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We present a numerical simulation of two coupled Navier-Stokes flows, using operator-splitting and optimization-based non-
overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a
common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids;
one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation
within the fluid in rest.
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1. Introduction

This paper deals with a numerical simulation of coupled
Navier-Stokes fluids by operator-splitting and domain de-
composition methods. The fluids are coupled through a
common interface by a nonlinear transmission condition.
Models of two coupled flows are motivated by the study
of geophysical flows like ocean and atmosphere or two
layers of a stratified fluid, e.g., see (Lewandowski, 1997,
Chapters 1 and 3) or (Lions et al., 1993).

Coupled systems with a transmission condition are
used to reduce the high computational cost associated with
the discretization of the interface. The interface transmis-
sion condition is generally obtained by asymptotic analy-
sis as a limit model when the thickness of the mixed layer
goes to zero. The transmission condition can express var-
ious physical phenomena: adhesion (e.g., bonded struc-
tures (Bresch and Koko, 2004; Suquet, 1988)), friction
(e.g., air/water (Bernardi et al., 2002; 2003; 2004; Lions
et al., 1993)), the coupling of free-surface and ground wa-
ter flows (Miglio et al., 2003), etc. In the context of two
coupled systems with an interface, domain decomposition
methods apply in a natural way, since subdomains are al-
ready defined.

Using an operator-splitting method, at each step, we
solve one coupled degenerated Stokes problem (first sub-
step) and one uncoupled linear advection-diffusion prob-
lem (second substep). The transmission condition admit-

ting a primitive, the problem of two coupled degenerated
Stokes fluids can be reformulated as a constrained min-
imization problem with a strictly convex objective func-
tional and a linear constraint (the divergence free con-
dition). After introducing a fictitious unknown, we use
saddle-point theory to derive three domain decomposition
algorithms of the Uzawa/conjugate gradient type:

• DDM/S, at each iteration we solve two uncoupled de-
generated Stokes problems,

• DDM/P1, at each iteration we solve two uncoupled
vector Poisson problems (i.e., four uncoupled scalar
Poisson equations),

• DDM/P2, the preconditioned version of DDM/P1.

In Algorithms DDM/P1 and DDM/P2, the pressure is
computed iteratively as a Lagrange multiplier associated
with the divergence free condition.

We refer to (Quarteroni and Valli, 1999) and
the references therein for domain decomposition meth-
ods in general and to (Bresch and Koko, 2004; Du,
2001; Du and Gunzburger, 2000; Gunzburger and Lee,
2000; Gunzburger and Peterson, 1999; Koko, 2002) for
optimization-based domain decomposition methods. For
operator splitting methods, we refer interested readers,
e.g., to (Glowinski, 2003; Glowinski and Le Tallec, 1989;
Marchuk, 1990).
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The paper is organized as follows: In Section 2 we
present the model of two coupled Navier-Stokes flows.
The finite element discretization is outlined in Section 3,
followed by the operator-splitting scheme in Section 4.
Solution methods for each substep are presented in Sec-
tions 5 and 6. In Section 7 we present some numerical
experiments.

2. A Model of Coupled Navier-Stokes Fluids

Let Ω1 and Ω2 be adjacent bounded domains in R
2 with

a common boundary S = ∂Ω1 ∩ ∂Ω2, as illustrated in
Fig. 1. We set Γi = ∂Ωi \ S, for i = 1, 2. The interface
S is assumed to be fixed and the rigid lid hypothesis is
assumed: S is a mean interface and the values of u i|S
and pi|S are mean values of the velocity and the pressure,
respectively.

The generic point in R
2 is denoted by x = (x, z).

For simplicity, we assume that the interface coincides with
z = 0. Therefore, Ω1 and Ω2 are contained respectively
in the half-spaces z > 0 and z < 0. In the real physical
context, the horizontal dimensions are much larger than
the vertical one.

We assume that each subdomain Ωi is filled with an
incompressible viscous fluid with the viscosity parameter
νi > 0. In what follows, the vector field ui stands for the
velocity of the fluid in Ωi and pi signifies its pressure. We
set u = (u1, u2) and p = (p1, p2) as the velocity and the
pressure in the coupled system, respectively. We consider
the following model of two Navier-Stokes fluids coupled
by a nonlinear transmission condition on the interface S:

∂ui

∂t
− νiΔui + (ui · ∇)ui + ∇pi = fi,

in Ωi × (0, T ), i = 1, 2, (1)

∇ · ui = 0,

in Ωi × (0, T ), i = 1, 2, (2)

νi
∂ui

∂ni
− pini = (−1)iκ

∣∣[u]
∣∣[u],

on S × (0, T ), i = 1, 2, (3)

ui = gi, on Γi × (0, T ), i = 1, 2, (4)

ui(x, 0) = u0
i , in Ωi, i = 1, 2, (5)

where [u] = (u1 − u2)|S , ni is the unit outward normal
to Ωi, κ > 0 is the (positive) traction coefficient and | · |
is the usual Euclidean norm. The rigid lid hypothesis is
assumed: S is a mean interface and the values of u i and
pi are mean values of the velocity and the pressure. The
mixed layer of the two Navier-Stokes flows is modelled by
the nonlinear equation (3) (see, e.g., Lewandowski, 1997).

The model (1)–(5) is an extension to Navier-Stokes flu-
ids of the model of two coupled Stokes fluids by Koko
(2006). The model studied in Koko (2006) is derived from
the model by Bernardi et al. (2002; 2003; 2004) for two
turbulent fluids separated by a fixed interface.

�
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Fig. 1. System of two coupled – Navier-Stokes flows: Ω1, Ω2

Navier-Stokes fluids; S – fixed interface.

Remark 1. With the assumption that S coincides with
z = 0, the transmission condition (3) can be replaced by

νi∂zuiH = (−1)iκ
∣∣u1H − u2H

∣∣(u1H − u2H),

uiV = 0 on S, (6)

where uiH and uiV represent the horizontal and vertical
components of the velocity fields, respectively.

Remark 2. The transmission condition (3) is a special
case of the general transmission condition

νi
∂ui

∂ni
− pini = (−1)iκ

∣∣[u]
∣∣β−2[u], β ≥ 2,

studied in (Bresch and Koko, 2004; Suquet, 1988) for
bounded structures.

Let H1(D) denote the standard Hilbert space, with
respect to a domain D. We define the function spaces (for
i = 1, 2):

V i
0 =

{
v ∈

(
H1(Ωi)

)2
; v = 0 on Γi

}
, V0 = V 1

0 ×V 2
0 ,

V i
g =

{
v ∈

(
H1(Ωi)

)2
; v = gi on Γi

}
, Vg = V 1

g ×V 2
g

and forms (for i = 1, 2):

ai(u, v) = νi

∫
Ωi

∇u · ∇v dx, u, v ∈ Vi,

bi(u, p) =
∫

Ωi

p∇ · u dx, (u, p) ∈ Vi × L2(Ωi),

ci(w, u, v) =
∫

Ωi

(w∇·)uv dx, u, v, w ∈ Vi,

(f, v)Ωi =
∫

Ωi

fv dx, (v, f) ∈ Vi × L2(Ωi).
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We set

H1(Ω) = H1(Ω) × H1(Ω),

L2(Ω) = L2(Ω1) × L2(Ω2),

f = (f1, f2)

and, for u, v, w in H1(Ω), we define

(f , v) =
2∑

i=1

(fi, vi)Ωi , (7)

a(u, v) =
2∑

i=1

ai(ui, vi), (8)

b(u, p) =
2∑

i=1

bi(ui, pi), (9)

c(w, u, v) =
2∑

i=1

ci(wi, ui, vi). (10)

The scalar product on S is denoted by

(λ, μ)S =
∫

S

λμ ds,

with λ and μ belonging to suitable vector spaces.
With the notation above, the problem (1)–(5) can be

rewritten as the following system of coupled variational
equations:

Find (ui, pi) ∈ V i
g × L2(Ωi), a.e. on (0, T ), such

that

(∂tui, v) + ai(ui, v) + ci(ui, ui, v) − bi(v, pi)

+(−1)i+1κ
(∣∣[u]

∣∣[u], v
)
S

= (fi, v), ∀v ∈ V i
0 ,

−bi(ui, q) = 0, ∀q ∈ L2(Ωi),

or equivalently, using the notation (7)–(10):
Find (u, p) ∈ Vg × L2(Ω), a.e. on (0, T ), such that

(∂tu, v) + a(u, v) + c(u, u, v)− b(v, p)

+κ
(∣∣[u]

∣∣[u], [v]
)
S

= (f , v), ∀v ∈ V0, (11)

−b(u, q) = 0, ∀q ∈ L2(Ω). (12)

3. Finite Element Approximation

We assume that each Ωi is polygonal and therefore can
be exactly triangulated. We consider T i

h , a finite element
triangulation of Ωi, and T i

2h, a triangulation twice coarser,
with the following assumptions:

(a) The meshes constitute a regular family of triangula-
tions, in the usual sense of the finite element method,
cf. (Ciarlet, 1979).

(b) The meshes are compatible on S, in the sense that

T 1
h ∩ S = T 2

h ∩ S, T 1
2h ∩ S = T 2

2h ∩ S.

In practice, T i
2h is constructed first and then T i

h is
formed by joining the midpoints of the edges of T i

2h. Each
triangle of T i

2h is therefore divided into four triangles of
T i

h as shown in Fig. 2.
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Fig. 2. Subdivision of a triangle of T i
2h.

For discrete velocity-pressure spaces, we use the P1-
iso-P2/P1 element. These spaces are well known to satisfy
the discrete Babuska-Brezzi inf-sup condition. Let P1 be
the space of polynomials in two variables of degree ≤ 1.
We define the following finite element spaces which ap-
proximate V i

0 , V i
g and L2(Ωi), respectively:

V i
0h =

{
vh ∈ C0(Ωi)2, vh|T∈ P1, ∀T ∈ T i

h ,

vh = 0 on Γi

}
,

V i
gh =

{
vh ∈ C0(Ωi)2, vh|T∈ P1, ∀T ∈ T i

h ,

vh = gh on Γi

}
,

P i
h =

{
ph ∈ C0(Ωi), ph|T∈ P1, ∀T ∈ T i

2h

}
.

For simplicity, we set

V0h = V 1
0h × V 1

0h, Vgh = V 1
gh × V 1

gh, Ph = P 1
h × P 2

h .

The compatibility condition (b) induces on S a de-
composition into intervals. The function space L2(S) is
therefore approximated by piece-wise linear polynomials
in one variable:

Λh =
{
λh ∈ C0(S), λh|I∈ P1,

∀I ∈ S ∩ T 1
h = S ∩ T 2

h

}
.

With the above results, the finite element approxima-
tion of (11)–(12) is

Find (uh, ph) ∈ Vgh × Ph, a.e. on (0, T ), such that

(∂tuh, vh) + a(uh, vh) + c(uh, uh, vh) − b(vh, ph)

+κ
(∣∣[uh]

∣∣[uh], vh

)
S

= (f , vh), ∀vh ∈ V0h, (13)

−b(uh, qh) = 0, ∀qh ∈ Ph. (14)
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4. Operator-Splitting Scheme

This section is concerned with time discretization of (13)–
(14). It is quite natural to discretize this initial value
problem by a method taking advantage of the separability
of incompressibility, diffusion, advection and subdomains
coupling. Such a goal can be achieved by an operator-
splitting scheme. We use an L2-projection method with
an operator-splitting scheme à la Marchuk-Yanenko (see,
e.g., Glowinski, 2003; Marchuk, 1990), where incom-
pressibility and subdomains coupling is treated by an L2-
projection method, and advection and diffusion are cou-
pled together. Operator-splitting à la Marchuk-Yanenko
has been applied successfully to numerical simulation of
flows around moving rigid bodies (see, e.g., Glowinski,
2003; Glowinski et al., 1998; 2000; Pan et al., 2005) or
particulate flows (see, e.g., Glowinski, 2003; Glowinski et
al., 2000).

The time interval (0, T ) is divided into N subinter-
vals of equal length δt = T/N , and we set un

h = uh(tn)
and pn

h = ph(tn), where tn = nδt for n = 0, . . . , N .
Given (un

h, pn
h), we compute (un+1

h , pn+1
h ) via the fol-

lowing two substep scheme:

Substep 1. Compute (un+1/2
h , pn+1

h ) ∈ Vgh × Ph via

1
δt

(un+1/2
h , vh) − b(vh, pn+1

h )

+κ
(∣∣[un

h]
∣∣[un+1/2

h ], [vh]
)

S
=

1
δt

(un
h, vh),

∀vh ∈ V0h, (15)

−b(uh, qh) = 0, ∀qh ∈ Ph. (16)

Substep 2. Compute un+1
h ∈ Vgh via

1
δt

(un+1
h , vh) + a(un+1

h , vh) + c(un+1/2
h , un+1

h , vh)

= (fn+1, vh) +
1
δt

(un+1/2
h , vh), ∀vh ∈ V0h.

(17)

The problem (15)–(16) makes no sense, in general,
since the boundary condition u

n+1/2
h = gn+1

h is “too
strong” for a solution which does not have H 1-regularity.
But numerical experiments (Glowinski, 2003, Ch. 7) show
that the solutions of (15)–(16) obtained with the boundary
condition u

n+1/2
h = gn+1

h are more accurate than those

obtained with u
n+1/2
h · n = gn+1

h · n.

5. Solution of the Subproblem (17)

The problem (17) has an interesting computational prop-
erty: it is equivalent to uncoupled linear advection-
diffusion problems:

Find un+1
i ∈ V i

gh, 1 ≤ i ≤ 2, such that

1
δt

(un+1
ih , vh)Ωi + ai(un+1

ih , vh) + ci(u
n+1/2
ih , un+1

ih , vh)

= (fn+1
i , vh)Ωi +

1
δt

(un+1/2
ih , vh)Ωi ,

∀vh ∈ V i
0h. (18)

The parallelization of the substep 2 is therefore obvious.
The linear advection-diffusion problem (18) can be

solved by an iterative linear solver for nonsymmetric sys-
tems like the GMRES method. But we prefer the least
squares/conjugate gradient method based on iterative so-
lution of Poisson problems (Glowinski, 2003, Ch. 3). For
a subdomain i, define the objective functional (after drop-
ping time related superscripts and setting u∗

h = u
n+1/2
h ):

Fi(uh) =
1

2δt
(zh, zh)Ωi +

1
2
ai(zh, zh),

where zh ∈ V i
0h is the solution to the Poisson problem

1
δt

(zh, vh)Ωi + ai(zh, vh)

=
1
δt

(uh, vh)Ωi + ai(uh, vh) + ci(u∗
h, uh, vh)

− (fi, vh)Ωi −
1
δt

(u∗
h, vh)Ωi , ∀vh ∈ V i

0h. (19)

Note that (19) reduces to two (uncoupled) scalar Poisson
problems. The least-squares problem for the linear advec-
tion diffusion problem (18) is given by

uih ∈ V i
gh, Fi(uih) ≤ Fi(vh), ∀vh ∈ V i

gh, i = 1, 2.
(20)

The conjugate gradient algorithm for solving the least-
squares problem (20) is outlined in (Glowinski, 2003,
Ch. 3). Each iteration of the least-squares conjugate gra-
dient method requires solving two Poisson problems (sen-
sitivity and adjoint problems) of the form (19).

6. Solution of the Subproblem (15)–(16)

After dropping time related superscripts and setting u∗
h =

un
h, let us introduce the functionals

J(uh) =
1

2δt
(uh, uh) − 1

δt
(u∗

h, uh), ∀uh ∈ Vgh,

Φ(φh) =
1
2

∫
S

κ̃
∣∣φh

∣∣2 ds, ∀φh ∈ Λh,

where κ̃ = κ|[u∗
h]|. The subproblem (15)–(16) is the

saddle-point formulation of the following constrained
minimization problem:
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Find uh ∈ Vgh, such that

J(uh) + Φ([uh]) ≤ J(vh) + Φ([vh]), ∀vh ∈ Vgh, (21)

∇ · uih = 0 in Ωi, i = 1, 2, (22)

with ph as the Lagrange multiplier associated with the di-
vergence constraint (22). If we set

F (uh, φh) = J(uh) + Φ(φh), ∀(uh, φh) ∈ Vgh × Λh,

it is clear that (21)–(22) is equivalent to the following con-
strained minimization problem:

Find (uh, φh) ∈ Vgh × Λh, such that

F (uh, φh) ≤ F (vh, ϕh), ∀(vh, ϕh)∈Vgh × Λh, (23)

∇ · uih = 0, in Ωi, i = 1, 2, (24)

φh − [uh] = 0, on S. (25)

Our domain decomposition method is based on solv-
ing (23)–(25) by a Lagrange multiplier method. The La-
grangian functional associated with the constrained mini-
mization problem (23)–(25) is given by

L(uh, φh, ph, λh)

= F (uh, φh) − b(uh, ph) − (λh, φh − [uh])S , (26)

with the Lagrange multiplier λh in Λh. Setting

Xh = Vgh × Λh, Mh = Ph × Λh,

the solution to (23)–(25) reduces to the following saddle-
point problem:

Find (uh, φh, ph, λh) ∈ Xh × Mh such that

L(uh, φh, qh, μh) ≤ L(vh, ϕh, qh, μh)

≤ L(vh, ϕh, ph, λh),

∀(vh, ϕh, qh, μh)∈Xh×Mh. (27)

Solving (27) is equivalent to solving the following
(uncoupled) saddle-point equations:

Find (uh, φh, ph, λh) ∈ Xh × Mh such that

1
δt

(uh, vh) − b(vh, ph) =
1
δt

(u∗
h, vh) − (λh, [vh])S ,

∀vh ∈ V0h, (28)

−bi(uih, qh) = 0, ∀qh ∈ P i
h, i = 1, 2, (29)

(κ̃φh, ϕh)S = (λh, ϕh), ∀ϕh ∈ Λh, (30)

(μh, λh − [uh])S = 0, ∀μh ∈ Λh. (31)

The main advantage of the saddle-point equations (28)–
(31) is that, for a known λh, Eqn. (28) is uncoupled. From
(30), we deduce that

φh = κ∗λh,

where κ∗ = κ̃−1 = (κ|[u∗
h]|)−1. Substituting φh into

(26), we obtain the reduced Lagrangian functional

L(uh, ph, λh)

= J(uh)−b(uh, ph)+(λh, [uh])S−
1
2

∫
S

κ∗|λh|2 ds.

(32)

The reduced saddle-point problem is then as follows:
Find (uh, ph, λh) ∈ Vgh × Ph × Λh:

L(uh, qh, μh) ≤ L(vh, qh, μh) ≤ L(vh, ph, λh),
∀(vh, qh, μh) ∈ Vgh × Ph × Λh, (33)

with the corresponding saddle-point equations

1
δt

(uih, vh) − bi(vh, pih) =
1
δt

(u∗
ih, vh)

+ (−1)i(λh, vh)S ,

∀vh ∈ V i
0h, (34)

−bi(uih, qh) = 0, ∀qh ∈ P i
h, (35)

(κ∗λh, μh)S = ([uh], μh)S , ∀μh ∈ Λh. (36)

Note that (34) corresponds to the minimization step
in (33) whereas (35)–(36) correspond to maximization.
The domain decomposition algorithms proposed in this
paper are Uzawa/conjugate gradient type algorithms ap-
plied to the following constrained maximization prob-
lems:

DDM/S max 
(λh) = L(uh(λh), ph(λh), λh)

subject to

(uih, pih) ∈ V i
gh × P i

h;

1
δt

(uih, vh) − bi(vh, pih)

=
1
δt

(u∗
ih, vh) + (−1)i(λh, vh)S ,

∀vh ∈ V i
0h, i = 1, 2,

−bi(uih, qh) = 0, ∀qh ∈ P i
h, i = 1, 2.

DDM/P max 
(ph, λh) = L(uh(ph, λh), ph, λh)

subject to

uih ∈ V i
gh;

1
δt

(uih, vh) − bi(vh, pih)

=
1
δt

(u∗
ih, vh) + (−1)i(λh, vh)S ,

∀vh ∈ V i
0h, i = 1, 2.
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In DDM/S we have a decomposition in “degener-
ated” Stokes subproblems whereas in DDM/P we have
a decomposition in Poisson subproblems. We refer, e.g.,
to (Daniel, 1970; Ekeland and Temam, 1999; Luenberger,
1989; Polak, 1971) for detailed studies of conjugate gra-
dient methods and duality theory.

6.1. Decomposition in Degenerated Stokes Subprob-
lems. We assume that (uih, pih) = (uih(λh), pih(λh))
(1 ≤ i ≤ 2) is a solution to the following degenerated
Stokes subproblem:

Find (uih, pih) ∈ V i
gh × P i

h such that

1
δt

(uih, vh) − bi(vh, pih)

=
1
δt

(u∗
ih, vh) + (−1)i(λh, vh)S ,

∀vh ∈ V i
0h, (37)

−bi(uih, qh) = 0, ∀qh ∈ P i
h. (38)

For convenience, we suppress the dependence of
(uih, pih) on λh. The mapping λh �→ (uh(λh), ph(λh))
is linear and we have

uh(λh + tμh) = uh(λh) + tũh,

ph(λh + tμh) = ph(λh) + tp̃h,

where ũh = (ũ1h, ũ2h) and p̃h = (p̃1h, p̃2h) are the solu-
tions of the (uncoupled) sensitivity problems (1 ≤ i ≤ 2):

Find (ũih, p̃ih) ∈ V i
0h × P i

h, such that

1
δt

(ũih, vh)Ωi − bi(vh, p̃ih) = (−1)i(μh, vh)S ,

∀vh ∈ V i
0h, (39)

−bi(ũih, qh) = 0, ∀qh ∈ P i
h. (40)

Then the directional derivative of 
(λh) =
L(uh(λh), ph(λh), λh) is given by

∂
(λh)
∂λh

· μh =
1
δt

(uh, ũh) − 1
δt

(u∗
h, ũh)

− b(u∗
h, ph) − b(uh, p̃h)

+ (μh, [uh])S + (λh, [ũh])S

− (κ∗λh, μh)S , (41)

where ũh is the solution to the sensitivity problem (39)–
(40). Setting vh = ũih and qh = p̃ih in (37)–(38) and
substituting the result in (41), we get

∂
(λh)
∂λh

· μh = ([uh] − κ∗λh, μh)S , ∀μh ∈ Λh.

Thus we deduce that

∇
(λh) = [uh] − κ∗λh.

With ∇
(λh) we can now construct a search direction.
Since 
 is quadratic, a more suitable search direction is
a conjugate gradient direction.

When a search direction μh is constructed, the step
size t is computed as the maximizer of the real-valued
function ρ(t) = 
(λh + tμh). Since 
 is quadratic and
concave, the maximizer of ρ is the unique solution of the
linear equation

(∇
(λh + tμh), μh)S = 0,

i.e.,

t = − (∇
(λh), μh)S

([ũh] − κ∗μh, μh)S
.

The following algorithm is simply the conjugate gra-
dient algorithm applied to the maximization of 
(λh):

Algorithm DDM/S

Iteration 0. Initialization: λ0
h given.

Compute (u0
h, p0

h) ∈ Vgh × Ph via (i = 1, 2)

1
δt

(u0
ih, vh)Ωi − b(vh, p0

ih)

=
1
δt

(u∗
ih, vh)Ωi + (−1)i(λ0

h, vh)S ,

∀vh ∈ V i
0h,

−bi(u0
ih, qh) = 0, ∀qh ∈ P i

h,

γ0
h = [u0

h] − κ∗λ0
h,

μ0
h = γ0

h.

Iteration k ≥ 0. Assuming that λk
h, (uk

h, pk
h), γk

h and μk
h

are known, do the following:

Sensitivity:

Compute (ũk
h, p̃k

h) ∈ V0h × Ph via (i = 1, 2)

1
δt

(ũk
ih, vh) − bi(vh, p̃k

ih)

= (−1)i(μk
h, vh)S , ∀vh ∈ V i

0h,

−bi(ũk
ih, qh) = 0, ∀qh ∈ P i

h.

Stepsize:

tk = − (γk
h , μk

h)S

([ũk
h] − κ∗μk

h, μk
h)S

.
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Update:

λk+1
h = λk

h + tkμk
h,

uk+1
ih = uk

ih + tkũk
ih, i = 1, 2,

pk+1
ih = pk

ih + tkp̃k
ih, i = 1, 2.

Gradient:

γk+1
h = [uk+1

h ] − κ∗λk+1
h .

Conjugate gradient direction:

βk =
‖ γk+1

h ‖2
L2(S)

‖ γk
h ‖2

L2(S)

,

μk+1
h = γk+1

h + βkμk
h.

We iterate until
∥∥γk

h

∥∥
L2(S)

is sufficiently “small”,
i.e., ∥∥γk

h

∥∥
L2(S)

‖γ0
h‖L2(S)

< ε.

At each step, we solve two uncoupled degenerated
Stokes subproblems. The parallelization of the algorithm
is therefore obvious.

6.2. Decomposition in the Poisson Subproblem. Now
we assume that uih = uih(pih, λh) (1 ≤ i ≤ 2) is the
solution to

1
δt

(uih, vh) =
1
δt

(u∗
ih, vh) + bi(vh, pih)

+ (−1)i(λh, vh)S , ∀vh ∈ V i
0h. (42)

For convenience, we suppress the dependence of u ih on
(pih, λh). As in Section 6.1, the mapping (ph, λh) �→
uh(ph, λh) is linear and we have

uh(ph + tdh, λh + tμh) = uh(ph, λh) + tũh,

where ũh = (ũ1h, ũ2h) is the solution of the following
(uncoupled) sensitivity problems (1 ≤ i ≤ 2):

Find ũih ∈ V i
0h, such that

1
δt

(ũih, vh) = bi(vh, dih) + (−1)i(μh, vh)S ,

∀vh ∈ V i
0h. (43)

Then the directional derivative of 
(ph, λh) =
L(uh(ph, λh), ph, λh) is given by

∂
(ph, λh)
∂(ph, λh)

(dh, μh) =
1
δt

(uh, ũh) − 1
δt

(u∗
h, ũh)

− b(ũh, ph) − b(uh, dh)

+ (μh, [uh])S + (λh, [ũh])S

− (κ∗λh, μh)S , (44)

where ũh is the solution of the sensitivity problem (43).
Setting vh = ũih in (42) and substituting the result in (44),
we get

∂
(ph, λh)
∂(ph, λh)

(dh, μh)

= −b(uh, dh) + ([uh] − κ∗λh, μh)S .

Thus we deduce the gradient of 
 with respect to λh:

γh := ∇λ
(ph, λh) = [uh] − κ∗λh.

In contrast, the gradient with respect to ph is computed in
Ph via the following uncoupled problem:

Find gi ∈ P i
h, 1 ≤ i ≤ 2, such that

(gih, qh)Ωi = −(∇ · uih, qh)Ωi , ∀qh ∈ P i
h. (45)

A search direction for 
 is computed from γh and gih. As
in the previous section, a more suitable search direction is
a conjugate gradient direction.

When a search direction (dh, μh) is constructed, the
step size t is computed as the maximizer of the real-
valued function ρ(t) = 
(ph + tdh, λh + tμh). Since

 is quadratic, the maximizer of ρ is the unique solution of
the linear equation

ρ′(t) = ∂
(ph + tdh, λh + tμh) · (dh, μh) = 0,

i.e.,

t = − (γh, μh)S + (gh, dh)
([ũh] − κ∗μh, μh)S − (∇ · ũh, dh)

.

With the above results, we can present the con-
jugate gradient algorithm generating a maximizing se-
quence of 
.

Algorithm DDM/P1

Iteration 0. Initialization: (p0
h, λ0

h) given.

Compute u0
h ∈ Vgh via

1
δt

(u0
ih, vh)

=
1
δt

(u∗
ih, vh)+ bi(vh, p0

ih)+ (−1)i(κ∗λ0
h, vh)S ,

∀vh ∈ V i
0h, i = 1, 2.

Compute g0
ih ∈ P i

h via

(g0
ih, qh)Ωi = −(∇ · u0

ih, qh)Ωi , ∀qh ∈ P i
h, i = 1, 2.

γ0
h = [u0

h] − κ∗λ0
h,

d0
ih = g0

ih, i = 1, 2,

μ0
h = γ0

h.
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Iteration k ≥ 0. Assuming that pk
h, λk

h, uk
h, dk

h and μk
h

are known, do the following:

Sensitivity:

Compute ũk
h = (ũk

1h, ũk
2h) ∈ V0h via

1
δt

(ũk
ih, vh) = bi(vh, dk

ih) + (−1)i(μk
h, vh)S ,

∀vh ∈ V i
0h, i = 1, 2.

Stepsize:

tk = − (γk
h , μk

h)S + (gk
h, dk

h)
([ũk

h] − κ∗μk
h, μk

h)S − (∇ · ũk
h, dk

h)
.

Update:

λk+1
h = λk

h + tkμk
h,

pk+1
ih = pk

ih + tkdk
ih, i = 1, 2,

uk+1
ih = uk

ih + tkũk
ih, i = 1, 2.

Gradient:
Compute gk+1

ih ∈ P i
h by solving

(gk+1
ih , qh)Ωi = −(∇ · uk+1

ih , qh)Ωi ,

∀qh ∈ P i
h, i = 1, 2,

γk+1
h = [uk+1

h ] − κ∗λk+1
h .

Conjugate gradient direction:

βk =

∥∥gk+1
h

∥∥2

L2(Ω)
+
∥∥γk+1

h

∥∥2

L2(S)∥∥gk
h

∥∥2

L2(Ω)
+
∥∥γk

h

∥∥2

L2(S)

,

dk+1
h = gk+1

h + βkdk
h,

μk+1
h = γk+1

h + βkμk
h.

We iterate until
∥∥γk

h

∥∥2

L2(S)
+
∥∥gk

h

∥∥2

L2(Ω)
is suffi-

ciently “small”, i.e.,∥∥γk
h

∥∥2

L2(S)
+
∥∥gk

h

∥∥2

L2(Ω)

‖γ0
h‖

2

L2(S) + ‖g0
h‖

2

L2(Ω)

< ε2. (46)

At each step, we solve four uncoupled Poisson subprob-
lems. The parallelization of the algorithm is therefore ob-
vious.

The algorithm DDM/P1 can be improved by precon-
ditioning the computing of the gradient with respect to p ih

as in the preconditioned conjugate gradient algorithm for
L2-projection (see, e.g., Glowinski, 2003, Ch. 7; Glowin-
ski et al., 2000). To this end, we define the subspace

P i
Sh =

{
ph ∈ P i

h, ph = 0 on S
}

.

Then, instead of (45), the gradient with respect to p ih

is computed via the following (uncoupled) Poisson sub-
problems:

Find gi ∈ P i
Sh, 1 ≤ i ≤ 2, such that

(∇gih,∇qh)Ωi = −(∇ · uih, qh)Ωi , ∀qh ∈ P i
Sh. (47)

We refer to this preconditioned version as the algorithm
DDM/P2.

7. Numerical Experiments

In this section we present some numerical experiments
using algorithms outlined in the previous sections. The
domain decomposition algorithms presented in the previ-
ous sections were implemented in Fortran 90, on an SGI
Origin 200 computer, using an MPI library. MPI sub-
routines are used only for solving in parallel uncoupled
Stokes or Poisson problems (Substep 1) and uncoupled
linear advection-diffusion problems (Substep 2).

All linear systems involved are solved by a precondi-
tioned conjugate gradient algorithm. The preconditioning
is obtained by an incomplete Choleski factorization with
drop tolerance varying from 10−5 to 10−3.

In all numerical simulations, we consider an
ocean/atmosphere type model consisting of two Navier–
Stokes fluids of viscosities ν1 = 1/2000 and ν2 = 1/200.
The traction coefficient is κ = 2.45 · 10−3.

7.1. Example 1. We consider a simple
ocean/atmosphere model, with rectangular sub-
domains as shown in Fig. 3. The subdomains are
Ω1 = (−10, 10)× (0, 1) and Ω2 = (−10, 10)× (−1, 0)
with the interface S = (−10, 10) × {0}.

S

Ω1Γ−
1 Γ+

1

Γ+
1

Ω2Γ0
2 Γ0

2

Γ0
2

Fig. 3. First simple ocean/atmosphere model.

The boundary conditions are

u1h =

(
(1 + z)/2

0

)
on Γ−

1 , (48)

ν1
∂u1h

∂n1
− p1hn1 = 0 on Γ+

1 ,

u2h = 0 on Γ0
2.
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The time step is δt = 0.01. For the initial velocity,
we assume that in Ω2 the fluid is in rest whereas in Ω1 the
fluid profile is (48) , i.e.,

u0
1h =

(
(1 + z)/2

0

)
in Ω1,

u0
2h = 0 in Ω2.

For the solution of the degenerated Stokes prob-
lem in the algorithm DDM/S, we use the preconditioned
Uzawa/conjugate gradient method (see, e.g., Glowinski,
2003, §34; Glowinski et al., 2000).

To study the numerical behavior of our algorithms,
subdomains are first discretized by a nonuniform mesh
shown in Fig. 4 and consisting of 2 × 997 nodes and
2 × 1760 triangles. This initial mesh is successively
refined to produce meshes with 2 × 3753, 2 × 14545
and 2 × 57249 nodes. The performances of the indi-
vidual algorithms, in terms of CPU time, are presented
in Table 1. The comparison was made at t = 1 (i.e.,
n = 100 for δt = 0.01). We first notice that the precon-
ditioning significantly improves the performance of the
algorithm DDM/P. The algorithm DDM/S requires more
computational time than the algorithm DDM/P2. But
while assessing this performance we must bear in mind
that the preconditioned Uzawa/conjugate gradient method
can be easily parallelized. Indeed, each iteration of the
Uzawa/conjugate gradient method requires solving two
uncoupled scalar Poisson problems for velocity and one
scalar Poisson problem for pressure.

Table 1. Performances of the algorithms DDM/S,
DDM/P1 and DDM/P2 at t = 1.

CPU time in sec.
Mesh

DDM/S DDM/P1 DDM/P2

2 × 997 20.846 104.921 8.564

2 × 2865 108.758 877.991 45.918

2 × 11105 854.451 9647.342 417.833

2 × 87426 8578.686 > 10000 5169.937

-10 0 10
-1

0

1

Fig. 4. Mesh sample of a simple ocean/atmosphere
model with rectangular domains.

Fig. 5. Velocity field in Ω1.

Fig. 6. Velocity field in Ω2.

Using the algorithm DDM/P2 and meshes with 2 ×
3753 nodes, a stationary solution is reached at t = 61.48
(i.e., 6148 times steps) after 2760.242 seconds of CPU
time. Velocity fields are presented in Figs. 5 and 6. We
observe that the transmission condition generates a recir-
culation within Ω2 while the flow in Ω1 is practically un-
changed.

7.2. Example 2. We consider a coupled system with
Ω1 = (−10, 10)× (0, 1) and

Ω2 =
{

(x, y) :
x4

104
− 1 ≤ y ≤ 0, x ∈ (−10, 10)

}
,

as illustrated in Fig. 7. Subdomains are discretized by
nonuniform meshes consisting of 3771 nodes for Ω1, 3079
nodes for Ω2 and 81 nodes on the interface S. Boundary
and initial conditions are the same as in Example 1 with
δt = 0.01 as the time step.

A stationary solution is reached at t = 59.76 (i.e.,
5976 time steps). In the simulation, the number of itera-
tions for the algorithm DDM/P2 is about 5 and the number
of iterations for both linear advection-diffusion problems
is 1. Figs. 8–10 show streamlines and velocity fields for
the stationary solution. As in Example 1, a recirculation is
established within Ω2 while the flow in Ω1 remains prac-
tically unchanged.

7.3. Example 3. In this example we assume that there
is a submarine mountain (i.e., the subdomain Ω2 is non-
convex) whereas Ω1 is the same as in Examples 1 and 2,
see Fig. 11. Ω2 is given by

Ω2 =
{
(x, y) : 0 ≥ y ≥ α − 0.175x sin(0.35x),

x ∈ (−10, 10)
}
,

where α = 1.75 sin(3.5).
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�
1

�
2

S

Fig. 7. Second simple ocean/atmosphere model.

Fig. 8. Streamline plot.

Fig. 9. Velocity field in Ω1.

Fig. 10. Velocity field in Ω2.

The coupled system is discretized by nonuniform
meshes consisting of 5836 nodes for Ω1, 5321 nodes for
Ω2 and 201 nodes on the interface S. The step size is
δt = 0.005.

A stationary solution is reached at t = 96.59 (i.e.,
19300 time steps). In the simulation, the number of itera-
tions for the algorithm DDM/P2 is about 5 and the number
of iterations for both linear advection-diffusion problems
is 1. Figures 12–14 show streamlines and velocity fields
for the stationary solution. As in Example 1, a recircula-
tion is established within Ω2 while the flow in Ω1 remains
practically unchanged. We can notice that the presence of
the submarine mountain dramatically affects the flow in
Ω2. Indeed, the flow slows down before arriving to the
straitness and accelerates again after crossing it. Bernardi
et al. (2004) obtained the same results with two coupled
turbulent Stokes fluids.

8. Conclusion

We have demonstrated that operator-splitting and domain
decomposition methods reproduce the qualitative behav-

�
1

�
2

S

Fig. 11. Third simple ocean/atmosphere model.

Fig. 12. Streamline plot.

Fig. 13. Velocity field in Ω1.

Fig. 14. Velocity field in Ω2.

ior of two coupled Navier-Stokes flows. Further study
is underway to improve the simulation by extending it to
more realistic problems.
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