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The main objective of this paper is to develop an effective evolutionary algorithm (EA) for the path-assignment problem
in survivable connection-oriented networks. We assume a single-link failure scenario, which is the most common and
frequently reported failure event. Since the network flow is modeled as a non-bifurcated multicommodity flow, the discussed
optimization problem is NP-complete. Thus, we develop an effective heuristic algorithm based on an evolutionary algorithm.
The main novelty of this work is that the proposed evolutionary algorithm consists of two levels. The “high” level applies
typical EA operators. The “low” level is based on the idea of a hierarchical algorithm. However, the presented approach is
not a classical hierarchical algorithm. Therefore, we call the algorithm quasi-hierarchical. We present its description and
the results of simulation runs over various networks.
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1. Introduction

In this paper we tackle the problem of path assignment
in computer networks by an innovative evolutionary al-
gorithm (EA). The optimization problem considered can
be formulated as follows: Consider a network being a set
of connections (commodities) defined by the triple: ori-
gin nodes, destination nodes and bandwidth requirements.
The nonbifurcated flow assignment problem consists in
routing the flow of commodities using only one route
(path) for each commodity. Additionally, the capacity
constraint must be satisfied, i.e., the flow of each arc (cal-
culated as the sum of all commodities using that arc) can-
not exceed the capacity of the arc. Therefore, we call a so-
lution of the problem considered feasible if two conditions
are satisfied. First, the whole flow for a given commodity
must be routed (assigned) using only one path. Second,
the total flow routed over a particular link must be within
a given capacity limit. Examples of popular computer net-
work techniques applying the connection-oriented (c-o)
flow are the Asynchronous Transfer Mode (ATM) and
MultiProtocol Label Switching (MPLS). Since the dis-
cussed problem is NP-complete (Karp, 1975; Pióro and
Medhi, 2004), exact methods based on the branch-and-
bound (BB) approach must be applied to find an optimal
solution. According to (Pióro and Medhi, 2004), the ap-

plication of BB methods for single path (non-bifurcated)
flow allocation is limited to at most medium-size networks
(of about 20 nodes) and, therefore, heuristic methods are
of interest.

We focus on the survivability of c-o networks. The
survivability of computer networks is very important since
a loss of service means a loss of revenues, especially in
high-speed fiber networks. A typical approach to provide
survivability in c-o networks is as follows: Each circuit,
i.e., a virtual path in the ATM or a label switched path
in MPLS has a primary route and a backup route. The
primary route is used for transmitting data in a normal,
failure-free state of the network. When the primary route
is broken, the failed circuit is switched to the backup route
that uses a spare capacity. The process of switching is
easy, i.e., the circuit’s identifier numbers are changed in
network nodes.

Most of the previous research on network survivabil-
ity has concentrated on the Capacity and Flow Assign-
ment (CFA) problem, in which link capacity and rout-
ing are optimized to provide full restoration after a failure
(Grover, 2004; Pióro and Medhi, 2004). The CFA prob-
lem is applied in the network design phase or when the
existing network is augmented. Typically, the objective
of such problems is the combined cost of capacity and
routing. In this work we consider an existing backbone
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network. In many cases the network is in an operational
phase and augmenting its resources (links, capacity) is not
possible in a short time perspective. Consequently, the
best method to provide survivability to an existing back-
bone network is the selection of primary paths that guar-
antees the allocation of flows enabling effective restora-
tion of failed demands. A similar approach was applied
in (Jæger and Tipper, 2003; Murakami and Kim, 1996;
Nilsson et al., 2003). The main problem is to find an ob-
jective function for primary route assignment that yields
the preparation of the network to the rerouting process.
Since, according to (Grover, 2004), the single-link failure
is the most common and frequently reported failure event,
we limit our deliberations to such a failure scenario. As
the objective, we use the Lost Flow in Node (LFN) func-
tion. The LFN function can be applied for optimization
of static and dynamic paths in MPLS and the ATM net-
works. The results presented in (Walkowiak, 2003; 2004a;
2004b; 2004c) show that applying various functions based
on the LFN function can improve network survivability.
For more information on network survivability, we refer
the reader to (Grover, 2004; Pióro and Medhi, 2004) and
the references given therein.

We propose an effective heuristic algorithm based
on an evolutionary algorithm for the problem of primary
route assignment in survivable connection-oriented net-
works with the LFN function as the objective. The main
novelty of our approach is that the proposed algorithm
consists of two levels. The “high” level applies typical
EA operators. The “low” level idea is based on a hier-
archical algorithm. Nevertheless, the presented approach
is not a classical hierarchical algorithm. Thus, we call it
quasi-hierarchical.

The paper is organized as follows: Section 2 surveys
applications of genetic and evolutionary algorithms to var-
ious network problems. In Section 3, the optimization
problem is formulated. Section 4 contains the description
of the evolutionary algorithm. In Section 5, simulation re-
sults are presented and discussed. Finally, the last section
concludes this work.

2. Related Work

Flow assignment and topological network design consti-
tute topics of many publications. A significant number
of them indicate possibilities of using algorithms based
on breeding a population of solutions and affecting them
by the well-known genetic operators. However, one can
easily find publications containing a lot of propositions
of GAs (genetic algorithms) or hybrid-GA algorithms try-
ing to solve various flow assignment and network topo-
logical design problems that are much less complex than
the one presented in this paper. First of all, most of
them are typical GAs with bit-string notation, some are

rather EAs (evolutionary algorithms) as their represen-
tations are integer-string-based, which entails tree (or
any other graph) coding (Elbaum and Sidi, 1996; Riedl,
1998). A more advanced representation was also used in
(Riedl, 2002) where gene values were associated with link
weights in routing protocols, and in (White et al., 1999),
where a kind of hybrid representation was used (three dif-
ferent types of information were coded in one chromo-
some). In the above-mentioned publications, neither ad-
vanced GA construction, nor more specialized operators
than crossing and mutation were used. We believe that
by adding the presented “low” level of the algorithm, two
main goals can be achieved, namely, higher search effec-
tiveness and the possibility of using the algorithm for find-
ing solutions in much larger search spaces than the ones
examined in other publications. (For example, in (White
et al., 1999), only twenty-node networks were examined
and the number of paths between node pairs was reduced
to only eight shortest ones.)

A set of various evolutionary algorithms was pre-
sented in (Corne et al., 2000). The objective was very
close to the one considered here, i.e., network design.
However, although a number of algorithms were pre-
sented and compared, and various operators were intro-
duced (such as repair operators or advanced route crossing
operators), algorithm construction is still a simple one and
none of the algorithms was used for networks with more
than 25 nodes (typically from 8 to 20).

3. Problem Formulation

We consider a computer network modeled as (G, c),
where G = (V, A) is a directed graph with n vertices
representing routers or switches and m arcs representing
links, and c : A → R

+ is a function that defines arc ca-
pacities. We denote by o : A → V and d : A → V
functions defining respectively the origin and destination
nodes of each arc. In our approach we assume that the
bandwidth of various connections using the same link can
be summed to check capacity constraints.

To mathematically represent the problem, we intro-
duce the following notation: fa is the flow of the arc a,
ca means the capacity of the arc a, gout

v =
∑

i:o(i)=v fi

is the aggregate flow in arcs leaving the node v, eout
v =∑

i:o(i)=v ci is the aggregate capacity of arcs leaving the
node v.

Definition 1. The global non-bifurcated m.c. flow, de-
noted by f = [f1, f2, . . . , fm], is defined as a vector of
flows in all arcs. We call a flow f feasible if the following
inequality holds:

∀a ∈ A : fa ≤ ca. (1)

We define the spare (residual) capacity of an arc as
the difference between the capacity and the flow in that



Quasi-hierarchical evolution algorithm for flow assignment in survivable connection-oriented networks 489

arc. The spare capacity is used only for the purpose of
rerouting failed connections.

For simplicity, we introduce the following function:

ε(x) =

{
0 for x ≤ 0,
x for x > 0.

(2)

To examine the main characteristics of local restoration,
we consider an arc a ∈ A. We assume a failure of a. In
local rerouting, the flow on the arc a must be rerouted by
the source node of that arc. Therefore, the spare capacity
of the outgoing arcs of o(a) except k is a potential bot-
tleneck of the restoration process. If the spare capacity of
arcs leaving the node o(a) is relatively small, a flow of the
arc k could be lost. We define the function LAout

a rep-
resenting the flow loss in the node o(a) in the following
manner:

LAout
a (f) = ε

(
gout

o(a) − (eout
o(a) − ca)

)
. (3)

Note that LAout
a (f) denotes a lost flow that cannot be

restored using arcs leaving the node o(k) due to limited
spare capacities of these arcs. In other words, Eqn. (3) can
be interpreted as a residual flow, if any, at the origin node
of the arc a, available for rerouting connections using a af-
ter a failure of a. By analogy, we define the function LA in

a

of the lost flow that cannot be restored using arcs entering
the node d(a).

Notice that the value of the LAout
a (f) function de-

pends on the flow gout
o(a) leaving the node o(a), and it is not

dependent directly on the flow in the arc a. Therefore, we
formulate the function LN out

v : [0; eout
v ] → [0; eout

v ] of the
lost flow in the node v as the following sum over all arcs
leaving that node:

LN out
v (f) =

∑
a:o(a)=v

ε
(
gout

v − (eout
v − ca)

)

=
∑

a:o(a)=v

LAout
a (f). (4)

Similarly, LN out
v (f) denotes the residual flow, if any, at

the node v, available for rerouting connections using any
arc leaving v.

Definition 2. We call an arc k adjacent to an arc a if
o(k) = o(a) or d(k) = d(a). If k is not adjacent to the
the arc a, we call it remote to a.

The functions LAout
a (f) and LN out

v (f) take account
only of arcs adjacent to the failed arc a. Arcs remote to
k, which can block some flow of the failed arc during the
rerouting process, are not taken into account. Therefore,
LAout

a (f) only estimates the flow of the arc k lost after
local rerouting and, in much the same way, LN out

v (f) de-
notes the “potential” of the node v to make the rerouting of

connections broken after a failure of any single arc leav-
ing v.

Using LAout
a (f) and LN out

v (f), we can define the
function LFN (f) (lost-flow-in-node) that indicates the
preparation of the whole network to local rerouting after a
failure of any single arc:

LFN (f) =
∑
a∈A

LAout
a (f) =

∑
v∈V

LN out
v (f). (5)

We assume that the probabilities of arc failures are the
same for all arcs. Therefore, no probabilities are included
in this function.

Corollary 1. Lout
k (f), LN out

v (f) and LFN (f) are con-
tinuous, nondecreasing, piecewise linear functions for any
feasible flow f . The function LFN (f) is differentiable ex-
cept for the points for which one of the following condi-
tions holds:

gout
o(a) = (eout

o(a) − ca), ∀a ∈ A. (6)

For more details and a comprehensive discussion of
the function LFN , please refer to (Walkowiak 2004a;
2004b; 2004c).

We wish to underline that the concept of the LFN
function was successfully applied to dynamic and sta-
tic optimization of routes in MPLS and ATM networks
(Walkowiak, 2004a; 2004b; 2004c).

Now we shall formulate the optimization problem of
primary route assignment (PRA) with the objective func-
tion LFN given by (5). We assume that sets of candidate
routes are given. To formulate the optimization problem,
we use the following notation:

Sets:

A set of m arcs (directed links),
V set of n nodes (vertices),
P set of connections (demands) in the network,

Πp index set of candidate routes for the connection p;

Indices:

p connections (demands) in the network, used as
subscript,

k candidate routes, used as superscript,
a arcs (directed links), used as subscript,
v nodes, used as subscript;

Constants:

δk
pa equal to 1 if the arc a belongs to the route k real-

izing the connection p or 0 otherwise,
Qp volume (estimated bandwidth requirement) of the

connection p,
ca capacity of the arc a;
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Variables:

xk
p decision variable, which is 1 if the route k ∈ Πp

is selected for the connection p and 0 otherwise,
fa flow of the arc a.

The PRA optimization problem can be formulated as
follows:

min
f

LFN (f), (7)

subject to ∑
k∈Πp

xk
p = 1, ∀p ∈ P , (8)

xk
p ∈ {0, 1}, ∀p ∈ P, ∀k ∈ Πp, (9)

fa =
∑
p∈P

∑
k∈Πp

δk
paxk

pQp, ∀a ∈ A, (10)

fa ≤ ca, ∀a ∈ A. (11)

The objective function (7) is a flow lost in any node
of the network due to a failure of any single link defined
using the function given by (5). The function LFN (f) is
a sum over all links or all nodes in the network. Since we
consider a single failure of any link and assume that the
probability of such a failure is the same for all links, we do
not introduce any probability into the function (5). Gen-
erally, the function LFN (f) represents the preparation of
the whole network to perform the restoration process us-
ing a local rerouting strategy for a failure of any single
link. As has been mentioned above, in the local restora-
tion the beginning node of the failed link is a bottleneck
for the restoration. Therefore, it is very important to cor-
rectly design flows in links leaving that node. The condi-
tion (8) states that each connection can use only one pri-
mary route. The constraint (9) ensures that the decision
variables are binary ones. Furthermore, (10) is the defini-
tion of a link flow. Finally, (11) denotes the capacity con-
straint. In the problem (7)–(11), we must find a route for
each connection yielding a feasible non-bifurcated m.c.
flow f that minimizes the value of the LFN function and
satisfies the capacity constraint. It must be noted that
the PRA problem is NP-complete (Karp, 1975; Pióro and
Medhi, 2004). PRA is a 0–1 integer programming prob-
lem with linear constraints, which is generally considered
very hard. The main reason for that is that the solution
space that includes all possible paths is extremely large.
The size of the problem is large even for relatively small
networks.

A popular method to solve 0–1 problems is the
branch-and-bound (B&B) approach. Such algorithms
have been applied to many problems related to PRA
(Kasprzak, 2003; Pióro and Medhi, 2004; Walkowiak
2004a). According to (Pióro and Medhi, 2004), applica-
tion of BB methods to single path (non-bifurcated) flow

allocation is limited to at most medium-size networks (of
about 20 nodes), and therefore heuristic methods are of
interest. The only way to solve the PRA problem by an
exact algorithm that can produce the optimal solution is
to reduce the size of the problem and consider only a part
of all possible candidate routes. We call such a problem a
restricted problem. This approach, called the path genera-
tion technique, was discussed in (Pióro and Medhi, 2004).
However, in this work we wish to consider the PRA prob-
lem with the whole solution space, i.e., we do not intro-
duce any constraints on candidate routes. We refer to such
a problem as the unrestricted problem.

Several algorithms have been proposed to solve the
PRA problem formulated above. In (Walkowiak, 2001;
2004a), a branch-and-bound algorithm and a genetic al-
gorithm were presented for a restricted PRA problem.
A heuristic algorithm FDP (Flow Deviation for Primary
routes) based on the flow deviation (Fratta et al., 1973)
method was introduced in (Walkowiak, 2003; 2004b)
for both restricted and unrestricted versions of the prob-
lem (7)–(11). Recently, one of the authors developed a
heuristic called LRH (Lagrangean Relaxation Heuristic)
that combines FDP and Lagrangian relaxation techniques
(Walkowiak, 2006).

4. Algorithm Description

In this section we present the main characteristics and
objectives of the evolutionary algorithm known as the
HEFAN (Hierarchical Evolutionary algorithm for Flow
Assigment in Non-bifurcated commodity flow), devel-
oped for the unrestricted PRA problem (7)–(11). All of
the presented ideas are based on the approach set forth
in the M.Sc. dissertation (Przewoźniczek, 2003). From a
general point of view, the algorithm has only one objec-
tive: to find feasible and optimal (in terms of the fitness
function) assignment of paths (routes) for all demands in
an oriented network. A typical evolutionary system can
easily meet this objective, but only if we provide a proper
collection of routes for which the search will be done.
Such a collection can be neither too poor, nor too rich. In-
deed, a small collection will force us to search only within
a small part of possible solution space. In turn, a large set
of routes will make the problem intractable due to an ex-
cessive number of possibilities. These are the reasons why
the presented system is conceptually divided into three ab-
stract parts: a route proposal database, and “high” and
“low” levels. The “high” level acts as a typical EA and
the “low” one as an intelligent seeker for propositions of
new routes, based on the EA idea using some of its fea-
tures but actually not being such an algorithm. This part is
organized as follows: first we describe the route database,
and then the organization of the “high” and “low” levels.
Finally, we shall present a general algorithm overview.
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Fig. 1. Pick up mechanism for the database of routes.

Fig. 2. High level individual representation.

It should be emphasized that the HEFAN was suc-
cessfully applied to a network congestion problem in
(Przewoźniczek and Walkowiak, 2005). However, the
congestion problem differs strongly from the PRA prob-
lem addressed in this work. The objective function of
PRA is separable with respect to arcs, i.e., LFN is a sum
over all arcs of functions defined according to arc flows
and capacities. The congestion problem considered in
(Przewoźniczek and Walkowiak, 2005) consists in max-
imizing the minimal residual capacity of arcs. Therefore,
it is a bottleneck problem, which is not separable with re-
spect to arcs. Consequently, the evaluation of the HEFAN
reported in (Przewoźniczek and Walkowiak, 2005) cannot
be used to assess the performance of the HEFAN applied
to the PRA problem.

4.1. Database of Routes. The database of known
routes is one of the most important parts of the algorithm.
It contains all known routes between the nodes existing
in the network. The database may be requested to return
a route proposal between a specified pair of nodes. The
route is chosen randomly from the subset of routes hav-
ing given origin and destination nodes. The chance for
being chosen is equal for all routes (Fig. 1). It is pos-
sible that creating a nonequal chance-computing mech-

anism for route choosing is an option for a further im-
provement of the algorithm as some routes may fit better
a specified set of routes than the others.

The start-up knowledge of the routes database is built
from all possible routes whose lengths are smaller than l (a
parameter set by the user). The database knowledge is also
improved by route proposals from which an initial solu-
tion is built (if the user supported any). Also, if new route
proposals have been created during an algorithm run, they
can be added to the database and improve the knowledge
already stored (this can also be seen in Fig. 10). There
should be at least one route proposal between all possible
node pairs in the database for proper work of the algo-
rithm.

4.2. “High” Level of the Algorithm. The “high” level
of the presented algorithm contains typical EA operators,
which can be found in many publications and books on
this topic (Davis, 1996; Kwaśnicka, 1998; Michalewicz,
1996). The representation of the problem considered is as
follows: One chromosome is the set of route proposals for
all commodities in the network. For instance, Chromo-
some 237 means that the first commodity uses Route 2,
the second one uses Route 3, etc. An example of a high
level individual is presented in Fig. 2.
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Fig. 3. High level one-point crossover operator.

The main operators of the “high” level are introduced
in the following. The selection method is based on the
roulette wheel technique. There are two crossover oper-
ators supported: the one-point crossover and the uniform
crossover, selected randomly according to proportions set
by the user. In the one-point crossover, we randomly pick
up a crossing breakpoint and create offspring by copying
the first x genes from the first parent and the rest from the
second one. This operation is shown in Fig. 3.

The uniform crossover operator randomly copies
genes from parents to offspring. If the first offspring in
the n-th position has a gene from the first parent, then
the second offspring will have in the same position a gene
from the second parent, and vice versa. This operation is
shown in Fig. 4.

The idea of using two different crossing operators
is simple—the experiments were made for networks hav-
ing from 10 to 36 nodes and demand matrices including
demands for each source-destination node pair. These
conditions give rather big (1260 for a 36-node network)
numbers of genes for “high” level individuals (the num-
ber of paths that must be established in the network). In
these terms, a typical order-dependent crossing operator
might become ineffective as no inversion operator was
supported. This situation forces adding either an inver-
sion mechanism or a uniform crossover operator described
above. The second possibility that was chosen in our in-
vestigations proved to be sufficient for good performance
of the algorithm.

The mutation operator replaces a randomly picked
gene (a path between the two nodes) by a different propo-

sition of this gene (another route between the same nodes)
from the database of routes.

The fitness function is based on the LFN function
presented in (Walkowiak, 2003; 2004a). The only differ-
ence between LFN and the fitness used in the algorithm
is that the algorithm’s fitness function F (i, p) for a single
individual (chromosome) p in a generation i is defined as
follows:

exc(x) =

{
−x for x < 0,

0 for x ≥ 0,

PEN v(f) =
∑

a:o(a)=v

exc(LAout
a (f)),

LN ′out
v (f) =

⎧⎪⎨
⎪⎩

LN out
v (f) for PEN v(f) = 0,

(LN out
v (f) + PEN v(f) ∗ 10)2

for PEN v(f) > 0,

LFN ′(f) =
∑
v∈V

LN ′out
v (f),

F (i, p) =
1

LFN ′(p) + 1
+ BN (i),

where LFN ’(p) is the value of the LFN function calcu-
lated for the route assignment given by the individual p.
The difference between the LFN and LFN ′ functions is
that the latter takes into account a penalty, if for a par-
ticular chromosome (route assignment), the capacity con-
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Fig. 4. High level uniform crossover operator.

straint (11) is violated (the flow through a link exceeds
the capacity of that link). BN (i) denotes the brainstorm
modifier, which is discussed in what follows.

The brainstorm operator deals, for a period of time
and in special way, with fitness function values for every
individual and is a population state, rather than a typical
operator. If the brainstorm is to work it must be first turned
on under circumstances defined by the user. The operator
is turned on if the average value of the fitness function for
the last n generations is not greater than the same aver-
age value for the previous n generations increased by x%.
Consequently, the brainstorm is turned on if

1
n

c∑
i=c−n

Favg(i) ≤ 1
n

c−n∑
i=c−2n

Favg(i)
(
1 +

x

100

)
,

where c is the number of the current generation and
Favg(i) denotes the average value of the fitness function
for the i-th generation. The brainstorm is on for the next y
generations, and then it switches to the turning off mode,
which runs for the next z generations. When the brain-
storm is turned off, it cannot be turned on again for the
next b generations even if the “turn on” condition is ful-
filled. The n, x, y, z and b values are defined by the user.
If the brainstorm is turned on, it modifies the parents’ pick
up method—the actual average population fitness is added
to every individual’s fitness value. The brainstorm “turn-
ing off” mode linearly decreases the brainstorm modifier.
The following function defines the value of the brainstorm

modifier BN (i) for a generation i:

BN (i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if turned off,
i < t,

Favg(i) if turned on,
t ≤ i < t + y,

(t + y + z) − i

z
Favg(i) if turning off,

t + y ≤ i < t + y + z,

where t is number of the generation for which the brain-
storm is turned on.

The way the brainstorm affects the population aver-
age fitness and the best found individual fitness is clearly
shown in Fig. 5. We can see that, starting from the 100-th
generation, the brainstorm is on. The average fitness func-
tion decreases, but the best value of the fitness function
increases more rapidly than that for previous generations.
After y generations, the brainstorm factor starts to linearly
decay during z generations.

The brainstorm operator (population state) is a rem-
edy for a typical situation when the population starts to
concentrate only around one local maximum area. In such
a population, all individuals are very “close” to each other
and so are their fitness values. That is why the whole av-
erage fitness starts to become constant. In the presented
algorithm, this situation triggers off the brainstorm, which
helps the search to escape from this situation (so the pop-
ulation is diverse again). As we can see from Fig. 5, even
though the average population fitness has dropped down,
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Fig. 5. Brainstorm fitness modifier and an average population fitness.

Fig. 6. Low level individual representation.

the fitness of the best individual ever found increases dur-
ing the brainstorm quicker than before it.

4.3. “Low” Level of the Algorithm. The “low” level
is based on a hierarchical algorithm approach (Radcliffe
and Surry, 1994), even though its existence does not actu-
ally make the presented algorithm hierarchical, nor a typ-
ical EA at all. For example, on the one hand, we have
two levels, which indicates a hierarchical algorithm, but
on the other hand, there is no fitness function defined for
the “low” level and there is no typical population, either.
These are the reasons why the algorithm presented in this
work can rightly be called “quasi-hierarchical”.

At the “low” level of the algorithm, each chromo-
some is represented by a list of network node identifiers
that a route goes through. Node identifiers are individ-
uals’ genes, which means that the number of genes for
each individual can be different and that its neighbors
determine the value of a gene. For instance, Chromo-
some 2546 denotes a route originating in Node 2, going
through Nodes 4 and 5, and finally reaching Node 6. An
example of a “low” level representation is shown in Fig. 6.

There is no regular fitness function defined for a
“low” level, because we cannot evaluate individual routes,
and we can only evaluate the whole set of routes. The

selection procedure is based on a simple idea which is
best described by the following sentence: “If we cannot
directly tell which routes are somehow better than oth-
ers, we have to believe that we will probably find better
routes in better fit sets of them (better “high” level indi-
viduals).” In order to select two “low” level parents, we
select a “high” level one and randomly pick up one of his
genes, which is in fact a “low” level individual. Next, we
select another “high” level individual and take one of its
genes that represents the same commodity as the first al-
ready chosen “low” level parent. In the crossing operator,
the “high” level individuals from which the “low” level
parents come are reintroduced into the new “high” level
population. If a chance decides that the “low” level cross-
ing operator is not to be used, both “high” level individuals
stay the same like they did before. If the “low” level cross-
ing operator is used, they will contain a modified version
of the routes that were randomly chosen to be the “low”
level parents. The selection process of “low” level parents
is shown in Fig. 7.

The two selected “low” level individuals of the same
commodity (two routes with the same source and destina-
tion nodes) are crossed by random partition of both indi-
viduals into two pieces. The first part from the first par-
ent is then joined with the second part of the second par-
ent, which produces the first offspring, and the second off-
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Fig. 7. “Low” level parent selection.

Fig. 8. “Low” level crossing operation.

spring is constructed analogously. The two pieces do not
have to fit each other (in fact, they will not in most cases).
Therefore, we join them using a randomly generated route
between the joint nodes from the database of routes. The
“low level” crossing operation is shown in Fig. 8.

The “low” level mutation operator first checks the
mutation chance for every “high” level individual. If the
“low” mutation operator is to be used, we randomly pick
up a “high” level individual gene, which is a “low” level
individual, and mutate it by replacing a randomly chosen
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Fig. 9. “Low” level individual mutation.

part of it by a proper (having the same start and end node
identifiers as the replaced part) route proposition from the
database of routes. It should be noted that the “low” level
crossover and mutation operators might produce a route
that contains empty loops, which are removed from it be-
fore it is shown to the database of routes as a new route
proposition. The “low” level mutation operation is also
shown in Fig. 9.

4.4. General Algorithm Overview. The general algo-
rithm overview is displayed in Fig. 10. We show there the
order of algorithm stages and the role of the database of
routes.

5. Results

The algorithm was coded in C++. For tests we applied the
same networks as in (Walkowiak, 2004a; 2004b), consist-
ing of 10, 14, 18 and 36 nodes and having various numbers
of links. Table 1 briefly summarizes the parameters of all
36-node networks. The first column specifies parameter
names, and the next columns include the values of these
parameters for each network. Let the bandwidth unit (BU)
denote an arbitrary unit of the bandwidth, e.g., 1 Mb/s. We
assume that, for all networks, the capacity of each link is
5000 BU. Since, according to the theoretical analysis pre-
sented in (Walkowiak, 2004a; 2004b), the LFN function
of a lost flow depends on the node degree, in numerical
experiments we chose networks with various values of the

Table 1. Parameters of the tested networks.

Name of network 104 114 128 144 162

Number of nodes 36 36 36 36 36

Number of links 104 114 128 144 162

Topology irregular mesh

Node degree (average) 2.88 3.17 3.56 4.00 4.50

Number of tests 17 8 9 9 7

average node degrees. It is assumed that there is a require-
ment to set up a connection for each direction of every
node pair. Thus, the total number of demands (commodi-
ties) is n(n−1). Each demand is defined by a source node,
a destination node and a flow requirement. Several de-
mand patterns are examined for each network. However,
all demands are homogenous and the flow requirement is
the same for each demand. For instance, for Network 104
we performed 17 simulations starting with a flow require-
ment of each demand equal to 48 BU, the largest value of
the flow requirement being 64 BU.

The first step of numerical experiments was tuning
the algorithm. Parameter settings used for further simula-
tions were selected after a high number of simulation runs.
Configuration selection was divided into two phases. In
the first phase, the best possible values of different para-
meters (the probabilities of “high” and “low” level cross-
ing and mutation, the probability of one-point/uniform
crossover and the “brainstorm” parameter set) were se-
lected (this selection was done arbitrarily), and the al-
gorithm was to run for all the possible combinations of
them. This way of setting tests seemed to be quite time-
consuming (there were 32 parameter combinations to go
through), and thus all these tests were made for a small
number of individuals in the population (400) and a low
number of generations (100), which were fixed arbitrar-
ily. In the second phase, the best parameter settings were
used for computation but with much higher values of in-
dividuals and numbers of generations (1200 individuals
and 1000 generations for 10-node networks; 2000 indi-
viduals and 1000 generations for 14-node networks; 4000
and 1200 for 18-node networks; 2000 and 1000 for 36-
nodes networks). Typical times of algorithm runs on a
machine equipped with a 1.3 GHz processor were about
50 minutes. The algorithm was initiated with a set of fea-
sible routes. The database contained all possible routes
whose lengths did not exceed 4.

The results of the initial phase are shown in Table 2.
This table contains the average percentage of the best re-
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Fig. 10. General algorithm overview.

sults found for a specified network type, which was com-
puted as follows: we compared solutions for a specified
network produced by all settings such that the best result
found was assigned a value of 1 (100%) and the others –
proportionally lower values. The average of all these val-
ues for a specified network type (e.g., a 14-node one) for
each configuration is the average percentage of the best
result found for a specified configuration.

The content of Table 2 can be better represented as
a function of configuration where the function value is
the average percentage of the best solution. In Fig. 11
we can clearly see that the shape and values of the pre-

sented functions are different depending on the network
type. For 10-node networks, all algorithm settings were
equally effective. For 14-node networks, still all settings
were equally effective, but their effectiveness descreased.
For 18-node networks, the effectiveness was on the same
level as for 14-node networks, but we can see there are
three configurations considerably better than the others.
For 36-node networks, the effectiveness continuously de-
creased and the diversity between the effectiveness of dif-
ferent settings became even bigger. Finally, a setting con-
sidered the best in our opinion was picked for further re-
search. This is shown in Table 3.
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Table 2. Results of the initial phase.

Configuration
Normalized average percentage

of the best found solution

Nr. X/Y /Z 10-node
networks

14-node
networks

18-node
networks

36-node
networks

1 0/0/0 94.16% 69.79% 72.61% 45.68%

2 0/0/1 88.20% 88.66% 70.68% 54.51%

3 0/1/0 93.50% 92.56% 73.39% 66.86%

4 0/1/1 91.35% 77.45% 76.75% 54.82%

5 0/2/0 91.80% 79.76% 76.03% 66.29%

6 0/2/1 91.36% 79.79% 81.31% 66.32%

7 0/3/0 94.32% 94.72% 71.16% 72.34%

8 0/3/1 96.08% 75.03% 75.85% 84.55%

9 1/0/0 97.27% 82.53% 77.93% 59.69%

10 1/0/1 95.74% 83.85% 72.71% 46.35%

11 1/1/0 96.87% 97.66% 72.30% 78.47%

12 1/1/1 98.39% 83.07% 75.09% 70.55%

13 1/2/0 96.97% 93.36% 74.20% 72.74%

14 1/2/1 100.00% 97.16% 75.45% 91.42%

15 1/3/0 93.83% 91.05% 76.67% 72.36%

16 1/3/1 94.92% 93.35% 99.59% 76.87%

17 2/0/0 96.60% 94.87% 74.66% 88.13%

18 2/0/1 99.82% 98.73% 75.96% 58.02%

19 2/1/0 97.51% 87.99% 97.07% 85.18%

20 2/1/1 99.69% 89.14% 78.01% 100.00%

21 2/2/0 95.11% 94.03% 100.00% 78.70%

22 2/2/1 97.90% 96.17% 78.38% 75.49%

23 2/3/0 98.37% 96.78% 76.98% 90.98%

24 2/3/1 96.30% 90.59% 83.61% 85.51%

25 3/0/0 98.58% 82.56% 77.56% 81.51%

26 3/0/1 96.63% 76.33% 74.95% 71.45%

27 3/1/0 95.64% 94.11% 78.67% 62.44%

28 3/1/1 97.64% 94.70% 71.24% 53.96%

29 3/2/0 96.51% 79.28% 67.38% 62.36%

30 3/2/1 97.02% 83.00% 72.39% 57.70%

31 3/3/0 98.63% 81.81% 70.69% 63.25%

32 3/3/1 96.15% 100.00% 77.32% 56.46%

Setting X/Y /Z

X: hcros/hmut/lcros/lmut Y : uniform
crossover
possibility

Z: brainstorm

0 – 0.5/0.1/0/0 0 – 0 0 – turned off
1 – 0.5/0.1/0.3/0.2 1 – 0.5 1 – turned on
2 – 0.5/0.1/0.6/0.4 2 – 0.75
3 – 0/0/0.7/0.5 3 – 1.0

Table 3. Best configurations.

Best configurations 14 (1/2/1)

High level crossing 0.5

High level mutation 0.1

Low level crossing 0.3

Low level mutation 0.2

Uniform crossover possibility 0.75

Brainstorm On

The problems addressed in this work are typical GA-hard
problems, where the space of feasible solutions consti-
tutes an extremely small part of the space of all possi-
ble solutions. A very common problem in such cases
for GA-based algorithms is fast convergence to subopti-
mal solutions. This concentration may be easily seen in
Figs. 12–14 as for a long period the population fitness and
the best ever found individual fitness remain on the same
level. Our algorithm tries to break through this stagna-
tion by using the brainstorm described above. All individ-
uals are rewarded in accordance with their fitness values
when the algorithm picks up parents for crossing. This en-
ables the population become more diverse, which can be
clearly seen in figures as the temporary average popula-
tion fitness deteriorates. However, the average population
fitness decreases and the brainstorm period enables the al-
gorithm to find better individuals during the brainstorm
period or immediately after. This is also confirmed by the
results when the same settings using the brainstorm pro-
duced better results than the same settings without it. Cer-
tainly, the brainstorm does not always provide very good
results. For instance, in Fig. 12 we can see that the brain-
storm improves the solution only after ten attempts. The
very model of the algorithm run is presented in Fig. 13.
The brainstorm clearly helps the algorithm to find better
solutions.

It is difficult to estimate the quality of the HEFAN
because, as has been mentioned above, the only way to
find an optimal solution for 0–1 problems is the branch-
and-bound method, which can be used only for very small
networks (about 10 nodes). One of the authors devel-
oped a branch-and-bound algorithm for a restricted ver-
sion of the optimization problem considered (Walkowiak,
2004a). Also, a genetic algorithm was employed for the
same problem (Walkowiak, 2001). However, genetic and
B&B algorithms can process only a limited set of candi-
date routes (not all possible routes are taken into account).
Summarizing all 309 tests made for 8 networks with the
number of nodes varying from 10 to 14, the genetic algo-
rithm gave results only by 0.7% worse than the optimal
ones. The evolutionary algorithm proposed in this work
includes important extensions compared with that pro-
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Fig. 11. Average percentage of the best found solution as a function of the configuration.

Fig. 12. Algorithm run for the configuration 1/2/1, 10-node and 38-arc network.

posed in (Walkowiak, 2001). The most significant modi-
fication is the low level that enables searching the whole
solution space. Also, new operators are added. Conclud-
ing, we expect that the evolutionary algorithm – HEFAN
– presented above is able to find results close to optimal
ones.

For reference, we apply a heuristic algorithm FDP
based on the Flow Deviation (FD) method proposed in
(Walkowiak, 2003; 2004b) for restricted and unrestricted
versions of the PRA problem. Furthermore, we also
present the results of a newly developed heuristic called
LRH that combines FDP and Lagrangian relaxation tech-

niques (Walkowiak, 2006). We focus on the most interest-
ing cases, i.e., the largest networks consisting of 36 nodes
presented in Table 1. We present the results of the HEFAN
using the combination of parameters given in Table 3.

To compare the results, we apply the competitive ra-
tio performance indicator. The competitive ratio, which
indicates how well an algorithm performs for a particular
network and a demand pattern, is defined as the differ-
ence between the result obtained for the analysed algo-
rithm and the minimum value of LFN yielded by the best
algorithm. For instance, if FDP yields 2500, LRH yields
2200 and the HEFAN yields 2000 for the same simulation
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Fig. 13. Algorithm run for the configuration 1/2/1, 36-node and 128-arc network.

Fig. 14. Algorithm run for the configuration 3/2/1, 10-node and 42-arc network.

case; the competitive ratio of FDP is calculated as follows:
(2500 − 2000)/2500 = 20%. The competitive ratio indi-
cates the quality of a particular algorithm compared with
the best found result. A low value of the competitive ratio
means that the algorithm finds a solution close to the best
results obtained in a given test. Notice that the competitive
ratio must be in the range [0, 100%]. For the presentation
of aggregate results, we apply the average competitive ra-
tio, which is the average value of competitive ratios for a
given network topology.

In Table 4 we report the average competitive ratios
of the tested algorithms obtained for various networks.
Table 5 shows the ranking of all tested algorithms. For
instance, the fourth column of Table 5 demonstrates that
the HEFAN produces the best results in 1 out of 17 sim-
ulation runs for Network 104, 5 of 8 simulation runs for
Network 114, etc. In almost all of the tested and presented
cases, the HEFAN outperforms the FDP algorithm. Only
for low-connected Network 104 FDP offers better results.
The performances of LRH and the HEFAN are compara-
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ble, yet they depend on the network topology. Both algo-
rithms try to search as many candidate routes as possible.
However, the number of candidate routes depends on net-
work connectivity.

Table 4. Average competitive ratio of FDP, LRH
and the HEFAN for various networks.

Network FDP LRH HEFAN

104 7.90% 0.00% 20.58%

114 20.67% 15.29% 1.83%

128 24.36% 13.39% 11.21%

144 24.54% 3.17% 17.71%

162 22.97% 0.00% 16.22%

Table 5. Ranking of FDP, LRH and the
HEFAN for various networks.

Network FDP LRH HEFAN

104 3 17 1

114 1 4 5

128 1 2 6

144 1 5 5

162 2 7 2

The results collected during the search for the best
routes show that all of the “low” level parameters are nec-
essary to find the best route set. This feature is even com-
mon for small networks (10 nodes), where the “low” level
is not needed for finding new route proposals (for the fit-
ness function used we have enough routes in the data-
base), but the algorithm seems to find better route pro-
posals much faster than when it does not use “low” level
operators at all. The most impressive example of how use-
ful the “low” level can be regards large networks. For such
networks, there are node pairs which demand long route
proposals (of lengths over 8 hops). Initializing the data-
base of routes with all such proposals (and longer ones
because some of them may also be useful) would certainly
make the algorithm unable to work in a reasonable time.
On the other hand, we have the presented “low” level op-
erator, which seem to be a good answer to this problem.
However, the tests should be done for populations bigger
than 2000 and generation numbers surpassing 1000, be-
cause some of the results are quite disappointing.

6. Concluding Remarks and Further Work

The main idea of the presented algorithm based on a two-
level structure and the proposed performance of the “low”
level seems to be a good direction for future work and
improvements. The results reported in this paper show

that there is still an improvement potential in modifying
parents’ selection and finding better “brainstorm” mode
variables (it looks like the algorithm has big problems
escaping from local optima). Another improvement that
was not mentioned yet regards finding a way to decrease
the number of node pairs that have to be computed within
the same time period, since problem complexity increases
quadratically with the increase in the network size (i.e.,
the number of nodes). Very optimistic seems the pos-
sibility of making the “low” level of the proposed algo-
rithm more independent of the “high” level, especially by
adding a regular “low” level fitness function (first attempts
suggest that significant improvements can be obtained).
Another step ahead may be to expand the current algo-
rithm so that it can also design the network topology for
given demands and route sets. It should be underlined
that the proposed EA can be applied to a wide range of
optimization problems encountered in c-o networks using
as objective functions the network cost, delay and many
other criteria. The algorithm is not limited only to the
function LFN .

We also consider the possibilities of extending the al-
gorithm by the creation of individuals’ classes based on a
proper definition of the distance between two representa-
tives. This, we believe, may be a much better panacea for
premature convergence than the “brainstorm”. Even better
perspectives can be offered by applying a messy-GA algo-
rithm structure, since it is possible that some individuals
might be significantly improved by changing only a small
set of genes which are far away from each other in the
current chromosome coding. In the messy-GA algorithm
structure, the position of a particular gene in the chromo-
some does not change its meaning. Then, it is possible that
genes from such an important set will be grouped close to
each other and the probability of a positive change in this
set will be highly increased. However, before a messy-
GA algorithm structure can be applied to the HEFAN, the
problem of computing the fitness function based only on
partial information has to be addressed.
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