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COMPUTATION OF REALIZATIONS COMPOSED OF DYNAMIC
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TADEUSZ KACZOREK

Faculty of Electrical Engineering, Białystok Technical University
ul. Wiejska 45D, 15–351 Białystok

e-mail: kaczorek@isep.pw.edu.pl

The problem of computing minimal realizations of a singular system decomposed into a standard dynamical system and a
static system of a given improper transfer matrix is formulated and solved. A new notion of the minimal dynamical-static
realization is introduced. It is shown that there always exists a minimal dynamical-static realization of a given improper
transfer matrix. A procedure for the computation of a minimal dynamical-static realization for a given improper transfer
matrix is proposed and illustrated by a numerical example.
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1. Introduction

The computation of a minimal realization for a given
transfer matrix is one of the classical problems in con-
trol theory. There exist many well-known methods
for the computation of minimal realizations for given
proper and improper transfer matrices (Christodoulou and
Mertzios, 1985; Kaczorek, 1992; Kailath, 1980; Roman
and Bullock, 1975; Sinha Naresk, 1975; Wolovich and
Guidorsi, 1977). It is also well known that a singular lin-
ear system described by static equations can be decom-
posed into two subsystems, a standard dynamical subsys-
tem and a static subsystem (Kaczorek, 1992). The main
purpose of this paper is to propose a method for the com-
putation of minimal realizations of a singular system de-
composed into a standard dynamical system and a static
system of a given improper transfer matrix. A new notion
of the minimal dynamical-static realization will be intro-
duced. It will be shown that there always exists a minimal
dynamical-static realization of a given improper transfer
matrix. A procedure for the computation of a minimal
dynamical-static realization of a given improper transfer
matrix will be proposed.

To the best of the author’s knowledge, the problem
of computing a minimal dynamical-static realization for
a given improper transfer matrix has not been consid-
ered yet.

2. Preliminaries and problem formulation

Let R
n×m be the set of n × m real matrices and R

n :=
R

n×1. Consider the singular continuous-time linear sys-
tem

Eẋ = Ax + Bu, (1a)

y = Cx, (1b)

where x ∈ R
n, u ∈ R

m, y ∈ R
p are respectively the

state vector, the input vector and the output vector, and
E, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n. It is assumed
that det E = 0 and

det[Es − A] �= 0 (2)

for some s ∈ C (the field of complex numbers).
It is well known (Kaczorek, 1992) that the singular

system (1) can be decomposed into the standard dynami-
cal system

ẋ1 = A1x1 + B1u, (3a)

y1 = C1x1, (3b)

and the static system

x2 = A21x1 + B20u + B21u̇ + +B2ru
(r), (4a)

y2 = C2x2, (4b)

such that

y = y1 + y2,

[
x1

x2

]
= Qx, detQ �= 0 (5)
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(often Q = I), where x1 ∈ R
n1 , x2 ∈ R

n2 , n1 + n2 =
n, A1 ∈ R

n1×n1 , B1 ∈ R
n1×m, C1 ∈ R

p×n1 , A21 ∈
R

n2×n1 , B2k ∈ R
n2×m for k = 0, 1, . . . , r and u(r) =

dru/dtr.
The decomposition can be obtained using the modi-

fied shuffle algorithm (Kaczorek, 1992).

Lemma 1. The transfer matrix of the singular system de-
composed into the standard dynamical system (3) and the
static system (4) is given by

T (s) = (C1 + C2A21)[In1s − A1]−1B1

+ C2(B20 + B21s + · · · + B2rs
r). (6)

Proof. From (3a) and (4a) we have

[
X1

X2

]
=

[
[In1s − A1] 0

−A21 In2

]−1

×
[

B1

B20 + B21s + · · · + B2rs
r

]
U, (7)

where Xk = Xk(s) = L[xk(t)], U = U(s) = L[u(t)] are
the Laplace transforms of xk and u, respectively.

Taking into account that

[
[In1s − A1] 0

−A21 In2

]−1

=
[

[In1s − A1]−1 0
A21[In1s − A1]−1 In2

]
,

from (3b), (4b) and (5) we obtain for the Laplace trans-
form of y,

Y =
[

C1 C2

] [
X1

X2

]

=
[

C1 C2

] [
[In1s − A1]−1 0

A21[In1s − A1]−1 In2

]

×
[

B1

B20 + B21s + · · · + B2rs
r

]
U

=
[
(C1 + C2A21)[In1s − A1]−1B1

+ C2(B20 + B21s + · · · + B2rs
r)

]
U. (8)

Formula (6) follows from (8).

Definition 1. The matrices A1, A21, B1, B20,
B21, . . . , B2r, C1, C2 constitute a dynamical-static real-
ization of an improper transfer matrix T (s) if they sat-
isfy (6). A realization is called minimal if the matrices A1

and A21 have minimal dimensions among all realizations
of T (s).

The realization problem can be stated as follows:
Given an improper transfer matrix T (s) ∈ R

p×m(s) (the
set of p×m rational matrices in s), find a dynamical-static
realization of a given improper transfer matrix T (s).

In what follows, a procedure for the computation of a
minimal dynamical-static realization of a given improper
transfer matrix will be proposed.

3. Problem Solution

Any given improper transfer matrix T (s) ∈ R
p×m(s) can

be decomposed into the polynomial part

P (s) = P0 + P1s + · · · + Prs
r (9)

and the strictly proper part Tsp(s), i.e.,

T (s) = P (s) + Tsp(s). (10)

From the comparison of (6) and (10), we have

P (s) = P0 + P1s + · · · + Prs
r

= C2(B20 + B21s + · · · + B2rs
r) (11)

and

Tsp(s) = (C1 + C2A21)[In1s − A1]−1B1. (12)

Using one of the well-known methods
(Christodoulou and Mertzios, 1985; Kac-
zorek, 1992; Kailath, 1980; Roman and Bul-
lock, 1975; Sinha Naresk, 1975; Wolovich and
Guidorsi, 1977), we can determine a minimal real-
ization A1, B1, C̄1 of Tsp(s) satisfying

C̄1[In1s − A1]−1B1 = Tsp(s). (13)

Given the matrices Pk, k = 0, 1, . . . , r and A1, B1, C̄1,
in order to solve the realization problem, we have to find
the matrices A1, A21, B1, B2k, k = 0, 1, . . . , r and C1

and C2 satisfying

C1 + C2A21 = C̄1, C2B2k = Pk (14)

for k = 0, 1, . . . , r.
Note that there exist many matrices A21, C1, C2 and

B2k, k = 0, 1, . . . , r satisfying (14) for given C̄1 and
Pk, k = 0, 1, . . . , r. One way to find the desired matrices
is to choose first C2 and A21 (or C1 and C2) and compute
C1 (or A21) and B2k, k = 0, 1, . . . , r from (14). There-
fore, we can compute a minimal dynamical-static realiza-
tion of a given improper transfer matrix T (s) ∈ R

p×m(s)
using the following procedure:

Procedure 1.

Step 1. Decompose a given transfer matrix T (s) into
the polynomial part (9) and the strictly proper part
Tsp(s).

Step 2. Using one of the well-known methods compute a
minimal realization A1, B1, C̄1 of Tsp(s).
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Step 3. Choose the matrices C2, A21 (or C1 and C2)
and, using (14), compute the matrices B2k, k =
0, 1, . . . , r and C1 (or A21).

Remark 1. The dimensions of the matrices B2k, k =
0, 1, . . . , r and C2 are determined by the dimension m×p
of the transfer matrix T (s). A dynamical-static realiza-
tion of T (s) is minimal if and only if the realization
A1, B1, C̄1 of Tsp(s) is minimal.

From the above discussion we have the following
result:

Theorem 1. For a given improper transfer matrix T (s) ∈
R

p×m(s) there always exists a minimal dynamical-static
realization A1, A21, B1, B2k, k = 0, 1, . . . , r, C1 and C2.
This realization can be computed using Procedure 1.

Example 1. Find a minimal dynamical-static realization
of the transfer matrix

T (s) =

⎡
⎢⎢⎢⎣

s3 + s2 + 1
s

s2 + 2s + 3
s + 1

2s2 + 4s + 2
s + 2

s3 + 2s2 + s + 3
s + 2

⎤
⎥⎥⎥⎦ . (15)

Using Procedure 1, we obtain the following: Step 1. The
transfer matrix (15) can be decomposed into the polyno-
mial part

P (s) =
[

s2 + s s + 1
2s s2 + 1

]

=
[

0 1
0 1

]
+

[
1 1
2 0

]
s +

[
1 0
0 1

]
s2

= P0 + P1s + P2s
2 (16)

and the strictly proper part

Tsp(s) =

⎡
⎢⎢⎣

1
s

2
s + 1

2
s + 2

1
s + 2

⎤
⎥⎥⎦ . (17)

Step 2. A minimal realization of (17) has the form

A1 =

⎡
⎣ 0 0 1

0 −2 0
0 0 −1

⎤
⎦ ,

B1 =

⎡
⎣ 1 2

2 1
0 −2

⎤
⎦ , C̄1 =

[
1 0 0
0 1 0

]
, (18)

Step 3. In this case we choose, e.g.,

C2 =
[

1 0
0 1

]
, A21 =

[
0 −1 0
−1 0 −1

]
. (19)

Then from (14) we obtain

C1 = C̄1 − C2A21 =
[

1 1 0
1 1 1

]
,

B20 = P0 =
[

0 1
0 1

]
, B21 = P1 =

[
1 1
2 0

]
,

B22 = P2 =
[

1 0
0 1

]
.

(20)
The desired minimal dynamical-static realization of the
transfer matrix (15) is given by (18)–(20).

4. Concluding Remarks

The problem of computing a minimal realization of a
singular system decomposed into the standard dynamical
system (3) and the static system (4) of a given improper
transfer matrix was formulated and solved. A new no-
tion of the minimal dynamical-static realization of a given
transfer matrix was introduced. It was shown that there
always exist a minimal dynamical-static realization of a
given improper transfer matrix. A procedure for comput-
ing a minimal dynamical-static realization of a given im-
proper transfer matrix was proposed and illustrated by a
numerical example. With slight modifications (by substi-
tution of s by z and of the derivative by the shifting opera-
tor) the proposed method can be extended to discrete-time
linear systems.
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