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In classification problems, the issue of high dimensionality, of data is often considered important. To lower data dimen-
sionality, feature selection methods are often employed. To select a set of features that will span a representation space that
is as good as possible for the classification task, one must take into consideration possible interdependencies between the
features. As a trade-off between the complexity of the selection process and the quality of the selected feature set, a pair-
wise selection strategy has been recently suggested. In this paper, a modified pairwise selection strategy is proposed. Our
research suggests that computation time can be significantly lowered while maintaining the quality of the selected feature
sets by using mixed univariate and bivariate feature evaluation based on the correlation between the features. This paper
presents the comparison of the performance of our method with that of the unmodified pairwise selection strategy based on
several well-known benchmark sets. Experimental results show that, in most cases, it is possible to lower computation time
and that with high statistical significance the quality of the selected feature sets is not lower compared with those selected
using the unmodified pairwise selection process.
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1. Introduction

In many applications of computational methods, the prob-
lem of high dimensionality of data appears. Since high
dimensional data are often hard to analyze, various meth-
ods are employed to reduce data dimensionality.

In the case of classification problems, data are often
given as a set of vectors with each element of each vector
being a value of some feature fi ∈ F = {f1, . . . , fk}. If
we assume that the features are real-valued, we can intro-
duce a set of vectors V = {v1, v2, . . . , vn} ⊂ R

k, a set of
classes C and a classifier K : R

k → C. Obviously,

∀ vi ∈ V, j ∈ {1, . . . , k} · vij ∈ fj . (1)

Dimensionality reduction can be performed by se-
lecting a subset F ′ ⊂ F . However, it is not easy to de-
cide which features should be selected so that the quality
of classification made using the representation space con-
sisting of the selected features is as good as possible.

Usually, the feature selection process involves a
quantitative criterion Q(Fi) that measures the capability
of the feature set Fi to discriminate between the classes.
Depending of the number of features in the evaluated set
Fi, selection techniques are divided into univariate and
multivariate ones. The advantage of univariate methods is
low computational complexity. However, they do not take

into account any possible interdependencies between fea-
tures. Thus, multivariate approaches may select more ap-
propriate feature sets when features are correlated. Apart
from higher computational complexity, the disadvantage
of multivariate methods is that, when the sample size is
small, they are more likely to suffer from the effects of
high dimensionality.

Two main categories of feature selection methods are
filters and wrappers (Kohavi and John, 1997). Filter meth-
ods rely solely on the properties of the features to choose
the best feature set. On the other hand, wrappers evalu-
ate feature sets based on the performance of a preselected
classification algorithm on a training data set.

Both the filter and the wrapper approaches require
a search procedure that iterates over the space of possi-
ble feature sets. Some basic strategies of feature selection
are individual ranking (Kittler, 1978), forward search and
backward search.

Individual ranking starts with an empty set F0 = ∅.
In each step, one best individually ranked feature f ′ is
added,

Fn = Fn−1 ∪ {f ′}, (2)

where
f ′ = arg max

Fn−1∩{fi}=∅
Q(fi). (3)
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Individual ranking does not take into account the ex-
istence of any dependencies between features and may
therefore give poor results.

Forward search also starts with an empty set F0 = ∅.
In each step, one feature f ′ is added which maximizes the
criterion Q together with previously selected features,

Fn = Fn−1 ∪ {f ′}, (4)

where

f ′ = arg max
Fn−1∩{fi}=∅

Q(Fn−1 ∪ {fi}). (5)

Forward search takes into consideration at least some
of the potential interdependencies between features, but
the required feature set is constructed in a greedy manner
which may also produce suboptimal results (Cover and
van Campenhout, 1977; Pudil et al., 1994).

Backward search starts with the set of all features
F0 = F , and in each step it removes one feature f ′ which,
when removed from the selected features set, maximizes
the criterion Q,

Fn = Fn−1 \ {f ′}, (6)

where

f ′ = arg max
Fn−1∩{fi}�=∅

Q(Fn−1 \ {fi}). (7)

Backward search is also a greedy approach, so it may pro-
duce suboptimal results. Also, it is much more compu-
tationally complex than forward search, as it requires the
criterion Q to be evaluated on a representation space of
much higher dimensionality than the one used in forward
search.

More sophisticated methods of feature selection in-
clude genetic algorithms (Kwaśnicka and Orski, 2004),
in which the population consists of potential feature sets
and the fitness is calculated using the criterion Q. Other
approaches are hybrid methods (Das, 2001; Xing et al.,
2001).

Recently, a pairwise selection strategy was proposed
(Pękalska et al., 2005). Pairwise selection takes into con-
sideration at least some possible interdependencies be-
tween features and has reasonable computational com-
plexity. In this selection strategy, the selection procedure
begins with an empty set F0 = ∅. Then, in each step of
the iterative process, the best pair of features is added to
the set of selected features Fn,

Fn = Fn−1 ∪ {f ′, f ′′}, (8)

where

{f ′, f ′′} = arg max
i�=j

Fn−1∩{fi,fj}=∅

Q(Fn−1 ∪ {fi, fj}). (9)

Similarly to forward search, pairwise selection has
one major advantage. Namely, it takes into account possi-
ble relationships between features. However, it is also far
more computationally complex.

In this paper, a modification in the pairwise selection
procedure is proposed. It is shown that the new approach
substantially shortens computation time while producing
equally good results. In Section 2, we present the new
method of feature selection: in Section 3, experimental
results are summarized: and Section 4 concludes the pa-
per.

2. Selection Strategy

The method proposed in this paper uses a predetermined
classifier to evaluate the quality of the feature set, and
therefore this approach is a wrapper method. Let c i de-
note the actual class to which the vector vi ∈ V belongs,
and c′i be the class chosen by the classifier. Assume that
the data set V is partitioned into a training set Vtrain and
a test set Vtest. The aim of the feature selection process
is to select a set F ′ containing a predefined number l of
features such that the classifier K : Rl → C trained us-
ing vectors from the training set Vtrain�F ′ will give the
possibly lowest classification error E on the test set Vtest:

E(F ′) =
1

|Vtest|
∑

vi∈Vtest

H(c′i, ci), (10)

where ci signifies the actual class to which vi belongs, and
c′i = K(vi�F ′) means the classification result given by the
classifier K ,

H(a, b) =

{
1 if a 	= b,

0 if a 	= b.

Consequently, we define the criterion Q used in the
selection process as

Q(Fi) = 1 − E(Fi). (11)

In the unmodified pairwise selection process
(Pękalska et al., 2005), the feature set is expanded by
iteratively adding pairs of features satisfying the condi-
tion (9).

To reduce the number of required operations, we sug-
gest a modification in the pairwise selection strategy. In
our method, the features are evaluated individually or in a
pairwise manner depending on the value of the correlation
between the given feature and all other features. Formally,
consider each feature fi as a random variable. Given the
training vector set Vtrain, we can compute a sample esti-
mate of the correlation coefficient σij between the features
fi and fj using

σij =
COV(fi, fj)√

VAR(fi)VAR(fj)
. (12)
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Each selection step is performed as follows:

S = ∅
Qmax = 0
for each i = 1, . . . , k, fi /∈ Fn−1

if exists j ∈ {i + 1, . . . , k} such that σij > θ
for each j = i + 1, . . . , k, i 	= j, fj /∈ Fn−1

if Qmax < Q(Fn−1 ∪ {fi, fj} )
S = {fi, fj}
Qmax = Q(Fn−1 ∪ {fi, fj})

end if
end for

else
if Qmax < Q(Fn−1 ∪ {fi})

S = {fi}
Qmax = Q(Fn−1 ∪ {fi})

end if
end if

end for
Fn = Fn−1 ∪ S.

This procedure ensures that any feature that corre-
lates with any other feature at the level of at least θ (θ is a
parameter with a fixed value) will be evaluated in a pair-
wise manner, while the features that have no significant
correlation with any other feature will be evaluated indi-
vidually. In each case, the criterion Q defined by (11) is
used for evaluating the set of features together with the
previously selected features. Obviously, if there is only
one more feature required, i.e., |Fn−1| = l− 1 (where l is
the required number of features), no pairwise evaluation
is performed.

We hypothesize that, for a sufficiently low threshold
θ, all significant relationships between the features will
be exploited by the pairwise part of the search. As the
complexity of selecting l features in a pairwise manner is
O(l2) and the complexity of selecting l features individu-
ally is O(l), evaluating some of the features individually
should improve the performance of the selection strategy
for sufficiently large l.

3. Experiments

To validate the proposed approach, we performed a num-
ber of experiments in which the classification error and
computation time for the pairwise selection strategy pro-
posed in (Pękalska et al., 2005) and for the correlation-
based strategy were compared. The correlation-based se-
lection strategy is parametrized by a parameter θ ∈ [0, 1],
which is used to decide whether a given feature should
be evaluated individually or in a pairwise manner. In the
experiments, this parameter was set to θ = 0.5. The ex-
periments were performed using the following data sets:
Mushroom, Waveform and Waveform with noise – all
from the UCI Repository of Machine Learning Databases

(Blake and Merz, 2006), and Gaussian – an artificial data
set with some of the features forming correlated pairs, as
described in (Pękalska et al., 2005). A summary of the
data sets is presented in Table 1. In this table, the number
of samples used for training and the maximum number of
features that were selected using tested selection strategies
are also given.

Table 1. Data summary.

Data set

Total Training Total Max.
samples samples feat. selected

features

V |V | |Vtrain| k lmax

Gaussian 10 000 100 20 20

10 000 100 40 20

10 000 100 60 20

10 000 100 80 20

10 000 100 100 20

Mushroom 8124 100 20 20

8124 200 20 20

8124 400 20 20

8124 1000 20 20

8124 2000 20 20

8124 4000 20 20

Waveform 5000 35 21 21

5000 350 21 21

5000 3500 21 21

Waveform 5000 35 21 21

w/noise 5000 350 21 21

5000 3500 21 21

The Gaussian data set is constructed so that it con-
tains k features of which only q ≤ k are informative. The
informative features are drawn in pairs from the Gaussian
distribution with the class means μ1 = [0, 0]T and μ2 =√

2
2 [r, −r]T for some r > 0. The covariance matrix for

both classes is

Σ1 = Σ2 =
[
v + 1
v − 1

v − 1
v + 1

]
,

where v is a parameter with a fixed value. The remaining
k− q uninformative features are drawn from the spherical
Gaussian distribution N(0, v√

2
I). In our experiments, the

number of informative features was always q = 20. The
remaining k − q features were used to simulate the clas-
sification of noisy data. The distribution parameters were
set to r = 3 and v =

√
40.

In the experiments, the feature selection strategies
were tested using two Bayes classifiers: the NLC and the
NQC (Duda et al., 2001). The first of these classifiers was
used by other authors to evaluate the pairwise selection
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method (Pękalska et al., 2005). Both classifiers are de-
fined on the Euclidean space R

l. The NLC classifier is
defined as

f(x) =
[
x − 1

2
(m1 + m2)

]T

S−1(m1 − m2) + log
p1

p2
,

(13)
where m1 and m2 are the estimated means of the classes,
S is the estimated covariance matrix, and p1 and p2 are
the prior probabilities of the classes.

The NQC classifier is defined as

f(x) =
1
2
(x − m1)T S−1

1 (x − m1)

− 1
2
(x − m2)T S−1

2 (x − m2)

+
1
2
log

|S1|
|S2| + log

p1

p2
, (14)

where m1 and m2 are the estimated means of the classes,
S1 and S2 are the estimated class covariance matrices, and
p1 and p2 are the prior probabilities of the classes.

Both classifiers are binary classifiers with the classi-
fication boundary f(x) = 0. Thus, in the experiments,
the data were always partitioned into two classes and the
class membership was determined by the sign of the value
returned by the classifier.

In the experiments, the selection of the l =
1, . . . , lmax features was performed for each data set pre-
sented in Table 1. For each number of features, the
mean classification error obtained using pairwise selec-
tion (Ep) and the correlation-based method (Ec) was
recorded. Also, the mean computation times (Tp and Tc)
were recorded. For each number of features, the average
values from 30 runs were recorded. Tables 2–9 present the
average ratios Ec/Ep and Tc/Tp calculated for all num-
bers of features and for each data set. As the pairwise
selection strategy allows only selecting an even number
of features, only even numbers were taken into consider-
ation when calculating the values presented in the tables.

As the above results suggest, the most significant im-
provement is the reduction in computation time. As was

Table 2. Results for the NLC classifier obtained when selecting
l = 2, . . . , 20 features for the Gaussian data set (|V | =
10000, |Vtrain| = 100).

Total features Error ratio Time ratio

k Ec/Ep Tc/Tp

20 1.0000 1.0994

40 0.9378 0.5072

60 0.9053 0.3255

80 0.9119 0.2433

100 0.8430 0.1883

Table 3. Results for the NLC classifier obtained when select-
ing l = 2, . . . , 20 features for the Mushroom data set
(|V | = 8124, k = 20).

Training samples Error ratio Time ratio

|Vtrain| Ec/Ep Tc/Tp

100 0.9929 0.6091

200 0.9961 0.5778

400 0.9989 0.5306

1000 0.9955 0.4657

2000 0.9978 0.4451

4000 0.9896 0.4305

Table 4. Results for the NLC classifier obtained when select-
ing l = 2, . . . , 20 features for the Waveform data set
(|V | = 5000, k = 21).

Training samples Error ratio Time ratio

|Vtrain| Ec/Ep Tc/Tp

35 0.9948 0.8182

350 0.9964 0.7561

3500 0.9996 0.6588

Table 5. Results for the NLC classifier obtained when selecting
l = 2, . . . , 20 features for the Waveform w/noise data
set (|V | = 5000, k = 21).

Training samples Error ratio Time ratio

|Vtrain| Ec/Ep Tc/Tp

35 0.9930 0.4842

350 0.9942 0.3486

3500 0.9979 0.2974

Table 6. Results for the NQC classifier obtained when selecting
l = 2, . . . , 20 features for the Gaussian data set (|V | =
10000, |Vtrain| = 100).

Total feat. Error ratio Time ratio

k Ec/Ep Tc/Tp

20 1.0000 0.5394

40 0.9604 0.4714

60 0.9110 0.3339

80 0.9088 0.2359

100 0.9194 0.2037

expected, the new method performs better in the presence
of noise in data (compare the results for the Waveform
data sets, with and without noise, and for the Gaussian
data sets with different numbers of uninformative fea-
tures).

Figures 1–16 present the results for different num-
bers of selected features. For the pairwise selection strat-
egy, only the results for an even number of selected fea-
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Table 7. Results for the NQC classifier obtained when select-
ing l = 2, . . . , 20 features for the Mushroom data set
(|V | = 8124, k = 20).

Training samples Error ratio Time ratio
|Vtrain| Ec/Ep Tc/Tp

100 1.0123 0.6048
200 0.9961 0.5778
400 0.9849 0.5284
1000 1.0019 0.4770
2000 1.0013 0.4432
4000 1.0575 0.4269

Table 8. Results for the NQC classifier obtained when select-
ing l = 2, . . . , 20 features for the Waveform data set
(|V | = 5000, k = 21).

Training samples Error ratio Time ratio
|Vtrain| Ec/Ep Tc/Tp

35 0.9744 0.8212
350 0.9987 0.7211
3500 0.9995 0.6812

Table 9. Results for the NQC classifier obtained when selecting
l = 2, . . . , 20 features for the Waveform w/noise data
set (|V | = 5000, k = 21).

Training samples Error ratio Time ratio
|Vtrain| Ec/Ep Tc/Tp

35 0.9773 0.4431
350 0.9730 0.3552
3500 0.9941 0.3254

tures are available. Apart from data points, one-variance
ranges were marked in the charts. Clearly, the classifi-
cation errors given by both methods are very similar, ex-
cept for the Gaussian data set with 20 informative and 80
uninformative features, where the new method produces
a substantially lower classification error. Apparently, the
new method is more effective in reducing the influence of
uninformative features on the classification process.

From the presented results it is clear that the new se-
lection strategy is much faster than the classic pairwise
approach. To prove that the classification errors produced
by the new method are, on average, no higher than the
errors obtained using the unmodified pairwise selection
strategy, we computed the p-value of the hypothesis that
the new method gives on average worse results than the
traditional one. Let mp and mc denote the mean classifi-
cation error yielded by the pairwise selection strategy and
the correlation-based strategy, respectively. Let np and
nc denote the number of the best results given by each
method. Assume that

mp < mc, (15)

i.e., that the new method produces statistically worse re-
sults than the traditional one.

As the averages of 30 measurements have approxi-
mately normal distributions, the probability P (k) of get-
ting k best results using the new method would then
have the Bernoulli distribution with the success probabil-
ity q < 1/2.

The upper bound on the p-value of the null hypoth-
esis that the new method statistically produces worse re-
sults than the traditional one can be calculated with respect
to the results obtained as the probability p of getting at
least nc better results using the new method. Considering
the above, this probability can be calculated as

p = 1 − P (k < nc), (16)

P (k < nc) =
nc−1∑
i=0

(
nc + np

i

)
qi(1 − q)nc+np−i, (17)

P (k < nc) ≥ 1
2nc+np

nc−1∑
i=0

(
nc + np

i

)
, (18)

p ≤ 1 − 1
2nc+np

nc−1∑
i=0

(
nc + np

i

)
. (19)

Tables 10 and 11 present the values of nc and np

calculated as the number of times each method gave a
lower classification error than the other for the data sets
described in Table 1, using the NLC and NQC classifiers,
respectively. When both methods gave identical classi-
fication errors, neither nc, nor np was incremented. In
Tables 10 and 11, the upper p-value bounds for the null
hypothesis are also given.

The overall upper p-value bound for the NLC clas-
sifier is 6.91 · 10−47, and for the NQC classifier it is
7.25 · 10−33.

4. Conclusion

In this paper we have proposed a modification of pairwise
selection of features. We tested the new method on several
data sets commonly used as benchmark data in machine
learning. The results suggest that the new method re-
quires less computation time than the traditional approach
when selecting a given number of features. The experi-
ments also show with very high statistical significance that
the average classification error obtained when using the
correlation-based selection strategy should not be higher
than the classification error obtained when using the tra-
ditional approach. The new feature selection method was
tested using two classifiers — NLC and NQC. A further
study is necessary to evaluate this method with other clas-
sifiers.
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0 5 10 15 20 25
0

200

400

600

800

1000

1200

Number of features

C
om

pu
ta

tio
n 

T
im

e
Corr time
Pairwise time

Fig. 1. Computation time observed for the NQC classifier on the
Waveform w/noise data set for |Vtrain| = 3500.
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Fig. 2. Classification error observed for the NLC classifier
on the Gaussian data set for k = 100.
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Fig. 3. Computation time observed for the NLC classifier
on the Gaussian data set for k = 100.
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Fig. 4. Classification error observed for the NLC classifier
on the Mushroom data set for |Vtrain| = 4000.
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Fig. 5. Computation time observed for the NLC classifier
on the Mushroom data set for |Vtrain| = 4000.
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Fig. 6. Classification error observed for the NLC classifier
on the Waveform data set for |Vtrain| = 3500.
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Fig. 7. Computation time observed for the NLC classifier
on the Waveform data set for |Vtrain| = 3500.
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Fig. 8. Classification error observed for the NLC classifier on
the Waveform w/noise data set for |Vtrain| = 3500.
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Fig. 9. Computation time observed for the NLC classifier on
the Waveform w/noise data set for |Vtrain| = 3500.
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Fig. 10. Classification error observed for the NQC
classifier on the Gaussian data set for k = 100.
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Fig. 11. Computation time observed for the NQC classifier
on the Gaussian data set for k = 100.
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Fig. 12. Classification error observed for the NQC classi-
fier on the Mushroom data set for |Vtrain| = 4000.
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Fig. 13. Computation time observed for the NQC classifier
on the Mushroom data set for |Vtrain| = 4000.
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Fig. 14. Classification error observed for the NQC classi-
fier on the Waveform data set for |Vtrain| = 3500.

Table 10. Upper p-value bounds obtained
in the tests for the NLC classifier.

Data set
Training Total
samples feat.
|Vtrain| k nc np p-value

Gaussian 100 20 0 0 —
100 40 111 26 5.24 · 10−14

100 60 147 34 3.01 · 10−18

100 80 148 52 3.63 · 10−12

100 100 185 36 1.21 · 10−25

Mushroom 100 20 65 39 6.92 · 10−3

200 20 53 44 0.21
400 20 70 47 0.02

1000 20 64 52 0.15
2000 20 47 40 0.26
4000 20 81 46 1.21 · 10−3

Waveform 35 21 79 59 0.05
350 21 71 55 0.09

3500 21 31 22 0.14
Waveform 35 21 105 70 4.98 · 10−3

w/noise 350 21 88 77 0.22
3500 21 63 48 0.09
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Fig. 15. Computation time observed for the NQC classifier
on the Waveform data set for |Vtrain| = 3500.
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Fig. 16. Classification error observed for the NQC classifier on
the Waveform w/noise data set for |Vtrain| = 3500.

Table 11. Upper p-value bounds obtained in
the tests for the NQC classifier.

Data set
Training Total
samples feat.
|Vtrain| k nc np p-value

Gaussian 100 20 0 0 —
100 40 111 47 1.89 · 10−7

100 60 172 38 7.36 · 10−22

100 80 172 32 1.12 · 10−24

100 100 177 45 5.29 · 10−20

Mushroom 100 20 79 69 0.23
200 20 76 65 0.20
400 20 91 84 0.33

1000 20 84 100 0.90
2000 20 65 113 1.00
4000 20 89 121 0.99

Waveform 35 21 112 90 0.07
350 21 57 46 0.16

3500 21 41 32 0.17
Waveform 35 21 121 65 2.44 · 10−5

w/noise 350 21 80 24 1.61 · 10−8

3500 21 79 30 1.48 · 10−6
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