
makes this an equilibrium concept, because when every
individual is acting in agreement with the Nash equilib-
rium, no one has the need to take another strategy.

The best-reply strategy for a player is relative to the
strategy profile chosen by the opponents. The strategy
profile is said to contain a best reply for a given player
if he or she cannot increase the utility by playing another
strategy with respect to the opponents’ strategies. A strat-
egy profile is a Nash equilibrium point if none of the play-
ers can increase the utility by playing another strategy. In
other words, each player’s choice of a strategy is a best re-
ply to the strategies taken by his opponents. This is when
a player acting in accordance with the Nash equilibrium
has no motivation to unilaterally deviate and take another
strategy. Formally, we have the following definitions:

Consider the game GPN = (N , P, Q, F, W, M0, π,
U). For each player ι ∈ N and each profile σ−ι ∈ Γ−ι

of the strategies of his opponent, introduce the set of best
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replies, i.e., the strategies that player ι cannot improve. It
is defined as follows:

Bι(σ−ι) :=
{
σ�

ι ∈ Γι|∀σ′
ι ∈ Γι : U

(σ�
ι ,σ−ι)

ι (p�)

≤ U
(σ′

ι,σ−ι)
ι (p)

}
. (8)

Remark 10. In contrast to what we define in game theory,
in a GPN, by the definition of the Lyapunov-like trajectory
function, we look for an equilibrium point at the mini-
mum, for that reason we change ‘≥’ to ‘≤’ in (8). Since
Γι is finite and uι establishes an acyclic order, Bι(σ−ι) is
not empty.

Remark 11. It is important to note that in case the strat-
egy is implemented as a chain of transitions, ‘≤’ does not
represent a vector inequality, and the interpretation is ob-
tained from calculating the best reply Bι.

A Nash equilibrium is a profile of strategies such that
each player’s strategy is an optimal response to the other
players’ strategies.

Definition 11. A strategy profile σ�
ι is a Nash equilib-

rium point if, for all players ι,

U
(σ�

ι ,σ�
−ι)

ι (p�) ≤ U
(σ′

ι,σ
�
−ι)

ι (p)∀σ′
ι ∈ Γι. (9)

Note that in (9) we use ‘≤’ instead of ‘≥’ by the
arguments established in Remark 10.

Remark 12. Intuitively, a Nash equilibrium is a strategy
profile for a game, such that no player can increase his
or her payoff by changing the strategy, while the other
players keep their strategies fixed.

Definition 12. A strategy σ has the fixed point property if

it leads to the optimum point U
(σ�

ι ,σ�
−ι)

ι (p�).

Remark 13. From the previous two definitions, the fol-
lowing characterization is obtained: A strategy which has
the fixed point property is equivalent to being a Nash equi-
librium point.

Theorem 2. A non-blocking (unless p ∈ P is
an equilibrium point) game Petri net GPN =
(N , P, Q, F, W, M0, π, U) has a strategy σ which has the
fixed point property.

Proof. The conclusion is a direct consequence of Theorem
1 and its proof (where the existence of pΔ is guaranteed by
the first property given in the definition of the Lyapunov-
like function, given by Definition 7).

Corollary 2. If, in addition to the hypothesis of Theo-
rem 2, the game GPN is finite, the strategy σ leads to
an equilibrium point.

Proof. See Corollary 1.

Theorem 3. The optimum point1 coincides with Nash
equilibria.

Proof. This is immediate from Definition 4 of an optimum
point and Remark 13.

Remark 14. The potential of the previous theorem con-
sists in the simplicity of its formal proof regarding the ex-
istence of an equilibrium point (in contrast to the fact that
a Nash equilibrium point exists in a non-empty, compact,
convex subset of a Euclidian space by Kakutani’s fixed-
point theorem).

5. Conclusions and Future Work

A formal framework for the shortest path game represen-
tation called game Petri nets was presented. The expres-
sive power and the mathematical formality of the GPN
contribute to bridging the gap between Petri nets and game
theory. The Lyapunov method induces a new equilibrium
and stability concept in game theory. We proved that the
equilibrium concept in a Lyapunov sense coincides with
the equilibrium concept of Nash, representing an alterna-
tive way to calculate the equilibrium of the game. As far
as we know, we introduce the game theory as a new ap-
plication area in Petri net theory. Moreover, we introduce
a new type of equilibrium point in the Lyapunov sense to
game theory, lending to the game necessary and sufficient
conditions of stability (Clempner, 2005) under certain re-
strictions. As for future work, we will develop factors
affecting the equilibria and their relationship with Nash,
Pareto and Lyapunov equilibrium points.
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