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Multimedia are becoming one of the most important elements of the user interface with regard to the acceptance of modern
mobile devices. The multimodal content that is delivered and available for a wide range of mobile telephony terminals is
indispensable to bind users to a system and its services. Currently available mobile devices are equipped with multimedia
capabilities and decent processing power and storage area. The most crucial factors are then the bandwidth and costs of
media transfer. This is particularly visible in mobile gaming, where textures represent the bulk of binary data to be acquired
from the content provider. Image textures have traditionally added visual realism to computer graphics. The realism
increases with the resolution of textures. This represents a challenge to the limited bandwidth of mobile-oriented systems.
The challenge is even more obvious in mobile gaming, where single image depicts a collection of shots or animation
cycles for sprites and a backdrop scenery. In order to increase the efficiency of image and image texture transfer, a fractal
based compression scheme is proposed. The main idea is to use an asymmetric server-client architecture. The resource
demanding compression process is performed on the server side while the client part decompresses highly packed image
data. The method offers a very high compression ratio for pictures representing image textures for natural scenes. It aims
to minimize the transmission bandwidth that should speed up the downloading process and minimize the cost and time of
data transfer. The paper focuses on the implementation of fractal decompression schemes suitable for most mobile devices,

and opens a discussion on fractal image models for limited resource applications.
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1. Introduction

Image textures are commonly used to add visual realism
to computer graphics. Multimedia systems exploit sev-
eral types of images to enhance the content delivered to
the user. Images as textures can occupy a considerable
amount of memory and bandwidth during the transmis-
sion. This is particularly challenging in mobile media sys-
tems, where cost and energy efficient solutions are always
demanded. Many different techniques have been pro-
posed to reduce both the bandwidth and size of the images.
Hardware image compression based on a lossy scheme of-
fers a very high performance (Knittel et al., 1996). The
texture is decompressed on-the-fly during the download,
but its application area is not platform independent and
is limited to a specific implementation. In some applica-
tions (visualization and gaming), there is a need for further
processing of textures such as MIP mapping and Region
Of Interest (ROI) based random access to some areas in
the image texture. The execution time for compression
should be short, though it is not as crucial as the time of

the decompression process. A lot of work has been done
in the field of image compression to meet those demands.
Research devoted to compression of digital images and
image textures is discussed in Section 2.1. In the field of
mobile media systems, the limited processing power and
narrow bandwidth present additional challenges to devel-
opers. The image texture compression presented in this
paper was originally targeted for PC and game consoles,
but it is in no way limited to those platforms (Stachera and
Nikiel, 2004). Sections 2.3 and 2.4 discuss the fractal im-
age coding and decoding that can be implemented on mo-
bile devices: Java-enabled “smart phones.” The method
utilizes an image compression method to compress tex-
ture collages used in mobile applications. The lack of
floating point operators and limited memory resources re-
quire substantial modifications and limitations to classi-
cal fractal decompression schemes and practically make
fractal compression useless in such environments. Hence
the proposed client-server architecture results. The appli-
cation prototype and preliminary results are presented in
Section 3. In the present work the method has moderate
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image quality. As soon as a new MIDP profile is imple-
mented in popular mobile phones, the image quality will
be substantially improved. The author has concentrated
mainly on PIFS image coding. The paper delivers infor-
mation for potential developers interested in fractal imag-
ing on mobile platforms.

2. Image Texture Compression

2.1. Previous Work. This section presents recent
research related to the image and image texture com-
pression. Generally, image compression algorithms can
be organized into three main groups: transform coding
methods (including Discrete Cosine and Discrete Wavelet
Transform—DCT and DWT), Vector Quantization (VQ)
methods and Block Truncation Compression (BTC) (Delp
and Mitchell, 1979).

The most popular transform methods used in im-
age compression are based on DCT functions (Microsoft,
1997). A more efficient image texture compression
scheme also based on the DCT was proposed in (Chen
and Lee, 2002). The method used adaptive quantization
of pixel blocks that resulted in a fixed-length code and of-
fered one of the highest compression rates with very good
image quality. However, it proved to be too computation-
ally expensive for mobile implementations. The wavelet
model can also be used to analyze and compress signals
(Ghulam et al., 2004). Texture compression is a field re-
lated to image compression and describes a wealth of data
processing techniques. DWT coding exploits the multi-
resolution image representation (Perebrin, 1999). The tex-
ture was converted to the YUV-color model and achieved
the compression ratio Cr = 6 : 1. Itis used in JPEG 2000
image coding. Further reductions of the insignificant coef-
ficients resulted in even higher compression rates and ran-
dom access to the elements of the image texture (Condissi
et al., 2005). The method offers superior quality of tex-
tures but is too complex to be implemented on currently
available mobile devices.

VQ was proposed to be a compression method that
delivers MIP-mapping capability (Beers et al., 1996). The
compression scheme achieved a significant efficiency of
Cr = 24 : 1 at the cost of low image quality due to code
word sub-sampling. The interpolative vector quantization
method follows the scheme. It has the pyramid representa-
tion and two codebooks storing data corresponding to low
and high frequency texture elements (Kwon et al., 2000).
Generally, VQ based methods suffer from indirect data
access during codebook construction that results in addi-
tional data caching.

The methods presented above are the mainstream
of image texture compression. A sample comparison of
compression ratios of YUV based JPEG, JPEG 2000 and
fractal image compression implemented in the proposed
server-side image compressor (discussed in the next sec-

Table 1. Comparison of selected image compression methods.

Image | FCLG2 X 32) JPEG JPEG 2000
cr |PSNR| . [PSNR[ = [PSNR

[dB] [dB] [dB]

Sky |63.31:1]35.68 [161.1:1[31.4 [542.9:1]36.7
Map |51.18:1[29.8 | 89.2:1(28.7 [126.9:130.1
Lenna| 74.1:1(26.7 | 24.1:1[27.8 | 77.9:1]28.58

*C'r — compression ratio, PSNR — peak signal to noise ratio,
FCI (32 x 32) defines the size of range blocks.

tion) is depicted in Table 1 for the test images of Fig. 1. All
compression ratios depend on the image size and its con-
tent: we can observe different C'r values for comparable
image quality (with PSNR oscillating around 31-35 dB).

Fig. 1. Test images used for comparison (Sky, Map, Lenna).

2.2. Fractal Image Coding. The process of image
coding is based on a set of contractive transformations
W such that its fixed point f, is an approximation to the
coded image I. Thus W defines a lossy code for the im-
age I (Baharav et al., 1993; Stachera and Nikiel, 2004).
The compression scheme for image textures is based on
a block oriented fractal compression scheme for images.
The image coding is performed on the server side and then
published for mobile clients. The algorithm should al-
low for the implementation of Region Of Interest (ROI)
access. Considering further image decompression on a
mobile device, some additional assumptions extending the
basic fractal-encoding scheme are defined:

1. N x N represents the size of the texture (N = 2).

2. R x R defines the size of range blocks Mpr (R =
2™)—for a mobile application it should be small, e.g.,
4 x 4 pixels.

3. D x D defines the size of domain blocks M p to be
twice the size of range blocks (D = 2R),

4. Dy, = R — Dy, defines the distance between consec-
utive domain blocks—then the number of blocks in
the domain pool is equal to

MDE<ND_D+1), (1)
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where each domain block is defined as

dmj = I((mj —=1) D +7),
m;=1,2,...,Mp, j=12,....,D. (2
5. ¢(+) defines the spatial contraction function that av-
erages four adjacent texture elements and then maps
the averaged value onto the range block applying one

of eight isometries. ¢(+) is defined as follows:

. 1 ) .
¢ (dmi) (1) = 5 (dmi (27) + dmi (27 = 1)),

J=12...,R, (3

©(+) shrinks domain blocks to the size of range
blocks with averaging pairs of d,,,i from the domain
pool. The resulting range block values are scaled by
s; = 1/2 and added to o;.

Let I be an encoded image. A set R of non-
overlapping range cells R = {ri,ra,...,rp}, riNr; =0
that tile I, I = |Jr; is called the range pool. A set D of
overlapping domain cells D = {dy,da, ..., dy,} is called
the domain pool d; € I. A set W is composed of con-
tractive transformations w; : d; — r;. For a compact rep-
resentation, W is restricted to the class of transformation
given in the form

ri = wi(d;) = sip(d;) + oi, 4)

where the set of range blocks R comes from a quad-tree
partition of the texture. A mobile application demands
the simplification of the problem to a uniform partition of
the image texture. Classical PIFS compression methods
exploit also hierarchical and Delannuay partition methods
(Stachera and Nikiel, 2004). Furthermore, ¢ is a spatial
contraction function which contracts domain cells to the
size of range cells (for a mobile prototype, ¢ = 0.5 is
chosen), s; is a scaling factor (s; € R, |s;| < 1), 0; is an
offset value, o; € R (Fisher, 1995).

In terms of images, s; controls contrast, o; controls
brightness and  averages domain cell values. The triplets
(¢, si, 0;) are called transform parameters.

The encoding problem of the image I is stated as fol-
lows:

1. Partition I into non-overlapping range cells r; € R
that tile 7,

ri(G) =1 -1 R+3),

i=1,2,...,Mp, j=12,....,R. (5

2. For each range cell r; find domain cells (Eqn. (1))
that are defined in (2).

3. Find transform parameters such that d(r;, s;pp(d;) +
0;) is minimized.

4. Save transform parameters (i, $;, 0;).

The process of image coding arrives at a set of con-
tractive transformations W such that its fixed point f, is
an approximation of the image I,

fo=T=W(I). ©)

Thus, storing W instead of the original image defines
alossy code for the image [ (Baharav et al., 1993). A typi-
cal fractal coding scheme does not allow for a local decod-
ing of images. It is not possible to decode only a selected
region of a texture without decoding all the domains that
are related to it. It is possible to solve the problem of lo-
cal decompression by restricting the search area to a given
range (Stachera and Nikiel, 2004). The search regions are
defined by a limited number of quad-tree partitions of the
texture less than the number of minimal partitions. The
search regions represent nodes at a level of the tree set be-
tween the root (an initial texture) and the minimum tree
depth. Each region is a square area with the size at least
twice the size of range regions. It also defines an inde-
pendent domain pool. The image compression algorithm
compares only ranges with domains that are contained in
the same search region. Each search region can be han-
dled independently of the others. It allows ROI access
to texture regions and local decompression that is invalu-
able in texture mapping applications. The original fractal
compression scheme implements the YUV-color model.
The YUV-color space consists of three channels: a lumi-
nance channel Y and two chrominance channels U (hue),
V (saturation). The chrominance channels store informa-
tion about color that can be compressed with a high ratio
still delivering little to no visible degradation. As for a bet-
ter compression for mobile devices, the YU V-color model
is proposed. The further hardware interpolation of neigh-
boring pixels (cf. Section 3.1) reduces noise introduced by
the lossy compression.

The overall scheme for fractal image compression,
cf. Fig. 2(a), can be described in the following steps:

1. The RGB-color space is converted to the YUV model
with each channel compressed separately.

2. A minimum quad-tree depth ¢,i,, a maximum quad-
tree depth gnmax and a search region depth gsearch €
[1,..., qmin] are defined.

3. A quad-tree partitioning method and a region search
strategy are is used for each component Y, U, V.

4. The header information: the quad-tree depth, the
number of transformations for each component, tex-
ture resolution, etc., is saved.

5. The quantized transform parameters with quad-tree
information for each component using a variable
length code are stored.

The independent processing of each YUV-
component makes it possible to implement either
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Fig. 2. Fractal imaging.

parallel processing during the process of texture compres-
sion or multiple threads in the decompression performed
on a mobile device. Due to its very high complexity,
the entire process of image texture compression is not
appropriate for mobile devices.

2.3. Fractal Image Decoding. The decoding scheme
for image textures must be adapted to the specific char-
acteristics of mobile systems including limitations of mo-
bile media API. The scheme must deliver a relatively fast
and inexpensive method to produce preferably very high
compressed images. The main drawback of the presented
scheme is a computationally expensive compression algo-
rithm. Hence the coding of image textures must be per-
formed on the server-side of a multi-tier system. The
method is characterized by a number of relatively sim-
ple decoding algorithms. Several fractal-decoding meth-
ods have been developed to optimize the decompression
process (Fisher, 1995, Skarbek, 1998). The hierarchical
decoding method is one order of magnitude less compu-
tationally expensive than the iterative method (assuming
B? > it, where it is equal to the number of iterations
in the iterative method) (Cisar, 1996). The texture can be
decompressed in a finite predetermined number of steps
that depend on partitioning the texture, rather than on the
texture image itself. The hierarchical method was intro-
duced only for range blocks of a fixed size. The scheme
proposed in the paper is a modification of that method,
extending the case of quad-tree partitioning (Malah and
Sudskover, 1999). One of the most important properties
of fractal image representation is the resolution indepen-
dence of natural images, i.e., the so-called super resolu-

tion. In contrast to linear interpolation, which tends to blur
the image texture, the fractal decompression method pre-
serves the richness of details even at a resolution higher
than the original one. In the implemented fractal com-
pression scheme the chrominance information is averaged
(Stachera and Nikiel, 2004). The super resolution prop-
erty of the fractal decompression makes it possible to de-
compress the chrominance channels (hue, saturation) at
the original resolution without the loss of visual details.
The fractal decoding scheme starts with a fractal
compressed image downloaded from a server on a mobile
device. Image texture blocks with sizes depending on the
search region are used during the compression process.
The decompression scheme is based on a hierarchical de-
compression method. In the first step, the transforma-
tions for a given image texture block (range block and do-
main block sizes) are scaled by a factor of 1/2™* (where
2max x 2max g the size of the biggest range block) in order
to approximate the highest level of the PIFS pyramid.
The transformation is applied at that level only once

to approximate the fixed point f1/2™". Then the resolu-
tion is doubled. The process is repeated log, (2™2%) times.
The image decompression process (Fig. 2(b)) for a given
texture block may be described in the following steps, for
each RGB component (starting from any non-empty im-
age):

1. The transformation is applied to the top level.

2. The transformation is multiplied by 2.

3. The transformation is applied to the image.

4

. Steps 3 and 4 are repeated until the required resolu-
tion is achieved.
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5. The data are buffered.
6. The image is converted from the YUV to RGB model
which is ready for display.

3. Implementation and Experiments

3.1. Mobile Media. The ability to display, manipulate
and register digital images is a common element of cur-
rently available “smart phones.” Most GSM terminals are
open to third-party applications designed in Java or C lan-
guages and implemented for the Symbian operating sys-
tem. As a programming environment, the Java language
seems to be more versatile. Being a platform-independent
and open standard, Java 2 Micro Edition offers a valuable
solution for fast growing mobile media market. Modern
mobile phones are Java-enabled and implement advanced
(Atkinson et al., 2001) Mobile Information Device Pro-
files. MIDP 2.0 defines a number of packages that handle
graphical user interface design, image manipulation, gam-
ing and media processing.

Fig. 3. Sample image used for T11edLayer onscreen
composition.

TiledLayer is the most popular technique for
composition of image textures that are acquired from a
single digital image (Fig. 3). PNG (Portable Network
Graphics) is a native to Java digital image file format that
offers run-length encoding schemes. JSR184 capable mo-
bile terminals can use * . jpeg images for composite tex-
tures. The author assumes that fractal compression will
surpass the JPEG compression method when applied to
modern terminals with better processing power. Low-
level image manipulation is limited to few functions avail-
able in J2ME, namely, the extraction of RGB values of a
pixel at a given position, operation on a vector of inte-
ger values and setting up a pixel at a given position on

“canvas” or “game canvas.” Color values depend on hard-
ware implementation and the profile of given GSM termi-
nals. A number of neighboring pixels can have the same
value assigned even if they are different in the original
image. This may cause problems in the application of ad-
vanced image processing algorithms, although most of the
classical low-level image manipulation methods can be
successfully implemented (Nikiel and Moczulski, 2006,
Pazio and Cisowski, 2005).

3.2. Application Prototyping. Fractal compression is
a highly asymmetric process, where image coding is far
more complex and resource demanding than image de-
coding. Considering that fact, a server-client architecture
delivering compressed media for mobile devices is pro-
posed (Fig. 4). The computationally expensive operations
of compression are performed on the server, while the
simplified decoding scheme is implemented in a Java2ME
midlet running on a mobile phone (Fig. 5). Except the
limitations mentioned in the previous section, the Java
application cannot facilitate pointer operations and must
use static declaration of types, which presents problems
with code optimization. Fixed-point numbers present an-
other obstacle compared with classical fractal compres-
sion implementations. It was necessary to add a floating-
point number emulator to perform properly the decoding
process. In most mobile phones the operating system lim-
its memory space for Java applications: one of the tested
prototypes was implemented on a MIDP 2.0, CLDC 1.0
SonyEricsson T630 Mobile Phone with approx. 500 kB
of RAM available (Fig. 6) (Bury, 2004). During the ex-
periments with this and other prototypes, the compres-
sion/decompression parameters were chosen to meet the
limited processing power of mobile devices. Only 4 lev-
els of quad-tree partitioning were allowed (MinPart). The
number of iterations (niter) was limited to a maximum of
10. Domains were chosen to be just-touching with the size
two times the size of range blocks. The decompression
process delivered moderate image quality, mostly due to
the emulation of floating-point numbers and hardware ap-
proximation of neighboring pixels. Another problem has
its origin in the limited memory resources of the tested
GSM terminals. It resulted in minimal memory usage

-
WAFP
-+
: g m%a.
MOBILE F{) DECOMPRESS. | SERVER

Fig. 4. Client-server architecture for the fractal
compression scheme.
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Fig. 5. Structure of a sample prototype of a fractal image decoder implemented in J2ME.
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Fig. 6. Decompressed fractal images (bottom)
compared to the original picture (top).

required for extensive data buffering implemented in the
quad-tree image decomposition fractal decoder, and care-
ful choice of image coding parameters. The presented
structure of the decompressing midlet is not optimized.
The author currently investigates prototypes developed for
the CLDC 1.1 profile and for CDC (Palmtop devices).
Nevertheless, the mobile application prototype was
running properly and quite efficiently for small image tex-
tures. Table 2 summarizes the results of the experiments.
The tests were performed for image resolution ranging
from 50 x 50 pixels up to 500 x 500 pixels. We have to re-
member that the display of the GSM terminal is limited to
approximately 200 x 170 pixels and that the average im-
age texture element has a resolution of 20 x 20 pixels. We
can clearly observe better image compression of the Frac-
tal Method (FQ) when compared with BMP and JPEG,
although at the cost of decompression time. Savings that
are clearly visible in the transmission time (related strictly
to the size of the data transferred) are reduced in the non-

Table 2. Decompression results for different im-
age sizes (image Lenna).

Image Time of Image size Time of
Resolution | compression [ ghip [ JpG FQ decompression
(plXelS) (Pentlum IV) [kB] [kB] [kB] (moblle deViCe)
50 x 50 16ms 4 1] 1 4 sec.
100 x 100 16ms 301 20| 5 20 sec.
150 x 150 32ms 67| 30| 5 50 sec.
500 x 500 100ms 7701 60| 6 |13 min. 20 sec.

linear increase in the decompression time with the size of
the image given in Table 3. The given results are subjec-
tive (the tests were performed in Warsaw) and, as can be
seen, far below the nominal speeds given in 3G specifica-
tions. However, they depict a situation that every user of
a mobile system can spot in real life, if not in large cities,
at least in remote locations. Assuming the typical size
of Java games as 500 kB (including the game code and
images/sounds), it takes around two minutes to download
the complete code with the GPRS protocol. Comparing
the average image texture elements with a resolution of
20 x 20 pixels, the cost and time of image transfer can
then be neglected.

Very long decompression time is observed for larger
images. It is due to minimal settings of the Sun WTK
emulator and non-optimized software emulation of float-
ing point calculations (for CLDC 1.0 terminals). The
currently implemented method suggests the division of
texture images into smaller images and separate decod-
ing. The average compression ratio oscillates around
Cr = 30 : 1 and depends on the image size and con-
tent. The rendering time and image quality will be sub-
stantially improved for CLDC 1.1 terminals. The method
can be hardware accelerated, thus improving the speed of
the decoding process, although at the cost of the platform
independence.

4. Conclusions

Considering mobile devices such as “smart phones”
and portable consoles, it is very important to limit

Table 3. Tested data transfer in mobile networks.

@amcs
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the bandwidth usage in order to reduce both the costs of
data transfer and power consumption. Collages of the im-
age texture are a common part of mobile gaming applica-
tions. Consequently, with increasing resolutions of mobile
displays, the problem of larger texture maps will be more
evident. Additionally, mobile devices have much less
computational power and memory resources than classi-
cal PCs. Therefore, mobile-oriented applications should
not be too complex. The paper proposed a client-server
architecture for a highly asymmetric fractal compression
scheme. The method implemented a computationally ex-
pensive compression on the server side. The fractal-coded
images are decompressed with a low-complexity decoding
scheme. The fractal-based compression utilizes local self-
similarity in images of textures and natural scenes. Frac-
tal image textures offer significant savings in both storage
and transmission bandwidth. Future work will be focused
on improvements of image quality and investigation re-
garding the hierarchical texture representation that offers
direct decompression (Stachera and Rokita, 2006). Hier-
archical texture compression is based on the block-wise
approach characterized by a low computational complex-
ity. Each block is subject to a local PIFS fractal trans-
form and can be randomly accessed. This, along with new
CLDC 1.1 profile-compliant GSM terminals, would facil-
itate more efficient image texture operations. Fractal com-
pression/decompression could surpass the JPEG standard
in mobile applications.
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