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1. Introduction

Let E be a finite union of disjoint intervals:

E =
N⋃

j=1

Ij , Ij = [aj , bj],

0 = a1 < b1 < a2 < b2 < . . . < aN < bN .

Several papers (Avdonin and Moran, 1999;
Bezuglaya and Katsnelson, 1993; Katsnel-
son, 1996; Lyubarskii and Seip, 1997; Lyubarskii and
Spitkovsky, 1996; Moran and Avdonin, 1999; Seip, 1995)
have recently appeared that discuss Riesz bases of
exponentials in L2(E). All of them emphasize the
importance of this problem in communication theory: if
{eiλkt} forms a Riesz basis in L2(E) then Λ = {λk} is
a sampling and interpolating set for the corresponding
multi-band signals. In other words, the interpolation
problem

s(λk) = αk, λk ∈ Λ, s ∈ L2
E,

has a unique solution for each {αk} ∈ l2. Here L2
E is the

space of entire functions of the form

s(λ) =
∫

E

eiλtφ(t) dt, φ ∈ L2(E),

endowed with the L2(R) norm. The equivalence of
these two problems is well known; it follows from stan-
dard duality arguments (see, e.g., (Hruščev et al., 1981;
Lyubarskii and Seip, 1997)).

It is interesting to note that the papers (Avdonin
and Moran, 1999; Katsnelson, 1996; Lyubarskii and
Spitkovsky, 1996) have related the production of Riesz
bases to the invertibility of certain convolution integral op-
erators. The method of (Katsnelson, 1996) is based on the
mean periodic continuation of a function with respect to a
finite measure. The convolution operator in (Lyubarskii
and Spitkovsky, 1996) is constructed on a union of in-
tervals connected with the entire function generating the
set Λ.

Another approach to the problem was proposed in
the paper (Avdonin and Moran, 1999). It is based on con-
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nections between the controllability of a dynamical sys-
tem described by a linear PDE and the Riesz basis prop-
erty of a corresponding exponential family. These connec-
tions are well known and widely exploited in control the-
ory; see, e.g., the excellent survey paper (Russell, 1978)
and the book (Avdonin and Ivanov, 1995). The problem
of constructing an exponential basis on several intervals
gives rise to a new type of control problem with boundary
control supported on these time intervals.

More precisely, (Avdonin and Moran, 1999) intro-
duced an auxiliary dynamical system described by the
string equation with boundary control u:

ρ2(x)ytt(x, t) = yxx(x, t),
y(0, t) = u(t),
yx(l, t) = 0, (1)

where ρ(x) is a positive function on [0, l] which will be
determined later. Usually, in control theory, the function
u is taken from L2(0, T ) for some positive T, but for our
purposes we take u from L2

loc(R) with support restricted
to E and consider the initial conditions

y(x, a1) = y0(x), yt(x, a1) = y1(x). (2)

The eigen-frequencies λn, n ∈ N, of this system can be
found from the boundary value problem

φ′′(x)+λ2ρ2(x)φ(x) = 0, 0 < x < l, φ(0) = φ′(l) = 0.
(3)

The system (1) is called exactly controllable if for
any initial conditions (y0, y1) ∈ L2(0, l)×H−1(0, l) there
is a unique control u ∈ L2(E) which brings the system to
the origin at t = bN :

y(·, bN) = yt(·, bN ) = 0.

The following statement plays a key role in this ap-
proach to the construction of sampling and interpolating
sequences.

Theorem 1. (Avdonin and Moran, 1999) The system (1)
is exactly controllable if and only if the family {e±iλnt}
forms a Riesz basis in L2(E).

In other words, the exact controllability of (1) is equiv-
alent to the fact that Λ = {±λn} is a sampling and in-
terpolating sequence for L2

E . Note that all of λ2
n, i.e., the

eigenvalues of the boundary value problem (3) are positive
and we may therefore choose λn to be positive.

Our problem then becomes that of constructing the
function ρ(x) in such a way that the system (1) is exactly
controllable. If the setE consists only of the interval [a, b]
and the control u acts from t = a to t = b, then, as is
well known (see, e.g.,(Avdonin and Ivanov, 1995; Russell,
1978)), the system (1) is exactly controllable if and only

if the length of the interval is equal to two optical lengths
of the string:

b− a = 2
∫ l

0

ρ(x) dx.

Choosing ρ = const (homogeneous string), we obtain the
uniform sampling and interpolating sequence for L2

[a,b]:

Λ = ± 2π
b− a

(
n− 1

2

)
, n ∈ N. (4)

Taking ρ as a smooth (from C2[0, 1]) non-constant func-
tion, we obtain a non-uniform sampling and interpolating
sequence asymptotically close to (4).

In the multi-band case, we cannot (in a general situa-
tion) produce a sampling and interpolating sequence tak-
ing ρ as a constant or smooth function fromC2[0, 1]. This
fact can be understood by taking into account a necessary
“geometric” condition for the controllability of the sys-
tem (1): if the system (1) is exactly controllable, then for
every x0 ∈ [0, l] both characteristics starting at the point
x = x0, t = 0 and lying in the strip [0, l] × {t ≥ 0}
of the (x, t)-plane have a non-empty intersection with
{x = 0} × E. We suppose that the characteristics “re-
flect” from the boundaries subjecting to geometric optics
laws.

For example, ifE = [0, 1]∪[2, 3], none of the smooth
functions ρ satisfies the “geometric” condition. Using
Theorem 1 it can also be proved that uniform sampling
and interpolation of multi-band signals is possible only
when very special relations exist between the lengths of
intervals and gaps between them. More precisely, the
special case is when E is an explosion of an interval
(Higgins, 1996, Sec. 13.1).

To satisfy the “geometric” controllability condition
in the multi-band case, we should consider piecewise
smooth functions ρ. More exactly, we take points 0 =
x0 < x1 < · · · < xN = l and a piecewise constant func-
tion ρ(x) such that

ρ(x) = ρj , for xj−1 < x < xj ; 0 < ρj <∞,

ρj �= ρj+1, (5)

ρj(xj − xj−1) = (bj − aj)/2, j = 1, 2, . . . , N. (6)

Due to the condition ρj �= ρj+1 there are additional re-
flections of the waves from the boundaries x = xj of the
“layers” which improve the controllability of the system
(1). The analysis of the obtained control problem leads us
to the following conjecture:

Conjecture 1. LetE be a multi-band set described above.
Then, for all functions ρ(x) satisfying (5), (6), the sys-
tem (1) is exactly controllable.
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This conjecture was confirmed in some particular
cases in (Avdonin and Moran, 1999), and we are work-
ing on its complete proof using PDE techniques.

Conjecture 1 implies that the exponential family
{e±iλnt}n∈N forms a Riesz basis in L2(E), where λ2

n are
the eigenvalues of the boundary value problem (3) and
ρ(x) satisfies the conditions (5) and (6). It is important
for applications that the sampling and interpolating set
{±λn} is real.

The boundary-value problem (3), (5), (6) represents
an important example of an eigenvalue problem whose
spectrum generates a sampling and interpolation sequence
for a multi-band signal.

In (Avdonin and Moran, 1999), the sampling and
interpolation problem is reduced to the solution of dif-
ference equations. Specifically, they are Wiener–Hopf
equations of a special form. The solution of the prob-
lem (1), (2) with ρ(x) satisfying the conditions (5) and (6)
can be written in an explicit, although rather complicated
form. The analysis of that formula leads to invertibility
problems for operators connected with difference equa-
tions. While this method appears to extend to handle arbi-
trary finite unions of intervals, we illustrate it in the case
of two intervals.

Only a few results concerning sampling and interpo-
lating sequences for the case when the set E is a union of
two intervals are known. (Kohlenberg, 1953) constructed
a sampling and interpolating sequence for signals whose
spectrum is restricted to the union of two intervals of the
same length (band-pass signals). The later great impact
to this field was due to Dodson and Silva (1989), Beaty
and Dodson (1989; 1993) and Bezuglaya and Katsnelson
(1993). In these papers the lengths of the intervals and the
gaps were supposed to have a special structure such as the
commensurability of the lengths of the intervals and the
gaps. (Lyubarskii and Seip, 1997) remark that the method
of (Kohlenberg, 1953) can be extended to the case when
the intervals comprising E have commensurable lengths.
The results of Seip (1995) are free of arithmetic restric-
tions on the lengths of the intervals comprising the set E;
in particular, starting from the “1/4 in the mean” theorem
(Avdonin, 1979), he gives a construction of at least one
real sampling and interpolating sequence for an arbitrary
E consisting of two intervals.

The main result. The present paper is devoted to the
investigation of the convolution operator proposed in
(Avdonin and Moran, 1999) in the case when E is the
union of two arbitrary intervals. We prove that this op-
erator is invertible if a parameter μ = (ρ2−ρ1)/(ρ2 +ρ1)
is small enough. The latter proves the existence of infi-
nitely many real sampling and interpolating sequences for
signals with the spectrum supported on two arbitrary in-
tervals. We also give an algorithm for the construction of
such sequences.

2. Operators W , V and K

Let

E = I1 ∪ I2, (7a)

Ij = [aj , bj], |Ij | := bj − aj = αj , j = 1, 2, (7b)

α1 + α2 = α, a2 − b1 = α′. (8)

Note that, without loss of generality, we can assume that
α1 is less than or equal to α2.

In (Avdonin and Moran, 1999), it was proved that
the problem of constructing a sampling and interpolating
sequence for L2

E can be reduced to the study of the invert-
ibility of the operator

W : L2(0, α1) �→ L2(α′, α′ + α1)

defined by

(Wf)(t) = χ[α′,α′+α1](t)

×
∞∑

r=0

∞∑

k=0

k∑

q=0

A(r, k, q)f(t−w(r, k, q)), (9)

where w(r, k, q) = αr + α1(k − q) + α2q and

A(r, k, q) = (−1)r+kμk (r + k)!
r!q!(k − q)!

for μ ∈ (−1, 0) ∪ (0, 1). Here

μ =
ρ2 − ρ1

ρ2 + ρ1
,

where ρ1 and ρ2 are the values of a piecewise constant
density function of an associated string equation (1) satis-
fying the controllability conditions (5) and (6).

Once we find a parameter μ for which the operator
W is invertible, a sampling and interpolating sequence for
signals with the spectrum supported on E can be found
using the following scheme:

Algorithm 1.

(a) Pick any two different values ρ1 > 0, ρ2 > 0 such
that μ = (ρ2 − ρ1)/(ρ2 + ρ1).

(b) Find the numbers l and x1 from the equations

ρ1x1 =
α1

2
,

ρ2(l − x1) =
α2

2
.

(c) Define the density function

ρ(x) =

{
ρ1 when 0 < x < x1,

ρ2 when x1 < x < l.
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(d) Find the eigenvalues λ2
n of the boundary value sys-

tem (3) with the function ρ(x) and the number l
found in Steps (b) and (c). The sequence Λ = {±λn}
is a sampling and interpolating sequence for L2

E .

In the formula (9) and in what follows it is convenient
to assume that f is defined on the real axis with support in
[0, α1]. One can see that in this case for each t ∈ [α′, α′ +
α1] the number of terms in the sum is finite, since only the
terms with t− w(r, k, q) ∈ [0, α1] are not equal to zero.

Our goal is to reduce the problem of the invertibil-
ity of the operator W to a problem of the invertibility of
a simpler operator. We are going to break the sum corre-
sponding to the operator W into two sums, W = U + Ũ ,
so that the operator U is invertible and its invertibility im-
plies that of W . We show that it is possible to make U
contain no more than four terms. The invertibility of the
operator U is proven in Theorems 7 and 8.

Theorem 2. For any aj and bj , there exists a non-negative
integer number k such that the operatorW can be written
in the form

W = U + Ũ ,

where the operator U is comprised of at most four terms
whose coefficients each involve the parameter μ to a
power not exceeding k + 1, and all terms of the operator
Ũ contain a factor μ at a power at least equal to k + 2.
The operator U has the following form:

(Uf)(t) = χ[α′,α′+α1](t)

×
[
c1f(t− w1) + c2f(t− w1 − α1)

+ c3f(t− w2 + α1) + c4f(t− w2)
]
,

where one or more of the coefficients ci may be zero.

Note that the operator U may contain 2, 3 or 4 terms
depending on the locations and the lengths of the intervals.
There are many cases and sub-cases of the position of the
intervals, so the proof is postponed to Appendix A. Exact
formulae for the operator U , which are important for the
proof of the invertibility of U and W , are derived in the
process of the proof.

We prove that for sufficiently small μ the invertibil-
ity of the operator U implies that of the operator W .
This statement is based on the following lemma, which
is proved in AppendixB.

Lemma 1. If the operator U is invertible, then ‖U−1‖ ≤
|μ|−(k+1)C for |μ| small enough, where C > 0 does not
depend on μ.

Theorem 3. If the operator U is invertible, then for suffi-
ciently small μ, the operatorW is also invertible.

Proof. Theorem 2 states that the operator W can be
represented as a sum of two other operators W = U + Ũ .
The operator U is made up of no more than 4 terms of W
with powers less than or equal to k + 1, and the operator
Ũ contains the rest of the terms of W .

We have noticed that the operator W has a finite
number of terms. Therefore, Ũ also has a finite number
of terms. Since Ũ contains only powers of μ higher than
k + 1, then for sufficiently small μ we have

‖Ũ‖ ≤ |μ|k+2D,

where D does not depend on μ.
Then from Lemma 1 it follows that, for sufficiently

small μ,
‖U−1‖ ‖Ũ‖ < 1.

Note that

W = U + Ũ = U(I + U−1Ũ).

Thus, for sufficiently small μ, the operatorW is invertible.

It is convenient to scale so that α1 = 1. After a
change of variables the operator U is reduced to the op-
erator V in L2(0, 1):

(V f)(t) = χ[0,1](t)
[
c1f(t+ a) + c2f(t+ a− 1)

+ c3f(t+ b) + c4f(t+ b− 1)
]
. (10)

Here
0 ≤ b ≤ a ≤ 1

and ci are the corresponding coefficients A(r, k, q) or 0.
To prove that the operator V is invertible, we intro-

duce a new operator K which has the same form as the
operator V , but the coefficients ci are arbitrary real num-
bers. We consider two cases: the case when a − b is a
rational number and the case of irrational a− b. The case
of a − b ∈ Q corresponds to the situation of α1/α2 ∈ Q

and the irrational case occurs if α1/α2 ∈ R \ Q, where
α1 and α2 are the lengths of the intervals I1 and I2 as
in (7b). First, we find the invertibility condition for the
operator K , and then we show that the coefficients ci of
the operator V satisfy this condition.

3. Invertibility of the Operator K

Consider the operator K in L2[0, 1]:

(Kf)(t) =
[
c1f(t+ a) + c2f(t+ a− 1)

+ c3f(t+ b) + c4f(t+ b− 1)
]
, (11)

where t ∈ [0, 1]; a, b ∈ [0, 1]; b ≤ a; c1 �= 0 or c4 �= 0.
Our goal is a sufficient condition for the invertibility ofK .
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We do not consider the case of c1 = c4 = 0: the invertibil-
ity conditions forK in this case are different from those in
all other cases, and we do not need the case of c1 = c4 = 0
to prove the invertibility of the operator V .

From (11) one can easily see that the invertibility of
the operator K is equivalent to the solvability for f of the
following system of equations:

c1f(t+a)+c3f(t+b) = g(t), t∈ [0, 1 − a),
c3f(t+b)+c2f(t+a−1) = g(t), t∈ (1−a, 1−b),

c2f(t+a−1)+c4f(t+b−1) = g(t), t∈ (1−b, 1],
(12)

where g(t) is in L2[0, 1].
Let us find the conditions for the invertibility of the

operator K in special cases: c1 = c3 = 0, c2 = c3 = 0,
c2 = c4 = 0. The following lemma is a particular case
of Theorems 4 and 5, which are proved in Subsections 3.1
and 3.2, respectively. We formulate it as a separate lemma
because its proof is different from the proofs of these the-
orems.

Lemma 2. Suppose that c1 = c3 = 0, or c2 = c3 = 0, or
c2 = c4 = 0. If a − b is a rational number, the operator
K is invertible in L2[0, 1] if and only if

(−1)nck1+m
2 cn−m−k1

1 �= cn−k1
3 ck1

4

and
(−1)nck2+m

2 cn−m−k2
1 �= cn−k2

3 ck2
4 ,

where a − b = m/n, k1 is the integer part of bn, and k2

is the smallest integer such that k2 ≥ bn. If a − b is an
irrational number, the operatorK is invertible if and only
if

|c3|1−b|c4|b �= |c2|a|c1|1−a.

Proof. Assume that c1 = c3 = 0. If a �= 1, the first
equation of the system (12) becomes

0 = g(t) , t ∈ [0, 1 − a).

Consequently, the operatorK is not invertible.
If a = 1, then the first equation of (12) is defined

on an interval of length zero. We get a system of two
equations; this system is solvable when c2 �= 0 if b �=
1, and when c2 + c4 �= 0 if b = 1. We can find the
invertibility conditions for the cases of c2 = c3 = 0 and
c2 = c4 = 0 using the same reasoning. We summarize all
the cases in Table 1. They can be generalized by the two
conditions given in the statement of this lemma.

In what follows, we will need to divide the equations
of the system (12) by c1 and c2 or c3 and c4. By proving
Lemma 2, we exclude from consideration the cases when
c1 = c3 = 0, c2 = c3 = 0, c2 = c4 = 0. Thus we can
assume that (c1 �= 0 and c2 �= 0) or (c3 �= 0 and c4 �= 0).

Table 1. Cases considered in the proof of Lemma 2.

Coefficients Invertibility condition

c1 = c3 = 0, a �= 1 not invertible

c1 = c3 = 0, a = 1, b �= 1 c2 �= 0

c1 = c3 = 0, a = b = 1 c2 + c4 �= 0

c2 = c3 = 0, a �= b not invertible

c2 = c3 = 0, a = b, a �= 1, a �= 0 c1 �= 0 and c4 �= 0

c2 = c3 = 0, a = b = 0 c1 �= 0

c2 = c3 = 0, a = b = 1 c4 �= 0

c2 = c4 = 0, b �= 0 not invertible

c2 = c4 = 0, b = 0, a �= 0 c3 �= 0

c2 = c4 = 0, a = b = 0 c1 + c3 �= 0

Let Δ = a − b, Δ̄ = 1 − Δ. If c3 �= 0 and c4 �= 0,
then the system (12) is equivalent to

f(t) +
c1
c3
f(t+ Δ) =

1
c3
g(t− b), t ∈ [b, Δ̄),

f(t) +
c2
c3
f(t+ Δ − 1) =

1
c3
g(t− b), t ∈ (Δ̄, 1),

f(t) +
c2
c4
f(t+ Δ) =

1
c4
g(t+ 1− b), t ∈ (0, b],

which, in turn, is equivalent to

f(t)+φ(t)f((t+ Δ) mod 1) = h(t), t ∈ [0, 1], (13)

where

φ(t) =

⎧
⎪⎨

⎪⎩

c2/c4, t ∈ (0, b),
c1/c3, t ∈ (b, Δ̄),
c2/c3, t ∈ (Δ̄, 1).

(14)

If c1 �= 0 and c2 �= 0, the system (12) amounts to

f(t)+ψ(t)f((t+Δ̄) mod 1) = k(t), t ∈ [0, 1], (15)

where

ψ(t) =

⎧
⎪⎨

⎪⎩

c3/c2, t ∈ (0,Δ),
c4/c2, t ∈ (Δ, a),
c3/c1, t ∈ (a, 1).

(16)

Equations of the type (13) were investigated in
(Antonevich, 1996, Thm. 2.1, pp. 29–32) for the case
of continuous φ(t). In the course of the proof of Theo-
rems 4 and 5 we will obtain solvability conditions for (13)
and (15) for piecewise continuous φ(t) and ψ(t) as de-
fined in (14) and (16).

3.1. Case of a − b ∈ QQQ.

Theorem 4. Let a− b = m/n be an irreducible fraction.
The operator K is invertible in L2[0, 1] if and only if

(−1)nck1+m
2 cn−m−k1

1 �= cn−k1
3 ck1

4
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and
(−1)nck2+m

2 cn−m−k2
1 �= cn−k2

3 ck2
4 ,

where k1 is the integer part of bn, and k2 is the smallest
integer such that k2 ≥ bn.

The results equivalent to Theorem 4 were indepen-
dently obtained by Spitkovsky (2006). The theory of con-
volution operators in spaces of matrix valued functions
can be found in the book (Böttcher et al., 2002).

Proof. From Lemma 2 it follows that this theorem holds
for the cases c1 = c3 = 0, c2 = c3 = 0, c2 = c4 = 0.
Thus we do not have to consider these cases in the proof
of Theorem 4. We defined the operator K so that c1 �= 0
or c4 �= 0. Since we excluded the cases of c1 = c3 = 0,
c2 = c3 = 0, c2 = c4 = 0, we may assume that (c1 �= 0
or c3 �= 0) and (c2 �= 0 or c3 �= 0) and (c2 �= 0 or c4 �= 0).
That means that (c1 �= 0 and c2 �= 0) or (c3 �= 0 and
c4 �= 0).

As we have already noted, when both c3 and c4 are
not equal to zero, the invertibility of the operator K is
equivalent to the solvability of (13). If c3 = 0 or c4 = 0
then c1 �= 0 and c2 �= 0, and in this case the invertibility
of K is equivalent to the solvability of (15). In the first
case the problem will be reduced to the solvability of two
algebraic systems with determinants:

1 + (−1)n+1ck2+m
2 cn−m−k2

1 /(cn−k2
3 ck2

4 )

and

1 + (−1)n+1ck1+m
2 cn−m−k1

1 /(cn−k1
3 ck1

4 ).

In the second case the problem reduces to the solvability
of two systems with determinants:

1 + (−1)n+1cn−k2
3 ck2

4 /(c
k2+m
2 cn−m−k2

1 )

and

1 + (−1)n+1cn−k1
3 ck1

4 /(c
k1+m
2 cn−m−k1

1 ).

The proofs of the last two facts are analogous, so we will
only show the derivation of the first of them.

Suppose that c3 �= 0 and c4 �= 0. Let us rewrite (13)
as a family of equations defined on disjoint subintervals of
the interval [0, 1], choosing subintervals so that in each of
those equations the function φ(t) is constant.

First we divide the interval into n pieces of the length
1/n: {((i− 1)/n, i/n)}n

i=1. The number of such subin-
tervals that are entirely inside of the interval [0, b] is equal
to the integer part of bn. Let us denote this number by
k. Let us also introduce d as the length of the interval
[k/n, b]: d = b− k/n.

Now we divide each subinterval of the length 1/n
into two smaller subintervals with the lengths of d and

1/n− d, and consider two sets of subintervals:

J1 =

{( i− 1
n

,
i− 1
n

+ d
)}n

i=1

,

J2 =

{( i− 1
n

+ d,
i

n

)}n

i=1

.

The set J1 contains all intervals of the length d, and J2

has all intervals of the length 1/n− d.
Note that φ(t) is constant on each of these subinter-

vals (φ(t) is piecewise constant and it changes its values
at the points b = k/n+ d and Δ̄ = (n−m)/n).

Now we can rewrite (13) as the following family of
equations:

f(t) + c2c
−1
4 f(t+ Δ) = h(t), t ∈ (0, d),

f(t) + c2c
−1
4 f(t+ Δ) = h(t), t ∈

(
d,

1
n

)
,

...

f(t) + c2c
−1
4 f(t+ Δ) = h(t), t ∈

(k − 1
n

+ d,
k

n

)
,

f(t) + c2c
−1
4 f(t+ Δ) = h(t),

t ∈
(k
n
,
k

n
+ d

)
=

(k
n
, b

)
,

(17)
f(t) + c1c

−1
3 f(t+ Δ) = h(t),

t ∈
(k
n

+ d,
k+1
n

)
=

(
b,
k+1
n

)
,

f(t) + c1c
−1
3 f(t+ Δ) = h(t), t ∈

(k+1
n

,
k+1
n

+d
)
,

...

f(t) + c1c
−1
3 f(t+ Δ) = h(t),

t ∈
(n−m−1

n
,
n−m−1

n
+d

)
,

f(t) + c1c
−1
3 f(t+ Δ) = h(t), t ∈

(n−m−1
n

+d, Δ̄
)
,

f(t) + c2c
−1
3 f(t+ Δ − 1) = h(t), t ∈ (Δ̄,

n−m
n

+d),

f(t) + c2c
−1
3 f(t+ Δ − 1) = h(t),

t ∈
(n−m

n
+d,

n−m+1
n

)

...

f(t) + c2c
−1
3 f(t+ Δ − 1) = h(t),

t ∈
(n− 1

n
,
n− 1
n

+ d
)
,

f(t) + c2c
−1
3 f(t+ Δ − 1) = h(t), t ∈

(n−1
n

+d, 1
)
.

Note that this family has three groups of equations: the
first group contains 2k + 1 equations defined on subinter-
vals of (0, b), and the coefficient of f(t+ Δ) is c2/c4; the
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second group contains 2n−2m−2k−1 equations with the
coefficient of f(t + Δ) equal to c1/c3; in the third group
there are 2m equations, and the coefficient is c2/c3.

Let us introduce fi, gi ∈ L2(0, 1/n) for 1 ≤ i ≤ n:

fi(t) = f
(
t+

i− 1
n

)
,

hi(t) = h
(
t+

i− 1
n

)
.

Replacing f(t) and h(t) by fi(t) and hi(t), respec-
tively, in each of the equations of the family (17), the latter
can be transformed into two systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t) + c2c
−1
4 fm+1(t) = h1(t),

...

fk+1(t) + c2c
−1
4 fk+m+1(t) = hk+1(t),

fk+2(t) + c1c
−1
3 fk+m+2(t) = hk+2(t),

...

fn−m(t) + c1c
−1
3 fn(t) = hn−m(t),

fn−m+1(t) + c2c
−1
3 f1(t) = hn−m+1(t),

...

fn(t) + c2c
−1
3 fm(t) = hn(t),

(18)

on t ∈ (0, d);
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t) + c2c
−1
4 fm+1(t) = h1(t),

...

fk(t) + c2c
−1
4 fk+m(t) = hk(t),

fk+1(t) + c1c
−1
3 fk+m+1(t) = hk+1(t),

...

fn−m(t) + c1c
−1
3 fn(t) = hn−m(t),

fn−m+1(t) + c2c
−1
3 f1(t) = hn−m+1(t),

...

fn(t) + c2c
−1
3 fm(t) = hn(t)

(19)

on t ∈ (d, 1/n).
Let xi(t) = f(1+(i−1)m) mod n(t). Sincem and n are

co-prime, this substitution maps the set {fi(t)}n
i=1 into the

set {xi(t)}n
i=1.

The systems (18) and (19) take the forms

xi(t) + ψix(i+1) mod n(t) = hi(t) (20)

on t ∈ (0, d), 1 ≤ i ≤ n;

xi(t) + ξix(i+1) mod n(t) = hi(t) (21)

on t ∈ (d, 1/n), 1 ≤ i ≤ n, where

ψi, ξi ∈ {c2/c4, c1/c3, c2/c3}, 1 ≤ i ≤ n.

In the system (20), {ψi}n
i=1 has k+ 1 occurrences of

c2/c4, n − m − k − 1 occurrences of c1/c3, and m oc-
currences of c2/c3. The system (21) has k occurrences of
c2/c4, n−m−k occurrences of c1/c3, andm occurrences
of c2/c3. Therefore, the determinant of the first system is
equal to

1 + (−1)n+1
n∏

i=1

ψi

= 1 + (−1)n+1
(c2
c4

)k+1(c1
c3

)n−m−k−1(c2
c3

)m

= 1 + (−1)n+1 c
k+m+1
2 cn−m−k−1

1

cn−k−1
3 ck+1

4

. (22)

The determinant of the second system is

1 + (−1)n+1
n∏

i=1

ξi = 1 + (−1)n+1 c
k+m
2 cn−m−k

1

cn−k
3 ck4

. (23)

If bn is an integer, say, bn = k, then d = 0, and the
first system lives on an empty interval. In this case, the in-
vertibility of the operatorK is equivalent to the solvability
of the system (21) with a determinant:

1 + (−1)n+1ck+m
2 cn−m−k

1 /(cn−k
3 ck4)(k = bn).

So K is invertible if and only if

1 + (−1)n+1ck+m
2 cn−m−k

1 /(cn−k
3 ck4) �= 0.

Let bn �= k. In this case, both intervals (0, d) and
(d, 1/n) are non-empty. Therefore, the invertibility of K
is equivalent to non-zero determinants:

1 + (−1)n+1ck+m+1
2 cn−m−k−1

1 /(cn−k−1
3 ck+1

4 )

and

1 + (−1)n+1ck+m
2 cn−m−k

1 /(cn−k
3 ck4).

Here k is the integer part of bn, and k + 1 is the least
integer greater than or equal to bn.

In the formulation of Theorem 4 we defined k1 as
the integer part of bn, and k2 as the smallest integer such
that k2 ≥ bn. Now we can see that the determinants (23)
and (22) are equal to

1 + (−1)n+1ck1+m
2 cn−m−k1

1 /(cn−k1
3 ck1

4 )

and

1 + (−1)n+1ck2+m
2 cn−m−k2

1 /(cn−k2
3 ck2

4 ),
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respectively, and they are not equal to zero when

(−1)nck1+m
2 cn−m−k1

1 �= cn−k1
3 ck1

4

and

(−1)nck2+m
2 cn−m−k2

1 �= cn−k2
3 ck2

4 .

This proves the theorem for the case of c3 �= 0 and c4 �= 0.
In the beginning of the proof we argued that, in the

case of c3 = 0 or c4 = 0, the invertibility of K amounts
to nonzero values of

1 + (−1)n+1cn−k2
3 ck2

4 /(c
k2+m
2 cn−m−k2

1 )

and

1 + (−1)n+1cn−k1
3 ck1

4 /(c
k1+m
2 cn−m−k1

1 ).

They do not equal zero if and only if

(−1)nck1+m
2 cn−m−k1

1 �= cn−k1
3 ck1

4

and
(−1)nck2+m

2 cn−m−k2
1 �= cn−k2

3 ck2
4 .

The theorem is thus proved. �

3.2. Case of a − b∈ R \ QR \ QR \ Q.

Theorem 5. When a − b is irrational, the operator K is
invertible if

|c3|1−b|c4|b �= |c2|a|c1|1−a.

Notice that, following the scheme of the proof in
(Antonevich, 1996, Thm. 2.1, pp. 29–32), it is possible
to show that the above condition is necessary and suffi-
cient for the invertibility of the operator K . We omit the
proof of the “necessary” part since we do not use it in the
application to sampling and interpolation problems.

Proof. From Lemma 2 it follows that this theorem holds
for the cases c1 = c3 = 0, c2 = c3 = 0, c2 = c4 = 0.
Thus we do not have to consider these cases to prove this
theorem. This means (see the beginning of the proof of
Theorem 4) we can assume that (c1 �= 0 and c2 �= 0) or
(c3 �= 0 and c4 �= 0).

We know that when c3 �= 0 and c4 �= 0, the operator
K is invertible if (13) has a unique solution. If c3 = 0 or
c4 = 0, we can assume that c1 �= 0 and c2 �= 0, and in
this case K is invertible when (15) has a unique solution.
In this proof we first consider the case of c3 �= 0, c4 �= 0
and |c2|a|c1|1−a|c3|b−1|c4|−b < 1. Next we turn to the
proof for |c2|a|c1|1−a|c3|b−1|c4|−b > 1 and for c3 = 0 or
c4 = 0; it runs on almost the same lines and leads to the
same result.

Suppose that c3 �= 0, c4 �= 0 and
|c2|a|c1|1−a|c3|b−1|c4|−b < 1. In this case, the
invertibility of the operator K is equivalent to the
solvability of Eqn. (13):

f(t) + φ(t)f((t + Δ) mod 1) = h(t), t ∈ [0, 1],

where

φ(t) =

⎧
⎪⎨

⎪⎩

c2/c4, t ∈ (0, b),
c1/c3, t ∈ (b, Δ̄),
c2/c3, t ∈ (Δ̄, 1).

To solve (13), we can apply successive approxima-
tions:

f0(t) = h(t),
fn+1(t) = −φ(t)fn((t+ Δ) mod 1) + h(t),

n = 0, 1, . . . .

Then

fn+1(t)−fn(t)

=

⎛

⎝
n−1∏

j=0

[
− φ((t+jΔ) mod 1)

]
⎞

⎠

×
[
f1((t+nΔ) mod 1)−f0((t+nΔ) mod 1)

]
. (24)

If c1 = 0 or c2 = 0, then there is l such that

fn+1(t) − fn(t) = 0 for any n ≥ l.

Thus, fl(t) is a solution to (13). Therefore, the operator
K is invertible when c1 or c2 is equal to zero, and c3 and
c4 are both non-zero.

Now, let us assume that c1 �= 0 and c2 �= 0. Since
ln |φ(t)| is Riemann integrable, for any irrational Δ we
have

1
N

N−1∑

k=0

ln |φ((t+ kΔ) mod 1)| −−−−→
N→∞

∫ 1

0

ln |φ(t)|dt

= b ln
∣∣∣∣
c2
c4

∣∣∣∣ + (1 − a) ln
∣∣∣∣
c1
c3

∣∣∣∣ + (a− b) ln
∣∣∣∣
c2
c3

∣∣∣∣ ,

uniformly in t ∈ [0, 1] (see, e.g., (Peterson, 1983), p. 156).
Then

lim
N→∞

max
t

⎛

⎝
N−1∏

j=0

|φ((t+ jΔ) mod 1)|
⎞

⎠
1/N

= exp lim
N→∞

max
t

1
N

N−1∑

k=0

ln |φ((t+ kΔ) mod 1)|

= exp
(
b ln

∣∣∣∣
c2
c4

∣∣∣∣ + (1 − a) ln
∣∣∣∣
c1
c3

∣∣∣∣ + (a− b) ln
∣∣∣∣
c2
c3

∣∣∣∣

)

=
∣∣∣∣
c2
c4

∣∣∣∣
b ∣∣∣∣
c1
c3

∣∣∣∣
1−a ∣∣∣∣

c2
c3

∣∣∣∣
a−b

.
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Note that

∣∣∣∣
c2
c4

∣∣∣∣
b ∣∣∣∣
c1
c3

∣∣∣∣
1−a ∣∣∣∣

c2
c3

∣∣∣∣
a−b

=
|c2|a|c1|1−a

|c3|1−b|c4|b < 1.

Then, for any ε such that

∣∣∣∣
c2
c4

∣∣∣∣
b ∣∣∣∣
c1
c3

∣∣∣∣
1−a ∣∣∣∣

c2
c3

∣∣∣∣
a−b

< ε < 1,

there exists M such that

max
t

⎛

⎝
N−1∏

j=0

|φ((t+ jΔ) mod 1)|
⎞

⎠
1/N

< ε (25)

for any N ≥M .
Then, from (24) and (25), we obtain that, for suffi-

ciently large n,

|fn+p − fn|

≤
p∑

k=1

n+k−2∏

j=0

|φ((t + jΔ) mod 1)|

×|f1((t+ (n+ k − 1)Δ) mod 1)
−f0((t+ (n+ k − 1)Δ) mod 1)|

and

‖fn+p − fn‖2
L2 ≤ 2

∞∑

k=1

(
εn+k−1

)2 ‖f1 − f0‖2
L2

=
2ε2n

1 − ε2
‖f1 − f0‖2

L2.

Thus,

‖fn+p − fn‖L2 ≤
√

2εn

√
1 − ε2

‖f1 − f0‖L2.

The norm ‖fn+p − fn‖L2 can be made arbitrarily
small for all p by taking sufficiently large n. Therefore,
the sequence {fi}n

i=1 converges to a function f , and f(t)
is the solution to (13).

Suppose now that c1 �= 0, c2 �= 0 and
|c4|b|c3|1−b|c1|a−1|c2|−a < 1. Whenever c1 �= 0 and
c2 �= 0, the invertibility of the operator K is equivalent
to the solvability of (15):

f(t) + ψ(t)f((t+ Δ̄) mod 1) = k(t), t ∈ [0, 1],

where

ψ(t) =

⎧
⎪⎨

⎪⎩

c3/c2, t ∈ (0,Δ),
c4/c2, t ∈ (Δ, a),
c3/c1, t ∈ (a, 1).

This time we use the same kind of successive ap-
proximations to prove the solvability of the second equa-
tion (15). We use the fact that

lim
n→∞max

t

⎛

⎝
N−1∏

j=0

|ψ((t+ jΔ̄) mod 1)|
⎞

⎠
1/N

=
∣∣∣∣
c4
c2

∣∣∣∣
b ∣∣∣∣
c3
c1

∣∣∣∣
1−a ∣∣∣∣

c3
c2

∣∣∣∣
a−b

< 1

to prove that the new sequence {fi} converges to the so-
lution of (15).

Therefore, the operator K is invertible when
|c3|1−b|c4|b �= |c2|a|c1|1−a. �

4. Invertibility of the Operator V

In this section we use Theorems 4 and 5 to show that the
operator V (see (10)) is invertible.

From (35)–(44) (see the Appendix), we know that
there are three kinds of the operator V : (a) with c1 �= 0,
c2 �= 0, and c3 = c4 = 0 (or c3 �= 0, c4 �= 0, and
c1 = c2 = 0); (b) with only one of the coefficients ci
equal to zero; (c) with ci �= 0 for 1 ≤ i ≤ 4.

In Case 1 the conditions of Theorems 4 and 5 hold,
and hence the operator V is invertible.

Let us prove that if only one of the coefficients ci is
equal to zero, the operator V is invertible.

Theorem 6. When exactly one of the coefficients ci is
equal to zero, the operator V is invertible in L2[0, 1] for
sufficiently small μ.

Proof. The conditions of Theorems 4 and 5 hold if the
zero coefficient is raised to a non-zero power. For exam-
ple, if a − b is an irrational number, c3 = 0, and b �= 1,
then the condition of Theorem 5 becomes |0|1−b|c4|b �=
|c2|a|c1|1−a, or |c2|a|c1|1−a �= 0, which is obviously true.

We will have to separately handle the cases when the
zero coefficient is raised to the zeroth power. In case a −
b ∈ R \ Q, c1 = 0 and a = 1, the condition of Theorem 5
becomes

|c3|1−b|c4|b �= |c2|. (26)

In case a− b ∈ R \ Q, c4 = 0 and b = 0, the condition of
Theorem 5 becomes

|c3| �= |c2|a|c1|1−a. (27)

From the formulae for the coefficients ci (36),
(37), (40), (41) and (43) derived in the proof of
Theorem 2 in Appendix A, it follows that the left and
right-hand sides of the inequalities (26) and (27) involve
different powers of μ. Thus, for sufficiently small μ, the
inequalities (26) and (27) hold, and the operator V is
invertible.
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In case a − b ∈ Q and c1 = 0, the condition of
Theorem 4 is true unless n−m−k1 = 0 or n−m−k2 = 0.
When n−m− ki = 0, the condition of Theorem 4 is

(−1)ncn2 �= cm3 c
n−m
4 . (28)

In case a− b ∈ Q, c2 = 0 and ki +m = 0, the condition
of Theorem 4 is

(−1)c1 �= c3. (29)

In case a − b ∈ Q, c3 = 0 and n = ki, the condition of
Theorem 4 is

(−1)c2 �= c4. (30)

In case a − b ∈ Q, c4 = 0 and ki = 0, the condition of
Theorem 4 is

(−1)ncm2 c
n−m
1 �= cn3 . (31)

One can check that if m �= 0, the conditions (28) and (31)
hold for sufficiently small μ, since the left and right-hand
sides of the inequalities involve different powers of μ.
Therefore, the operator V is invertible in these cases.

If m = 0, then n = 1, since m/n is an irreducible
fraction. The inequalities (28) and (31) take the form of
the inequalities (30) and (29), respectively. To show that
the inequalities (29) and (30) hold, we use the fact that

|A(r, k, 0)| > |A(r − k + 1, k, k)| for k > 1. (32)

From the formulae for the coefficients ci
(36), (37), (40), (41), (43) and the relation (32), it
follows that one of the coefficients c1, c3 (or c2, c4)
is larger than the other as far as the absolute value is
concerned, or both coefficients are positive or negative.
Thus, the inequalities (29) and (30) hold. �

Let us consider the case of ci �= 0 for 1 ≤ i ≤ 4. We
have found the relation (42): In this case the operator U is
given by the following formula:

(Uf)(t)

= χ[α′,α′+α1](t)
[
A(r1, k1, 0)f

(
t−w(r1, k1, 0)

)

+A(r1, k1+1, 0)f
(
t−w(r1, k1+1, 0)

)

+A(r1−k1+1, k1, k1)f
(
t−w(r1−k1+1, k1, k1)

)

+A(r1−k1, k1+1, k1+1)

× f
(
t−w(r1−k1, k1+1, k1+1)

)]

(see the proof of Theorem 2 in Appendix A).

From this relation we can see that coefficients ci can
have two forms:

c1 = A(r, k, 0) = (−1)r+kμk (r + k)!
r!k!

,

c2 = A(r, k + 1, 0)

= (−1)r+k+1μk+1 (r + k + 1)!
r!(k + 1)!

,

c3 = A(r − k, k + 1, k + 1)

= (−1)r+1μk+1 (r + 1)!
(r − k)!(k + 1)!

,

c4 = A(r − k + 1, k, k)

= (−1)r+1μk (r + 1)!
(r − k + 1)!k!

, (33)

and

c1 = A(r − k, k + 1, k + 1)

= (−1)r+1μk+1 (r + 1)!
(r − k)!(k + 1)!

,

c2 = A(r − k + 1, k, k)

= (−1)r+1μk (r + 1)!
(r − k + 1)!k!

,

c3 = A(r, k, 0)

= (−1)r+kμk (r + k)!
r!k!

,

c4 = A(r, k + 1, 0)

= (−1)r+k+1μk+1 (r + k + 1)!
r!(k + 1)!

. (34)

with some r ≥ 0 and k ≥ 1 (we do not have to consider
cases with k = 0, because when k = 0, at least one of the
coefficients ci is zero).

Theorem 7. When a−b is rational and ci �= 0, 1 ≤ i ≤ 4,
the operator V is invertible in L2[0, 1] for a sufficiently
small μ.

Proof. By Theorem 4, the operator V is invertible if
and only if

(−1)nck1+m
2 cn−m−k1

1 �= cn−k1
3 ck1

4

and
(−1)nck2+m

2 cn−m−k2
1 �= cn−k2

3 ck2
4 ,

where a− b = m/n, k1 is the integer part of bn, and k2 is
the smallest integer such that k2 ≥ bn.

From (33) and (34) we see that when k1 �=
(n−m)/2, the terms ck1+m

2 cn−m−k1
1 and cn−k1

3 ck1
4 have

different powers of μ. Therefore, in this case μ can be
made small enough to make

(−1)nck1+m
2 cn−m−k1

1 �= cn−k1
3 ck1

4 .
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Similarly, when k2 �= (n−m)/2, for μ small enough,

(−1)nck2+m
2 cn−m−k2

1 �= cn−k2
3 ck2

4 .

If k1 or k2 or both are equal to (n−m)/2, then the
corresponding inequality will have the form

(−1)nc
n+m

2
2 c

n−m
2

1 �= c
n+m

2
3 c

n−m
2

4 .

Now we cannot achieve the condition of Theorem 4 by
making μ small, because the powers of μ are the same
on both sides of the inequality. Consequently, we have to
consider the specific forms of the coefficients ci (see (33)
and (34)).

Since k ≥ 1,

|A(r, k, 0)| ≥ |A(r − k + 1, k, k)|
and

|A(r, k + 1, 0)| > |A(r − k, k + 1, k + 1)|.
Then

|c2|n+m
2 |c1|n−m

2 �= |c3|n+m
2 |c4|n−m

2 ,

and therefore

(−1)nc
n+m

2
2 c

n−m
2

1 �= c
n+m

2
3 c

n−m
2

4 .

Theorem 8. When a− b is irrational and ci �= 0 for 1 ≤
i ≤ 4, the operator V is invertible in L2[0, 1] for suffi-
ciently small μ.

Proof. From Theorem 5 we know that the operator V is
invertible if

|c3|1−b|c4|b �= |c2|a|c1|1−a.

Using (33) and (34), we see that if 1 − b �= a, then
the terms |c3|1−b|c4|b and |c2|a|c1|1−a involve different
powers of μ. We can choose μ such that |c3|1−b|c4|b �=
|c2|a|c1|1−a.

If 1− b = a, then the expression above will have the
form

|c1|1−a|c2|a �= |c3|a|c4|1−a.

We will again have to look at the concrete forms of ci. As
we know, for k ≥ 1,

|A(r − k, k + 1, k + 1)| < |A(r, k + 1, 0)|
and

|A(r − k + 1, k, k)| ≤ |A(r, k, 0)|.
Since a − b = Δ ∈ J and 1 − b = a, we get a �= 0 and
a �= 1. Thus, either

|c1|1−a|c2|a < |c3|a|c4|1−a,

or
|c1|1−a|c2|a > |c3|a|c4|1−a.

Therefore,

|c3|1−b|c4|b �= |c2|a|c1|1−a.

This completes the proof of the invertibility of the
operator V for irrational Δ. �
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Appendices

A. Proof of Theorem 2

We single out several terms of the sum (9) that have small-
est powers of μ. The sum of those terms forms the opera-
tor U . We choose the number of terms so that later it will
be possible to prove the invertibility of U . In the course of
this proof, we shall show that this number of terms does
not need to be greater than four.

1. We are looking for r, k, q with the smallest possible k
such that t−w(r, k, q) ∈ [0, α1] for some t ∈ [α′, α′+α1].

2. Suppose that α′ − w(r, 0, 0) ∈ [0, α1] or α′ + α1 −
w(r, 0, 0) ∈ [0, α1] for some r.

2.1. Let α′ − w(r, 0, 0) ∈ [0, α1]. Then α′ + α1 −
w(r, 1, 0) = α′ − w(r, 0, 0) ∈ [0, α1]. Also, there may
or may not be α′ + α1 − w(r, 1, 1) ∈ [0, α1].

2.1.1. If α′ + α1 − w(r, 1, 1) ∈ [0, α1], then

(Uf)(t) = χ[α′,α′+α1](t)
[
A(r, 0, 0)f

(
t− w(r, 0, 0)

)

+A(r, 1, 0)f
(
t− w(r, 1, 0)

)

+A(r, 1, 1)f
(
t− w(r, 1, 1)

)]
. (35)

2.1.2. If α′ + α1 − w(r, 1, 1) /∈ [0, α1], then

(Uf)(t) = χ[α′,α′+α1](t)
[
A(r, 0, 0)f

(
t− w(r, 0, 0)

)

+ A(r, 1, 0)f
(
t− w(r, 1, 0)

)]
. (36)

2.2. Let α′ + α1 − w(r, 0, 0) ∈ [0, α1). Since α′ > 0,
we have r > 0. Then α′ − w(r − 1, 1, 1) = α′ + α1 −
w(r, 0, 0) ∈ [0, α1). Also, α′ − w(r − 1, 1, 0) ∈ [0, α1]
may hold.

2.2.1. If α′ − w(r − 1, 1, 0) ∈ [0, α1], then

(Uf)(t) = χ[α′,α′+α1](t)
[
A(r, 0, 0)f(t− w(r, 0, 0))

+A(r−1, 1, 0)f
(
t−w(r−1, 1, 0)

)

+A(r−1, 1, 1)f
(
t−w(r−1, 1, 1)

)]
. (37)

2.2.2. If α′ − w(r − 1, 1, 0) /∈ [0, α1] then

(Uf)(t) = χ[α′,α′+α1](t)
[
A(r, 0, 0)f

(
t− w(r, 0, 0)

)

+A(r−1, 1, 1)f
(
t−w(r−1, 1, 1)

)]
. (38)

3. Now we can assume that t − w(r, 0, 0) /∈ [0, α1] for
any t ∈ [α′, α′ + α1] and r ≥ 0.

Observe that

w(r, k, q) = w(r + q, k − 2q, 0) for k ≥ 2q

and

w(r, k, q) = w(r + k − q, 2q − k, 2q − k) for 2q ≥ k.

Therefore, (r, k, q) with minimal k such that t −
w(r, k, q) ∈ [0, α1] for some t ∈ [α′, α′ + α1] will have
the form of (r, k, 0) or (r, k, k), where k ≥ 1.

4. Let us find r1 and k1 such that α′ − w(r1, k1, 0) ∈
[0, α1] and k1 is the smallest possible.

The answer is

r1 =
⌊α′

α

⌋
, k1 =

⌊α′ − r1α

α1

⌋
,

where �x
 denotes the integer part of x. Also, α′ + α1 −
w(r1, k1 + 1, 0) ∈ [0, α1].
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Note that k1 + 1 is the smallest k2 such that α′ +
α1 − w(r2, k2, 0) ∈ [0, α1]. If there is k2 < k1 + 1 with
α′ + α1 − w(r2, k2, 0) ∈ [0, α1], then α′ + w(r2, k2 −
1, 0) ∈ [0, α1] and k2 − 1 < k1 which is a contradiction.

5. Let us find r3, k3, r4, k4 such that α′ + α1 −
w(r3, k3, k3) ∈ [0, α1] and α′ − w(r4, k4, k4) ∈ [0, α1]
with the smallest k3, k4. It is easy to see that these condi-
tions are satisfied by k3 = � (r1+1)α−α′

α1

, r3 = r1+1−k3,

k4 = k3 + 1, r4 = r3 − 1.

6.1. Let r3 < 0 or k3 > k1 + 1. Then

(Uf)(t)

= χ[α′,α′+α1](t)
[
A(r1, k1, 0)f(t−w(r1, k1, 0))

+A(r1, k1+1, 0)f(t−w(r1, k1+1, 0))
]
. (39)

6.2. Let r3 = 0, k3 ≤ k1 + 1. We have

(Uf)(t)

= χ[α′,α′+α1](t)
[
A(r1, k1, 0)f(t−w(r1, k1, 0))

+A(r1, k1 + 1, 0)f
(
t−w(r1, k1+1, 0))

)

+A(0, k3, k3)f(t−w(0, k3, k3))
]
. (40)

6.3. Let r3 > 0 and k3 = k1 + 1. Then r3 = r1 − k1. We
get

(Uf)(t)

= χ[α′,α′+α1](t)
[
A(r1, k1, 0)f(t−w(r1, k1, 0))

+A(r1, k1+ 1, 0)f
(
t−w(r1, k1+ 1, 0)

)

+A(r1 − k1, k1 + 1, k1 + 1)

×f
(
t−w(r1−k1, k1+1, k1+1)

)]
. (41)

6.4. Let r3 > 0 and k3 = k1. Then

(Uf)(t)

= χ[α′,α′+α1](t)
[
A(r1, k1, 0)f

(
t−w(r1, k1, 0)

)

+A(r1, k1 + 1, 0)f
(
t− w(r1, k1 + 1, 0)

)

+A(r1 − k1 + 1, k1, k1)

× f
(
t−w(r1−k1+1, k1, k1)

)

+A(r1 − k1, k1 + 1, k1 + 1)

× f
(
t−w(r1−k1, k1+1, k1+1)

)]
. (42)

6.5. Let r3 > 0 and k3 = k1 − 1. We have

(Uf)(t)

= χ[α′,α′+α1](t)
[
A(r1, k1, 0)f

(
t−w(r1, k1, 0)

)

+A(r1−k1+2, k1−1, k1−1)

×f
(
t−w(r1−k1+2, k1−1, k1−1)

)

+A(r1 − k1+1, k1, k1)

×f
(
t−w(r1−k1+1, k1, k1)

)]
. (43)

6.6. Suppose that r3 > 0 and k3 < k1 − 1. We get

(Uf)(t)

= χ[α′,α′+α1](t)
[
A(r3, k3, k3)f

(
t− w(r3, k3, k3)

)

+A(r3 − 1, k3 + 1, k3 + 1)

× f
(
t−w(r3−1, k3+1, k3+1)

)]
. (44)

We derived all possible formulae for U for various
relative positions of the intervals I1 and I2 (see (8)). Note
that U may contain two (formulae (36), (38), (39), (44)),
three (formulae (35), (37), (40), (41), (43)), or four (for-
mula (42)) terms.

B. Proof of Lemma 1

First we show that ||Uf || ≥ |μ|k+1B||f || for any f ∈
L2[0, α1], where B is a positive constant. To prove this,
we need the formulae for the operatorU from the proof of
Theorem 2 given in Appendix A. We consider separately
cases when U consists of 2, 3 and 4 terms.

In (36), (38), (39) and (44), the operator U has two
terms:

(Uf)(t) = χ[α′,α′+α1](t)
[
μkA1f(t− w)

+ μk+1A2f(t− w ± α1)
]
.

HereA1, A2, w do not depend on μ, andA1 �= 0,A2 �= 0.
Observe that, since f is defined on [0, α1], the two terms
are never non-zero on the same part of the interval [0, α1],
because the distance between t−w and t−w±α1 is α1.
Then

‖(Uf)(t)‖ ≥ min(|A1|, |μA2|)|μ|k‖f‖
≥ |μ|k+1|A2|‖f‖

for sufficiently small μ.
Let us consider the cases when the operator U has

three terms. In (35), (37), (41) and (43), the operator U
has the form

(Uf)(t)

= χ[α′,α′+α1](t)
[
μkA1f(t− w1)

+ μk+1A2f(t− w1 ± α1) + μk+1A3f(t− w2)
]
.
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For these cases,

‖(Uf)(t)‖ ≥ min(|A1|, |μA2|, |A1+μA3|,

|μ(A2+A3)|)|μ|k‖f‖ ≥ |μ|k+1 min(|A2+A3|, |A2|)‖f‖

for sufficiently small μ. Using the exact formulae for the
coefficients Ai, one can check that A2 +A3 �= 0.

In (40), the operator U is

(Uf)(t)

= χ[α′,α′+α1](t)
[
μkA1f(t− w1)

+ μk+1A2f(t− w1 ± α1) + μk3A3f(t− w2)
]
,

k3 ≤ k + 1. Then, for sufficiently small μ and a positive
constant D, we have

‖(Uf)(t)‖ ≥ min(|A1|, |μA2|, |A1 + μk3−kA3|,
|μA2 + μk3−kA3)|)|μ|k‖f‖

≥ |μ|k+1 min(|A2 + μk3−k−1A3|,
|A2|)‖f‖ ≥ D|μ|k+1‖f‖.

Now we consider the last case of four terms
(see (42)):

(Uf)(t)
= χ[α′,α′+α1](t)

×
[
μkA1f(t−w1)+μk+1A2f(t−w1−α1)

+ μkA3f(t−w2)+μk+1A4f(t−w2+α1)
]
.

Then

‖(Uf)(t)‖ ≥ min
(
|A1 +A3|, |A1 + μA4|,

|A3 + μA2|, |μ(A2 +A4)|
)

|μ|k‖f‖ ≥ |μ|k+1|A2 + A4|‖f‖

for sufficiently small μ.
Let us show that A2 + A4 �= 0. From (42), we see

that

A2 = (−1)r+k+1 (r + k + 1)!
r!(k + 1)!

,

A4 = (−1)r+1 (r + 1)!
(r − k)!(k + 1)!

for some r, k ≥ 1. Note that, for k ≥ 1,

(r + k + 1)!
r!(k + 1)!

>
(r + 1)!

(r − k)!(k + 1)!
,

and hence A2 +A4 �= 0.
We have shown that for any f ∈ L2([0, α1]),we have

that ‖Uf‖ ≥ |μ|k+1B‖f‖, whereB is a positive non-zero
constant. Since we assumed that U is invertible, for any
g ∈ L2([α′, α′ + α1]), we have ‖g‖ ≥ |μ|k+1B‖U−1g‖.
Consequently, for every g ∈ L2([α′, α′ + α1]), we have
‖U−1g‖ ≤ |μ|−(k+1) 1

B ‖g‖. Thus ‖U−1‖ ≤ |μ|−(k+1)C.
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