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In this paper, novel pipelined architectures for the implementation of the frequency domain linear equalizer are presented.
The Frequency Domain (FD) LMS algorithm is utilized for the adaptation of equalizer coefficients. The pipelining of
the FD LMS linear equalizer is achieved by introducing an amount of time delay into the original adaptive scheme, and
following proper delay retiming. Simulation results are presented that illustrate the performance of the effect of the time
delay introduced into the adaptation algorithm. The proposed architectures for efficient pipelining of the FD LMS linear
equalization algorithm are suitable for implementation on special purpose hardware by means of the ASIC, ASIP or FPGA
VLSI processors.
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1. Introduction

The design of high-bit rate adaptive equalizers has been
the subject of major research and development, for high-
speed digital communication over satellite, microwave,
mobile, and unshielded twisted pair channels (Azadet and
Nicole 1998; Maginot et al., 1991; Rofougaran et al.,
1998; Shanbhag and Im, 1998). Analog channels de-
liver corrupted and transformed versions of their input
waveforms, which result in the degradation of communi-
cation system performance. To recover the data signal,
equalization techniques that combat the channel distor-
tions are employed at the receiver. Adaptive equalization
refers to a particular case where the design of the equal-
izer is performed at the receiver, on the basis of the avail-
able data (received signal and/or training signal). In this
case, temporal characteristics of the physical channel that
may vary with time are captured into the equalizer design
(Quereshi, 1985; Proakis, 1995; Benedetto and Biglieri,
1999). Adaptive equalizers are implemented by means of
adaptive signal processing algorithms. Fast convergence
speed and the tracking ability with respect to time vary-
ing statistics, low computational complexity, parallelism
and pipelining, modularity and local communication are
issues related to performance, when very high-speed im-
plementation of adaptive equalizers, on the ASIC or ASIP
VLSI processors, is under consideration (Haykin, 1996;
Kalouptsidis and Theodoridis, 1993; Parhi, 1999; Pirsch,
1998).

Linear equalization in the frequency domain has been
proposed in the past, as an improvement over Least Mean

Squared (LMS) error based adaptive linear equalizers
(Qureshi, 1985; Picchi and Prati, 1984). LMS-like algo-
rithms are popular due to low computational complexity
and simplicity in hardware realization of the underlying
algorithmic structure. However, the convergence rate of
the LMS-based adaptive equalizer heavily depends on the
eigenvalue spread of the correlation matrix of the input
data (Haykin, 1996). In an attempt to improve the con-
vergence rate of the original scheme, a Discrete Fourier
Transform (DFT) on the equalizer input data vector was
used, resulting in the Frequency Domain (FD) LMS adap-
tive linear equalizer (Picchi and Prati, 1984). FD LMS
may have increased the convergence rate for some classes
of input signals, yet the computational complexity re-
mains similar to that of the original LMS scheme. Fre-
quency domain adaptive equalization has been considered
extensively in major telecommunications schemes (Ben-
venuto and Tomasin, 2001; Berberidis et al., 2004; Bilcu
et al., 2002; 2003; Huang and Benesty, 2003; Moreli et
al., 2005; Shamma, 2002; Son et al., 2006; Ting et al.,
2005; Yang et al., 2004).

In this paper, efficient pipelined architectures for the
implementation of the FD LMS adaptive linear equalizer
are presented. The unitary transform utilized is the Dis-
crete Fourier Transform (DFT), and it is implemented
by means of a sliding window DFT, which allows full
pipelining. An amount of time delay is subsequently in-
troduced into the original adaptive scheme, resulting in the
Delayed FD LMS adaptive algorithm. Proper retiming of
the existing delays results in a fully pipelined architecture,
which is suitable for parallel implementation on a general
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Fig. 1. Channel equalilzation setup.

purpose parallel machine or on dedicated VLSI hardware,
using a systolic or a wavefront array of processors. VLSI
implementation issues are also discussed.

2. Delayed FD-LMS Adaptive Linear
Equalizer

InterSymbol Interference (ISI) is a major impairment in
today’s high bit rate communication systems (Arslan and
Bottomley, 2001; Benedetto and Biglieri, 1999; Qureshi,
1985; Proakis, 1995). Channel equalizers used in the re-
ceiver part aim to suppress the effect of ISI. In most cases,
the communication channel is unknown and the design of
the equalizer is performed on the basis of a known training
sequence of information bits.

The channel equalization setup adopted in this paper
is illustrated in Fig. 1. The transmitted waveform has the
form

u(t) =
∞∑

k=−∞
I(k)gt(t − kTs). (1)

I(k) is an equiprobable sequence of the transmitted data
taken from a binary alphabet, i.e., I(k) ∈ {±1}, g t(k) is
the pulse shape and Ts is the symbol period.

The symbol spaced sampled, discrete time received
signal x(n) of ISI and a noise impaired linear channel is
written as

x(n) =
L∑

i=0

hi(n)I(n − i) + w(n). (2)

Here L is an integer that represents the memory of the
channel. The sequence hi(n) i = 0, 1, . . . , L represents
the impulse response of the discrete time composite chan-
nel, reflecting the influence of the transmit filter, the com-
munications channel and the receive filter. Moreover,
w(n) is an Additive White Gaussian Noise (AWGN) se-
quence.

The linear equalizer aims at reducing the effect of
ISI on the received data. It is implemented by means of an
FIR (Finite Impulse Response) digital filter of the form

y(n) =
M−1∑

i=0

c∗i x(n − i), (3)

where x(n) is the input signal, y(n) is the output signal of
the equalizer, and M is an integer that denotes the equal-
izer length (Benedetto and Biglieri, 1999). The above

equation can be written in a compact way as

y(n) = cH
MxM (n), (4)

where

xM (n) = [x(n) x(n − 1) . . . x(n − M + 1)]T (5)

is the data vector, and

cM = [c0 c1 c2 . . . cM−1]T (6)

is the vector of equalizer coefficients (a∗ denotes the con-
jugate of a variable a and the superscript H stands for the
Hermitian operator (conjugate and transpose)).

Given a set of training data, the coefficients of the lin-
ear equalizer are estimated by minimizing the cost func-
tion

J(cM ) = EEE(|I(n − δ) − y(n)|2), (7)

where I(n) is a sequence of the known transmitted data,
δ > 0 is the equalizer’s delay, and EEE(·) denotes the expec-
tation operator. Once cM is estimated, the equalizer op-
erates in the so-called decision-directed mode, where the
transmitted data are detected using the following decision
rule:

Î(n − δ) = dec
(
y(n)

)
. (8)

Usually, a small amount of training data is available for
tuning the equalizer parameters. The operation of the
equalizer is afterwards turned into the decision-directed
mode, where the adaptation of parameters is carried out
using decisions as the desired response signal (decisions-
directed adaptation).

One of the most common algorithms for channel es-
timation and channel equalization is Widrow’s LMS algo-
rithm (Glentis et al., 1999; Haykin, 1996). It has the form

y(n) = cH
M (n − 1)xM (n), (9)

While in training mode

e(n) = I(n − δ) − y(n), (10)

Otherwise

Î(n − δ) = dec
(
y(n)

)
, (11)

e(n) = Î(n − δ) − y(n), (12)

WhileEnd

cM (n) = cM (n − 1) + μLMSxM (n)e∗(n). (13)
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The parameter μLMS is a positive constant that regulates
the convergence speed of the adaptation algorithm. De-
spite their low computational complexity, the LMS al-
gorithm converges slowly to the optimum solution, es-
pecially in the case when the input signal is highly cor-
related. Several algorithms have been proposed in the
past for accelerating the performance of the LMS scheme.
A comprehensive presentation of various algorithms for
adaptive filtering is provided in the tutorial paper by Glen-
tis et al. (1999). In the sequel, the frequency domain
adaptive scheme will be adopted in the context of linear
equalization.

2.1. Frequency Domain Adaptive Linear Equalizer.
The simplest form of the LMS algorithm offers adaptive
filtering with a cost proportional to the equalizer filter size.
However, the convergence rate of the algorithm heavily
depends on the eigenvalue spread of the correlation ma-
trix of the input data. In an attempt to improve the perfor-
mance of the LMS algorithm, unitary transformations on
the input data vector have been used (Farhang-Boroujeny
et al., 1996; Narayan et al., 1993; Picchi and Prati, 1984;
Shynk, 1992). The resulting algorithms may have an in-
creased convergence rate for some classes on input sig-
nals, yet their computational complexity remains similar
to that of the original LMS scheme.

Let x(n) and y(n) be the equalizer input and output
signals, respectively. Let I(n) and î(n) denote the training
data and the detected data after equalization, respectively.
The frequency domain LMS adaptive equalizer of (Picchi
and Prati, 1984) is a transform domain LMS linear equal-
izer, where the unitary transform utilized is the DFT. It is
described as follows:

fM (n) = WMxM (n), (14)

FM (n) = p−1
M fM (n), (15)

y(n) = CH
M (n − 1)fM (n), (16)

While in training mode

e(n) = I(n − δ) − y(n), (17)

Otherwise

Î(n − δ) = dec
(
y(n)

)
, (18)

e(n) = Î(n − δ) − y(n), (19)

WhileEnd

CM (n) = CM (n − 1) + μFDLMSFM (n)e∗(n). (20)

Here WM denotes the DFT transform of order M . The
DFT transform of the input data xM (n) is denoted by
fM (n). It is a vector with the elements

fM (n) =
[
f1(n) f2(n) · · · fM (n)

]T
, (21)

called thereafter the frequency domain regressor vec-
tor. CM = [C1 C2 · · ·CM ]T is the vector that car-
ries the transformed equalizer coefficients. Each element
of CM (n) is associated with a specific frequency band.
Moreover, μFDLMS is a positive constant that controls the
convergence speed of the algorithm.

Here pM is the diagonal matrix with the entries being
the signal powers associated with consecutive each fre-
quency bins. It has the form

pM = diag [p1, p1, . . . , pM ] , (22)

where pm is the signal power at the k-th frequency bin,

pm+1 = EEE [|fm+1(n)|2] , m = 0, 1, . . . , M − 1. (23)

The role of p−1 in (15) is to reduce the eigenvalue spread
of the corresponding system matrix. In practice, p is
a time varying matrix whose elements are calculated in
terms of the available data, e.g., using an exponentially
weighed power estimator, implemented by the difference
equation (Shynk, 1992):

pM (n) = λpM (n − 1)

+ (1−λ)diag
(|f1(n)|2, . . . , |fM (n)|2) , (24)

where λ ∈ (0, 1) is a smoothing factor. Clearly,
limn→∞ EEE [pM (n)] = pM for a stationary input signal.

2.2. Pipelined Implementation Aspects. The inner
product computations involved in the error feedback loop
of the FD-LMS linear equalizer, i.e., Eqns. (16) and (20)
prohibit full pipelining and/or parallelism of the algo-
rithm. A remedy to this bottleneck is the introduction
of an adaptation delay into the coefficients update equa-
tion (20), similarly to that introduced by Long et al.
(1989) in the original LMS adaptive algorithm. Thus, (20)
is now modified to allow for an adaptation delay of size D
as

CM (n) = CM (n−1)+μDFDLMSFM (n−D)e∗(n−D).
(25)

Equations (14)–(19) together with (25) constitute a new
adaptive scheme for the estimation of the frequency do-
main linear equalizer, called thereafter the Delayed Fre-
quency Domain LMS (D-FD LMS) adaptive linear equal-
izer. The parameter μDFDLMS determines the conver-
gence properties of the algorithm. The delayed frequency
domain adaptive algorithm was introduced by Glentis
(2001). The statistical properties, as well as conditions
on the convergence of delayed frequency domain adaptive
algorithms, have been studied by Glentis (2005).

The presence of a time delay in the error feed-
back loop permits for the development of high throughput
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pipelineable and/or parallel schemes for the implementa-
tion of the D-FD LMS algorithm on ASIC VLSI systolic
or wavefront array processors.

The sliding window DFT algorithm implied by (14)
can be efficiently implemented using either a sliding
FFT algorithm (Farhang-Boriujeny et al., 1996) or a
frequency-sampling filter structure (Shynk, 1992). In both
cases, the computational complexity is M complex multi-
plications per iteration period. However, the latter case is
more suitable for VLSI implementation, since it has a reg-
ular structure. It is implemented using a set of first-order
recursive equations of the form

fm+1(n) = ρe−j 2πm
M fm+1(n − 1)

+ x(n) − ρMx(n − M),

m = 0, 1, . . . , M − 1, (26)

where ρ ∈ (0, 1) is a stabilization factor that is used to
compensate for the marginal stability of the original real-
ization (Shynk, 1992). This particular way of computing
the sliding window DFT is suitable for pipelined imple-
mentations, and it will be adopted in the sequel.

The D-FD LMS linear equalizer is summarized in
Table 1.

Table 1. Delayed requency domain
adaptive linear equalizer.

fm+1(n)=ρe−j 2πm
M fm+1(n−1)+x(n)−ρMx(n−M),

m = 0, 1, . . . , M − 1,

pM (n)=λpM (n−1)+(1−λ) diag(|f1(n)|2,· · · , |fM (n)|2),
FM (n) = p−1

M (n)fM (n),

y(n) = CH
M (n − 1)fM (n),

While in training mode
e(n) = I(n − δ) − y(n),

Otherwise
Î(n − δ) = dec

(
y(n)

)
,

e(n) = Î(n − δ) − y(n),
End While
CM (n)=CM (n−1)+μDFDLMSFM (n−D)e∗(n−D).

2.3. Division-Free Implementation. The division op-
erations that appear in (15) can be implemented using the
standard division circuitry, (Pirsch, 1998). Alternatively, a
time-recursive division scheme, similar to those described
in (Denyer and Renshaw, 1985; Thomas 1996), can be ap-
plied. The time-recursive division method approximates

the division that appears in (15) using a first-order Taylor
series, taken in conjunction with the recursive estimation
of the reciprocal of (24), thus permiting the design of a
simple, pipelined (approximate) division unit.

Let us consider the computations performed by (24),
element-wise, m = 0, 1, . . . , M − 1, i.e.,

pm+1(n) = λpm+1(n − 1) + (1 − λ)|fm+1(n)|2.
We define the reciprocal power variables

rm+1(n) =
1

pm+1(n)
, m = 0, 1, 2, . . . , M − 1. (27)

Based on the above, we consider the computational
scheme

Fm+1(n) = fm+1(n)rm+1(n). (28)

The variables rm+1(n) can be efficiently estimated by a
first-order approximation of the Taylor series expansion
as

rm+1(n) ≈ wrm+1(n − 1)

− w(w−1)|fm+1(n)rm+1(n−1)|2, (29)

where w = 1/λ. Introducing further approximation in
order to reduce the computations, we get

rm+1(n) ≈ wrm+1(n − 1)

− w(w − 1)|fm+1(n − 1)rm+1(n − 1)|2

= wrm+1(n − 1)

− w(w − 1)|Fm+1(n − 1)|2. (30)

Finally, a first-order delay relaxation is applied to the
above formulae (Parhi, 1999) in order to facilitate pipelin-
ing,

rm+1(n) ≈ wrm+1(n − 1) − w(w − 1)|Fm+1(n − 2)|2.
(31)

Equations (28) and (31) can be used instead of the origi-
nal updating scheme imposed by Eqns. (24) and (15) for
the estimation of the search vector FM (n), thus allowing
division-free implementation of the FD-D LMS adaptive
linear equalizer.

2.4. Simulation Results. The performance of the pro-
posed D-FD LMS adaptive linear equalizer is illustrated
by a typical channel equalization experiment. Consider
Channel (a) of (Proakis, 1985, p. 616), driven by an i.i.d.
(independently identically distributed) binary input signal.
The SNR ratio was set equal to 30 dB. The system’s out-
put is equalized by an adaptive linear equalizer of size
M = 31. The equalization delay is set as to δ = 15.
The eigenenvalue spread of the input data autocorrelation
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Fig. 2. MSE convergence rate for the RLS, LMS, D-LMS, FD-LMS and D-FD LMS adaptive equalizers.

matrix, RM = E (xM (n)x∗
M (n)), estimated by means of

the ratio of the maximum over the minimum eigenvalue of
RM , was found to be approximately equal to 6.

Five adaptive algorithms were tested for the equalizer
training, namely, RLS (Recursive Least Squares), LMS,
delayed (D) LMS, FD LMS and D-FD LMS. The RLS
algorithm was implemented using the standard exponen-
tially weighed matrix inversion format (Haykin, 1996),
and the corresponding exponentially forgetting factor was
set to λRLS = 0.992. The amount of the adaptation delay
introduced to both D-LMS and D-FD LMS adaptive algo-
rithms was D = 31 time units. The tuning variable for
the LMS algorithm was set to μLMS = 0.005, while the
tuning variable for delayed LMS was fixed at μDLMS =
0.002. The tuning variable for the FD LMS algorithm
was set to μFDLMS = 0.01, while the tuning variable for
delayed FD LMS was set equal to μDFDLMS = 0.005.
The forgetting factor λ that appears in (24) was set as
λ = 0.98 and, finally, the stabilization factor ρ that ap-
pears in (26) was fixed at ρ = 0.9999. In all cases, the
learning curve was used as a performance index, i.e., the
Mean Squared Error (MSE) of the difference between the
desired response signal I(n − δ) and the equalizer output
y(n),

J(n) = EEE(
I(n − δ) − y(n)

)2
.

The expectation was computed by averaging the squared
instantaneous estimation errors over an exponentially de-
caying window with an effective memory equal to 128

time instants. The learning curves for all the tested al-
gorithms are depicted in Fig. 2. Clearly, the FD-LMS
adaptive equalizer has almost the same performance as
the RLS algorithm, which has much higher computational
complexity, even when fast schemes are utilized (Haykin,
1996). Although the performance of the D-FD LMS adap-
tive equalizer has been affected by the presence of the
adaptation delay in the error feedback loop, its conver-
gence rate is much faster than that of its LMS counterpart.
The D-LMS adaptive equalizer has the worst performance
out of all the tested algorithms.

The performance of the proposed division-free im-
plementation of the D-FD LMS equalizer is very close to
that of the original D-FD LMS scheme. The approximate
division method of (31) can be used instead of the orig-
inal scheme imposed by (24) and (27) without affecting
the overall performance of the algorithm. The error norm

JP (n) =
1
M

M−1∑

m=0

EEE (1/pm+1(n) − rm+1(n))2 ,

which expresses the difference between the inverse of
pm+1(n) and its division-free estimate given by (31),
is depicted in Fig. 3(b). Clearly, the mean approxi-
mate division error JP (n) remains at reasonable low lev-
els after the initial convergence. The effect of the ap-
proximate division on the overall performance of the
D-FD LMS algorithm is illustrated in Fig. 3(b), where
the learning curve of the original D-FD LMS algorithm
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Fig. 3. MSE convergence rate for the division-free D-FD LMS adaptive equalizer.

and its division-free implementation, as well as the MSE
of the difference between the two equalizers output,

i.e., EEE (
yD−FD LMS(n) − ydiv−free

D−FD LMS(n)
)2

, are depicted.
Clearly, the learning curve of the division-free approach is
(almost) identical to the original one.

Finally, the performance of the D-FD LMS adaptive
equalizer with respect to the delay parameter D is illus-
trated in Fig. 4. It is clear that large values of the delay pa-
rameter D affect the convergence speed of the algorithm,
although in all cases the D-FD LMS adaptive equalizer
converges much faster than its D LMS counterpart.

3. Pipelined Architectures for the D-FD LMS
Equalizer

The data-flow graph of the D-FD LMS adaptive equal-
izer is depicted in Fig. 5. It is organized in a column-
wise way, using a set of elementary processing units. Six
types of processing elements (PE) are utilized, namely,
P-1 up to P-6, each performing elementary complex op-
erations. The sliding DFT is performed by PEs P-1 and
P-2. The power normalization in the filtering domain is
performed by P-3 and P-4. Finally, the filtering operation
and the equalizer coefficients update are performed by P-6
and P-5, respectively. A detailed description of the com-
putational tasks performed by each processing element is
given in Table 2.

Table 2. Computational units of the D-FD LMS adaptive linear
equalizer for division-free implementation.

P-1 : u(n) = x(n) − ρMx(n − M)
FOR m = 0, 1, . . . , M − 1,

P-2 : fm+1(n) = ρe−j 2πm
M fm+1(n − 1) + u(n),

P-3 : rm+1(n) = wrm+1(n − 1)
−w(w − 1)|Fm+1(n − 2)|2,

P-4 : Fm+1(n) = fm+1(n)rm+1(n),

P-5 : Cm+1(n) = Cm+1(n − 1)
+μDFDLMSFm+1(n)e∗(n),

P-6 : ym+1(n) = ym(n) − C∗
m+1(n − 1)fm+1(n).

PEs P-1 to P-4 involve feedforward interconnections.
Thus, the pipelining of these PEs can be achieved by plac-
ing delay latches in between. On the other hand, PEs P-5
and P-6 are connected via a long feedback loop and, as a
result, some extra effort is required for the pipelining of
these elements. By retiming the delays existing in the er-
ror feedback loop, efficient pipelined implementations of
the D-FD LMS adaptive equalizer are developed.

The filtering operation associated with the D-FD
LMS adaptive equalizer is implemented by a set of M
PEs, namely, P-6. M − 1 consecutive additions have to
be performed in order to compute the filter output y(n).
This particular set of operations results in a very long crit-
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Fig. 4. MSE convergence rate for the D-FD LMS adaptive equalizer for different
values of the adaptation delay (D = 0, 5, 10, 15, 20, 25, 32).

ical path that slows down the iteration period of the overall
architecture. Reduction in the size of the critical path can
be achieved by retiming the adaptation delays available at
the error feedback loop. In this way, pipelined processing
units of the short critical path are utilized, and the iteration
period of the overall architecture is drastically reduced.

A pipelined architecture can readily be derived by re-
placing the serial additions implied in the computation of
the filter output y(n) by a binary tree adder scheme. The
presence of the adaptation delay in the error feedback loop
of the original data-flow graph (Fig. 5) can be used for ef-
ficient pipelining of the binary tree adder that estimates
the error signal (see Fig. 6). The amount of adaptation

delay that is required to fully pipeline the D-FD LMS al-
gorithm is

D1 =
[
log2(M)

]
+ 1. (32)

The pipelined architecture of the D-TD-LMS algorithm
using a binary tree adder for the implementation of the fil-
tering computations requires the smallest amount of adap-
tation delay, namely, D = [log2(M)] + 1. However, data
broadcasting is required. The signals u(n) and e(n) are
globally transmitted to all PEs P-2 and P-5 simultane-
ously. This structure introduces the smallest amount of
the pipelining delay, and this property has to be taken into
account when fast convergence speed and small output la-
tency are of primary importance.
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Fig. 5. Data flow graph for the D-FD LMS linear equalizer. During the training period, the switch is set to the position (a).
When the equalizer operates in the decision directed mode, the switch is set to the position (b).

An alternative pipelined architecture for the D-FD
LMS adaptive equalizer can be derived that avoids the use
of a binary tree adder, thus allowing systolic implementa-
tion. The data-flow graph that is depicted in Fig. 5 con-
sists of M identical columns of PEs. The adaptation delay
units that appear in the error feedback loop are retimed by
proper vertical cut sets. Specifically,

D2 = M − 1 (33)

adaptation delays are required for full pipelining of the D-
FD LMS algorithm. The resulting architecture is shown
in Fig. 7. The iteration period in this case is easily shown
to be equal to the former architecture, i.e.,

Tpipe,2 = Tpipe,1. (34)

The output latency is DO,2 = D2 +3. The fully pipelined
D-FD LMS adaptive equalizer has a modular structure
and requires local data communication. It can be easily
transformed into a locally recursive algorithm using the
canonical mapping methodology and, hence, into efficient
VLSI array processor implementation in an either systolic
or wavefront architecture. However, it requires the max-
imum amount of adaptation delay. The large amount of
adaptation delays required for pipelining affects the con-
vergence speed and the tracking performance of the adap-
tive algorithm, and results in increased hardware require-
ments.

The computational complexity of the proposed
pipelined frequency domain linear equalizer is subse-
quently analyzed for the case of complex valued input
and output signals. The complexity is measured in terms
of real valued multiplications and divisions (RVMD), as-
suming that complex valued multiplications are imple-
mented by the standard method, where four real valued
multipliers are engaged (Pirsch, 1998). Taking this fact
into account, 16M nontrivial RVMDs are required for
the implementation of the proposed algorithm (multipli-
cation by the constants ρ and w can be replaced by dig-
ital shifts, provided that these values are selected to be a
power of 2). On the other hand, fast RLS implementa-
tion by means of the fast (and pipelineable) adaptive lat-
tice algorithm (Haykin, 1996) requires an amount of 37M
RVMDs. The LMS and D-LMS adaptive schemes require
8M RVMDs (Long et al., 1989; Parhi, 1999; Ramanathan
and Visvanathan, 1999; Thomas, 1996), while the com-
plexity of the modified D-LMS algorithms ranges between
a minimum of 8M + 4 log2(M) RVMDs and a maximum
of 20M RVMDs, depending on the pipelining strategy
adopted (Douglas et al., 1998; Hadara et al., 1998; Mat-
subara et al., 1999). Notice that when the input signal and
the desired response signal are real valued, the computa-
tional complexity of all methods discussed above is cut
down approximately by a factor of 3. From the analysis
conducted above, it is evident that the computational com-
plexity of the proposed frequency domain linear equalizer
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Fig. 6. Pipelined array architecture for the D-FD LMS linear equalizer. Small black and grey rectangular boxes denote unit time delays.
Black or grey rectangular boxes, followed by an integer number or symbol, indicate multiple unit time delays.

Fig. 7. Systolic architecture for the D-FD LMS linear equalizer.
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is in between the low complexity LMS type schemes and
the high complexity fast RLS methods.

The proposed architectures for efficient pipelining of
the D FD-LMS linear equalization algorithm are suitable
for implementation on special purpose hardware by means
of the ASIC, ASIP or FPGA VLSI processors (Azadet and
Nicole, 1998; Chen and Zhang, 2005; Kim et al., 2003;
Rofougaran et al., 1998; Santha and Vaidehi, 2004; Ting
et al., 2005; Van and Feng, 2001; Yi and Woods, 2006).

4. Conclusion

In this paper, efficient architectures for pipelined imple-
mentation of the frequency domain LMS linear equalizer
were considered. The pipelined operation of the algorithm
was achieved by introducing a proper amount of adap-
tation delay to the original algorithm, resulting in a de-
layed frequency domain LMS scheme. By retiming the
adaptation delay that was introduced in the error feedback
loop, pipelined architectures were proposed that allow full
pipelining of the algorithm. The resulting adaptation de-
lay varies between the smallest value of D = [log2(M)]+
1 and the largest value of D = M −1 time units. The crit-
ical path was reduced to Tcri = τRMUL + τRADD for all
cases, where τRADD and τRMUL denote the times required
for the computation of addition and multiplication, respec-
tively. The proposed architectures are suitable for parallel
implementations on dedicated hardware on the ASIC or
ASIP VLSI processors.
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