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In recent years, several heuristics have been proposed for the hardware/software partitioning problem. One of the most
promising directions is the adaptation of the Kernighan-Lin algorithm. The Kernighan-Lin heuristic was originally devel-
oped for circuit partitioning, but it has been adapted to other domains as well. Moreover, numerous improvements have been
suggested so that now several variants of the original algorithm exist. The aim of this paper is to systematically evaluate
the possibilities of applying the Kernighan-Lin heuristic to hardware/software partitioning. It is investigated in detail which
versions of the heuristic work well in this context. Since hardware/software partitioning also has several formulations, it
is also discussed how the problem formulation affects the applicability of this heuristic. Furthermore, possibilities of effi-
cient implementations of the algorithm—by using appropriate data structures—are also presented. These investigations are
accompanied by numerous empirical test results.
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1. Introduction

Today’s computer systems typically consist of both hard-
ware and software components. For instance, in an em-
bedded signal processing application it is common to use
both application-specific hardware accelerator circuits and
general-purpose, programmable units with the appropri-
ate software (Arató et al., 2003b). This is beneficial since
application-specific hardware is usually much faster than
software, and also more power-efficient, but it is also sig-
nificantly more expensive. On the other hand, software is
cheaper to create and to maintain, but slow, and general-
purpose processors consume much power. Hence, perfor-
mance or power critical components of the system should
be realized in hardware, and non-critical components in
software. This way, an optimal trade-off between cost,
power and performance can be achieved.

One of the most crucial steps in the design of such
systems is partitioning, i.e., deciding which components
of the system should be realized in hardware and which
ones in software. Clearly, this is the step in which
the above-mentioned optimal trade-off should be found.
Therefore, partitioning has dramatic impact on the cost

and performance of the whole system (Mann and Or-
bán, 2003). The complexity of partitioning arises be-
cause conflicting requirements on performance, power,
cost, chip size, etc. have to be taken into account.

Traditionally, partitioning was carried out manually.
Conversely, as the systems to be designed have become
more and more complex, this method has become infea-
sible, and many research efforts have been undertaken to
automate partitioning as much as possible. These results
are reviewed in Section 2.1.

One of the most promising directions is the appli-
cation of the Kernighan-Lin (KL) heuristic (Vahid and
Le, 1997). Originally, this algorithm was developed for a
formulation of the circuit partitioning problem (Kernighan
and Lin, 1970). Its aim is to partition a graph into two
parts of equal size with a minimal number of cutting
edges. It is a so-called iterative improvement algorithm,
meaning that it starts from an arbitrary partition, and
swaps pairs of nodes in order to improve the cost of the
partition. The reason for the success of the KL heuristic is
that it is fast as a greedy algorithm, but it can escape from
some local optima.
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Since its inception, several improvements have
been suggested to the KL heuristic. The most widely
known is the work of Fiduccia and Mattheyses (Fiduccia
and Mattheyses, 1982). They presented—among other
things—a powerful data structure to enable a linear-time
implementation of their algorithm, which we will refer
to as the FM algorithm. Other works investigated tie-
breaking strategies and different locking schemes to en-
hance the efficiency of the algorithm. The KL algorithm
along with these improvement possibilities is reviewed in
Section 2.2.

The application of the KL heuristic in the context
of hardware/software partitioning was suggested by Vahid
(Vahid, 1997; Vahid and Le, 1997). He extended the KL
algorithm so that it optimizes an execution-time metric in-
stead of the original cut metric. Although his algorithm
achieved promising results, it did not use the full potential
of the KL heuristic; in particular, it did not make use of
the improvements that are known for KL. He also tried to
devise an efficient implementation by using a similar data
structure as the one that had been suggested in the FM al-
gorithm, but only with partial success. For more details,
see Section 2.3.

The aim of this paper is to remedy these shortcom-
ings. More specifically, our goals are the following:

• to investigate the applicability of the suggested im-
provements to the KL algorithm in the context of
hardware/software partitioning;

• to investigate how different formulations of the hard-
ware/software partitioning problem influence the ap-
plicability and efficiency of the KL heuristic;

• to provide an efficient implementation of the KL al-
gorithm for hardware/software partitioning.

More specifically, we proceed as follows: We start
with the description of our partitioning model in Sec-
tion 4, which focuses on two conflicting cost metrics, one
of which has to be minimized while the other must not
exceed a given value.

Our algorithm is described in Section 5. We first ex-
plain the skeleton of the algorithm, and then go through
the details systematically. In particular, we investigate
how the different cost metrics can be joined into a sin-
gle gain value for each node; as it turns out, this choice
has important implications for the efficiency of the whole
algorithm. We also discuss different strategies for gener-
ating the initial partition, for tie-breaking and for locking.
The opportunities for efficiently implementing the algo-
rithm are discussed in Section 5.6. We prove that—under
suitable conditions—any implementation of the algorithm
requires at least Ω(n log n) steps per pass, and thus no
linear-time implementation is possible, unlike in the case
of the FM algorithm. We also present an implementation
based on the range tree data structure that achieves this
lower bound for sparse graphs.

The implications of the partitioning problem formu-
lation are elaborated in more depth in Section 6. In par-
ticular, we describe how more than two cost metrics can
be incorporated into the algorithm without sacrificing ef-
ficiency. We also investigate how scheduling and other
typical tasks of hardware/software co-design can be inte-
grated into partitioning when using a KL-type algorithm.
We sketch a possible hybrid algorithm for this purpose but
leave the question of an efficient implementation open for
future research.

In order to compare the different configurations of
our algorithm with each other, as well as to compare our
algorithm with other partitioning heuristics, we ran sev-
eral empirical tests on benchmark problems. We present
two versions of our algorithm (denoted by KL1 and KL2)
with different speed/efficiency characteristics: KL1 pro-
duces satisfactory results extremely quickly, whereas KL2
produces excellent results in acceptable time.

2. Previous Work
In this section, we review previous work on hard-
ware/software partitioning in general (Section 2.1), the
KL family of algorithms (Section 2.2), and the applica-
tion of the KL algorithm to hardware-software partition-
ing (Section 2.3).

2.1. Work on Hardware/Software Partitioning.

Hardware/software partitioning is a central task in hard-
ware/software co-design (Wolf, 2003). Its main focus is
deciding which components of the system should be real-
ized in hardware and which ones in software. During par-
titioning, several conflicting design goals should be con-
sidered, such as performance, chip size, production costs,
power consumption, etc.

Concerning the exact problem definition, there are
significant differences between the suggested partition-
ing methods. In particular, many researchers consider
scheduling as part of partitioning (Chatha and Vemuri,
2001; Dick and Jha, 1998; Kalavade and Lee, 1997;
Lopez-Vallejo and Lopez, 2003; Mei et al., 2000; Nie-
mann and Marwedel, 1997), whereas others do not (Eles
et al., 1996; Grode et al., 1998; Madsen et al., 1997;
O’Nils et al., 1995; Vahid and Le, 1997; Vahid, 2002).
Some even include the problem of assigning communi-
cation events to links between hardware and/or software
units (Dick and Jha, 1998; Mei et al., 2000).

Furthermore, in a number of related papers, the tar-
get architecture is supposed to consist of a single soft-
ware and a single hardware unit (Eles et al., 1996; Grode
et al., 1998; Gupta and de Micheli, 1993; Henkel and
Ernst, 2001; Lopez-Vallejo and Lopez, 2003; Madsen et
al., 1997; Mei et al., 2000; O’Nils et al., 1995; Qin and
He, 2000; Srinivasan et al., 1998; Stitt et al., 2003; Vahid
and Le, 1997), whereas others do not impose this limita-
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tion. Some limit parallelism inside hardware or software
(Srinivasan et al., 1998; Vahid and Le, 1997) or between
hardware and software (Henkel and Ernst, 2001; Madsen
et al., 1997).

The system to be partitioned is usually given in the
form of a task graph, or a set of task graphs, which are
usually assumed to be directed acyclic graphs describing
the dependencies between the components of the system.

When looking at the algorithms that have been sug-
gested for hardware/software partitioning, one can differ-
entiate between exact and heuristic solutions. The pro-
posed exact algorithms include branch-and-bound (Binh
et al., 1996), dynamic programming (Madsen et al., 1997;
O’Nils et al., 1995), and integer linear programming
(Mann and Orbán, 2003; Niemann, 1998; Niemann and
Marwedel, 1997).

The majority of the proposed partitioning algorithms
are heuristic. This is due to the fact that partitioning is
a hard problem, and therefore, exact algorithms tend to
be quite slow for bigger inputs. More specifically, most
formulations of the partitioning problem are NP-hard
(Kalavade, 1995; Mann and Orbán, 2003), and the exact
algorithms for them have exponential runtimes.

Many researchers have applied general-purpose
heuristics to hardware/software partitioning. In particu-
lar, genetic algorithms have been extensively used (Arató
et al., 2003a; Dick and Jha, 1998; Mei et al., 2000; Quan
et al., 1999; Srinivasan et al., 1998), as well as simulated
annealing (Eles et al., 1997; Ernst et al., 1993; Henkel
and Ernst, 2001; Lopez-Vallejo et al., 2000). Other, less
popular heuristics in this group are tabu search (Eles
et al., 1997) and greedy algorithms (Chatha and Ve-
muri, 2001; Grode et al., 1998).

Some researchers used custom heuristics to solve
hardware/software partitioning. This includes the GCLP
algorithm (Kalavade and Lee, 1997; Kalavade and Sub-
rahmanyam, 1998) and the expert system of (Lopez-
Vallejo and Lopez, 1998; Lopez-Vallejo and Lopez,
2003), as well as the heuristics in (Gupta and de Micheli,
1993; Wolf, 1997). Hierarchical clustering is another fam-
ily of well-known heuristics that has been often applied to
partitioning problems (Abdelzaher and Shin, 2000; Barros
et al., 1993; Vahid, 2002; Vahid and Gajski, 1995).

2.2. Kernighan-Lin Algorithm and Its Variants.
Originally, the KL algorithm was developed for circuit
partitioning (Kernighan and Lin, 1970). Its aim is to par-
tition a graph into two parts of equal size (i.e., to find the
so-called bisection of the graph) with a minimal number
of cutting edges. The algorithm works by iterative im-
provement, that is, it starts from an arbitrary bisection,
and swaps pairs of nodes in order to improve the cost of
the partition.

The algorithm works in passes; in each pass every
node moves exactly once. At the beginning of the pass,

each node is free. In each step, a pair of free nodes is
selected and swapped. The swapped nodes become locked
(i.e., not free) afterwards. The algorithm is greedy in the
sense that in each step it chooses the pair of nodes with
the highest gain, where the gain of a pair of nodes is the
decrease in cost achieved by swapping them.

The pass ends when there are no more free nodes.
This also means that, as long as there are free nodes, a
move is always done, even if it is a worsening one. This
is how the algorithm can escape from local optima. At the
end of the pass, the algorithm reverts to the partition with
the lowest cost observed during the pass. All nodes are
unlocked and a new pass starts from this partition. The
whole algorithm terminates when a pass does not find a
better partition than its starting partition.

The most important variant of the KL algorithm was
suggested by Fiduccia and Mattheyses (1982). We will
refer to this variant as the FM algorithm. Beside general-
izing the KL algorithm to hypergraphs instead of graphs,
they presented two vital improvements. First, they slightly
relaxed the strict bisection constraint of KL, and suggested
to move one node at a time instead of swapping a pair of
nodes. Second, they presented an efficient data structure,
the gain bucket array, with which a pass can be imple-
mented in O(n+m) time, where n is the number of nodes
and m is the number of edges of the graph.

The gain bucket array concept depends on the fact
that the gain of every node is an integer from the inter-
val [−dmax, dmax], where dmax is the highest degree of
a node. Hence it is possible to index the nodes by their
gains. In practice, this requires an array of size 2dmax +1,
indexed from −dmax to dmax. The element of the array
with index i is a pointer to a linked list of nodes that have
gain i. Moreover, there is a separate pointer to the list cor-
responding to the highest gain. Beside this data structure,
the efficiency of the algorithm depends on the observation
that after moving a node only its own gain and the gain of
its neighbours have to be updated, the other gains do not
change.

A number of works focused on tie-breaking strate-
gies in the KL or FM algorithm. Empirical tests have
shown that often many nodes share the same gain value, in
which case the tie-breaking strategy has an important role
(Hagen et al., 1997). Krishnamurthy suggested a look-
ahead mechanism to more precisely estimate the long-
term gain of a move, thus breaking ties (Krishnamurthy,
1984). This mechanism has also been generalized for mul-
tiway partitioning (Sanchis, 1989). However, these efforts
are beneficial primarily for hypergraphs. On the other
hand, as was shown in (Hagen et al., 1997), tie-breaking
without look-ahead can also be efficient; in particular, the
LIFO strategy is more efficient than the FIFO or random
strategy, or even the look-ahead mechanisms.
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Another area of intensive research has been the
choice of the locking strategy. Many researchers felt that
the original locking scheme was too rigid. In (Hoffmann,
1994), a dynamic locking mechanism was suggested:
when a node is moved from part A to part B, it becomes
locked, but its neighbours in part A become free. This
is beneficial because then the neighbours have the pos-
sibility to follow this node. In order to prevent endless
cycles, at most ten moves per pass are allowed for each
node. Further relaxations were presented in (Dasdan and
Aykanat, 1997; Yeh, 1994), but they are mainly beneficial
for multiway partitioning, where the number of parts is
high.

A good survey on these and other circuit partitioning
algorithms can be found in (Alpert and Kahng, 1995).

2.3. KL in the Context of Hardware/Software Par-
titioning. The huge success of the KL algorithm and
its variants in several domains suggested that these algo-
rithms might be used for hardware/software partitioning
as well. We know of two such attempts.

The first one is due to Vahid and it is described in
(Vahid, 1997; Vahid and Le, 1997). Vahid’s work mostly
focused on replacing the cut metric of KL with a more
appropriate and more complex execution-time metric. Es-
sentially, the execution time of the system, with respect
to a given partition, can be computed as the sum of the
execution times of each node plus the sum of the transfer
times along the edges. Here, each node’s execution time
depends on whether it is in hardware or software, and sim-
ilarly, each edge’s transfer time depends on whether the
edge crosses the hardware/software boundary. Vahid uses
a containment relation between the nodes to be able to
calculate efficiently the time spent in a given node and its
successors. He also mentions that other metrics, such as
hardware size and software size, should also be taken into
account, but does not elaborate on this issue.

Apart from this extended metric, Vahid used the con-
cepts of the FM algorithm: single node moves in each
step, and a gain bucket array for indexing move possibil-
ities by their associated gain values. Unfortunately, since
the execution times can be very large numbers, the gain
bucket array also becomes huge. In fact, since only the
logarithm of these numbers appears in the size of the in-
put, the resulting algorithm has a space requirement and,
consequently, running time which is exponential in the
size of the input. To work around this problem, Vahid
suggested normalizing the execution times to be integers
between 0 and 1000. Unfortunately, this loss of precision
can heavily degrade the algorithm: if, for instance, there
is a node whose execution time is much bigger than that
of the others, then the algorithm will not be able to distin-
guish between the other nodes, i.e., it will randomly move
the nodes around.

On the other hand, even if we accept the workaround
suggested by Vahid, the running time of one pass is still
O(n2) in the worst case, which is, of course, much worse
than the running time of O(n + m) of the original FM al-
gorithm.1 Vahid argues that the worst case will likely not
happen in practice, but nothing guarantees that. The work
by Vahid also left open the questions (i) whether the im-
provements suggested in the KL literature can be used in
the context of hardware/software partitioning as well, and
(ii) if other formulations of the hardware/software parti-
tioning problem also allow the usage of a KL-type algo-
rithm.

The second attempt to use a KL-type algorithm
for hardware/software partitioning is the recent work of
Lopez-Vallejo and Lopez (2003). Unfortunately, they
gave hardly any details on their implementation. It seems
that they addressed, at least partially, the second question
above: they used a more sophisticated problem definition
and, consequently, a more complex cost function. As the
data structure for storing the gain values, they used the
Map implementation of the Standard Template Library,
yielding logarithmic time for accessing the gain values.
However, because of the more complex cost function, it is
not true any more that only the gains of the neighbours of
the recently moved node have to be updated. Rather, the
gain of each node has to be recalculated after each move,
which makes it unnecessary to store the gain values at all.

3. Challenges

The application of the KL heuristic in the context of hard-
ware/software partitioning involves resolving the follow-
ing four main challenges:

1. The original algorithm optimizes a single, quite sim-
ple cost function: the number of cut edges. In con-
trast, hardware/software partitioning typically deals
with several conflicting cost functions. Alternatively,
the different cost metrics are sometimes unified into
a single cost function, but in this case the cost func-
tion is much more complex than the cut metric of the
original KL algorithm. Therefore, the algorithm has
to be extended to handle the more complex cost met-
ric(s).

2. The original KL algorithm maintains a very strict
balance criterion, namely, that the two parts have to
be of equal size. The FM extension slightly relaxes
the balance criterion: it aims at finding a partition
with a given percentage of the nodes in one part;
moreover, small deviations from this ratio are al-
lowed. In the case of hardware/software partitioning,
there is typically no explicit balance criterion. Con-
versely, there are often constraints that have a simi-

1 At least for sparse graphs, O(n2) is much worse than O(n + m),
and the graphs representing real designs are typically sparse.
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lar effect. For example, a real-time constraint typi-
cally limits the number of nodes that can be mapped
to software, whereas a chip size constraint limits the
number of nodes that can be mapped to hardware.
Two such constraints together work out as an implicit
balance criterion. Neither the original KL algorithm
nor the FM extension support such constraints.

3. As was discussed in Section 2.1, the scope of hard-
ware/software partitioning can vary. Some partition-
ing approaches also include problems of very differ-
ent nature, such as scheduling, routing, or interface
synthesis. In contrast, the original KL algorithm ad-
dresses only the problem of partitioning graphs. It is
questionable if it can also be extended to handle the
other problems mentioned above.

4. FM is a very fast algorithm. However, as can be seen
from the above, it has to be extended in several ways
for our purposes. Therefore, it is an important and
non-trivial objective to keep the extended algorithm
also as fast as possible. This also involves finding the
right data structure for the implementation.

First, let us assume that partitioning only means de-
ciding which nodes to map to hardware and which ones
to software, i.e., we ignore the third challenge and focus
on resolving the other three (addressed in Sections 5.1 to
5.6). Such a problem definition is presented in detail in
Section 4. It will be investigated later in Section 6.2 how
other steps, such as scheduling, can be included.

4. System Model

In order to illustrate our algorithm, we will use two cost
metrics: an execution-time metric and a hardware cost
metric. However, it is possible to include further cost met-
rics as well (see Section 6.1).

The execution-time metric is defined similarly as in
(Vahid and Le, 1997), with the only difference that we
do not use the containment hierarchy, so that the edges
only model communication. That is, we are given a graph
G = (V, E) with vertices v1, . . . , vn, and each vertex is
assigned two execution times: ts(v) is the execution time
of vertex v if it is mapped to software, and th(v) if mapped
to hardware. Moreover, each edge is assigned a commu-
nication cost: tc(v, w) is the overhead of the communi-
cation between vertices v and w if they are in different
contexts (i.e., one in hardware and the other in software
or vice versa). Just like in Vahid’s work, the tc values can
be computed from the bus widths, call frequencies, and
amounts of transferred data per call.

We neglect the communication between vertices in
the same context, since on most architectures this is much
cheaper than the communication between hardware and
software. Furthermore, we assume for simplicity that the

overhead does not depend on the direction of the com-
munication (whether from software to hardware or vice
versa). Hence, the direction of the edges does not matter,
so that the graph does not have to be directed. This is a
benefit compared with many previous approaches that re-
quire the graph to be directed and acyclic, because acyclic-
ity is often an unrealistic requirement.

P is called a hardware-software partition if it is a bi-
partition of V : P = (VH , VS), where VH ∪ VS = V
and VH ∩ VS = ∅. (VH = ∅ or VS = ∅ is also pos-
sible.) The set of cut edges of partition P is defined as
EP = {(v, w) : v ∈ VS , w ∈ VH or v ∈ VH , w ∈ VS}.
Just as in Vahid’s work, the execution time of the sys-
tem, with respect to partition P , is TP =

∑
v∈VH

th(v) +∑
v∈VS

ts(v) +
∑

e∈EP
tc(e).

Unlike Vahid’s work, which focused mainly on opti-
mizing a single metric, we define a second metric as well,
which represents a conflicting design objective, because
we believe that this way the problem becomes much more
realistic. We define a hardware cost metric, which can
represent any cost (e.g., production cost, heat dissipation,
implementation effort etc.) associated with the hardware
implementation of a node. Note that optimizing execution
time typically results in mapping many nodes to hardware;
optimizing the hardware cost has the opposite effect, thus
the joint effect of these two metrics results in appropri-
ate trade-offs between execution time and cost. Therefore
we assume that each vertex v is assigned a hardware cost
h(v) and the hardware cost of the system with respect to
partition P is HP =

∑
v∈VH

h(v).

As was mentioned in Section 3, one of the challenges
in hardware/software partitioning is that there can be two
different kinds of cost metrics: cost metrics that are con-
strained and cost metrics that have to be minimized. In
order to illustrate how to handle these two kinds of cost
metrics, we will assume that we are given a hard real-time
constraint (i.e. an upper bound on TP ), and have to opti-
mize the hardware cost. That is, the partitioning problem
we are dealing with can be formulated as follows: Given
the graph G with the cost functions th, ts, tc, and h, and
the time limit T0 ≥ 0, find a hardware/software partition
P with TP ≤ T0 that minimizes HP among all such parti-
tions. It should be mentioned that this problem is provably
NP-hard (Arató et al., 2003a).

We will call a partition valid if it satisfies TP ≤ T0.
We will assume that, for each node vi, th(vi) ≤ ts(vi),
i.e., each node is faster in hardware than in software. Of
course, this is not a limitation in practice. Then, the least
possible execution time corresponds to the all-hardware
solution. Consequently, there exist valid partitions if and
only if the all-hardware partition is valid. We will assume
that this is true. This is no limitation either, because oth-
erwise the partitioning problem does not make sense. Fur-
thermore, this condition can be easily checked.
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5. Algorithm

As discussed in Section 3, there is typically no explicit
balance criterion in hardware/software partitioning, and
hence our algorithm will make single node moves, rather
than node swaps, just as the FM algorithm. During the
algorithm, we always maintain two partitions:

• the current partition Pcurr,

• the partition that has been the best so far: Pbest.

Algorithm 1. Skeleton of the KL algorithm.

procedure onePass()
{

calculate gains
free all nodes
while(there are free nodes) do
{

let v be a free node with maximum gain
move v to other part //Pcurr changes accordingly
if Pcurr is better than Pbest then
{

Pbest = Pcurr

}
perform locking
update gains

}
}

procedure KL()
{

create initial partition, set Pcurr and Pbest to it
repeat
{

onePass()
let Pcurr = Pbest

} until pass did not improve Pbest

return Pbest

}

The skeleton of our algorithm is presented in
pseudocode in Algorithm 1. The details are described
in the next subsections. In particular, we discuss the
choice of the gain function in Section 5.1, the creation of
the starting partition in Section 5.3, possible tie-breaking
strategies in Section 5.4, and different locking schemes in
Section 5.5. Finally, possible data structures for the ef-
ficient implementation of the algorithm are discussed in
Section 5.6.

5.1. Gain Function. The gain concept of the original
KL algorithm has to be extended for our more complex
cost metric. In the original algorithm, the gain had two
roles: (i) it enabled fast updating of the cost of the current
partition (without actually recomputing it) after a node
had been moved; and (ii) it was the basis for choosing the

next node to move. In our algorithm, these roles have to
be separated, because each cost metric has to be updated
separately but the choice of the next node should depend
on all cost metrics. Therefore, we define the following
three quantities instead:

• ΔT (v) is the amount by which moving v to the
other context increases T . (Sometimes, we will call
−ΔT (v) the software gain of node v.)

• ΔH(v) is the amount by which moving v to the
other context increases H . (Sometimes, we will call
−ΔH(v) the hardware gain of node v.)

• gain(v) = f(ΔT (v), ΔH(v)) is the basis for choos-
ing the next node to move. (Note that—although it
is not shown explicitly for the sake of readability—f
can also depend on other variables, such as, for in-
stance, the parameters of Pcurr.)

The choice of the function f is crucial because it de-
termines the order in which the nodes are moved. This
function incorporates the sought trade-off between the
conflicting cost measures. Specifically, by yielding the
gain of a move with given ΔT (v) and ΔH(v) values, it
defines the relative importance of the design goals.

Of course, f can be chosen in several ways. Since
we will always move the node with the highest gain, i.e.,
higher f values should indicate better moves, but ΔT (v)
and ΔH(v) are lower for better moves, this means that
f has to be monotonously decreasing in both ΔT (v) and
ΔH(v).

At this point it should be noted that our algorithm, at
least in its current general form, contains the original FM
algorithm as a special case. If th(v) = ts(v) = h(v) = 0
for each node v, tc(v, w) = 1 for each edge (v, w), and
f(ΔT (v), ΔH(v)) = −ΔT (v), then the gain of a node
is exactly the amount by which moving it would decrease
the number of cut edges.

But our aim is different: we would like to minimize
HP , while bounding TP . The strictest solution for this is
the following:

gain(v) =

{
−∞ if TPcurr + ΔT (v) > T0,

−ΔH(v) otherwise.
(1)

That is, those moves that let the partition violate the real-
time constraint are infinitely bad, the other moves are
ranked according to the gain in hardware cost associated
with them. We will refer to this function as the strict gain
function.

There are also arguments in favour of less strict so-
lutions. Suppose, e.g., that a move would slightly violate
the real-time constraint but would result in a dramatic de-
crease in the hardware cost. This move is infinitely bad
according to the above function, yet it seems to be a good
idea to allow such moves. In other words: a sufficiently
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large decrease in hardware cost can justify small exceed-
ing of the real-time constraint. One can hope that in this
way a much better part of the search space can be reached.

A logical possibility is to use a gain function of the
following form:

gain(v) = −ΔH(v) − p(TPcurr , ΔT (v), T0). (2)

Here, p is a penalty function that penalizes the ex-
ceeding of the time limit. Typically, p depends on the per-
centage by which TPcurr + ΔT (v) exceeds T0. Note that
it would also be possible to define p as a function of the
amount (instead of percentage) by which T0 is exceeded.
However, it is much more informative to say that, e.g., the
limit is exceeded by 10% than by 10 units. So, we can
assume that p only depends on the quantity

exc =
TPcurr + ΔT (v)

T0
.

The same argument holds also for the other term of
the expression: instead of ΔH(v), it is more informative
to use the percentage by which HP changes if this node
is moved, i.e., ΔH(v)/HPcurr . In this way, our ultimate
formula for the gain function becomes as follows (we will
refer to such a function as a permissive gain function):

gain(v) = −ΔH(v)
HPcurr

− p(exc). (3)

1

p

exc

+∞

Fig. 1. Strict penalty function.

Note that (1) is a special case of (2), in which the
penalty is ∞ if T0 is exceeded, and 0 otherwise (see
Fig. 1). Strictly speaking, (1) is not a special case of (3)
because of the division by HPcurr in (3). On the other hand,
when using the strict penalty function of Fig. 1, the divi-
sion by HPcurr does not change the ranking of the nodes.
Thus, if we are only concerned with the ranking of the
nodes and not the exact gain values, then (1) is also a spe-
cial case of (3).

In the general case, it is also logical to set p = 0 if
the limit is not exceeded. Moreover, we can set a threshold
q > 1, and let p = ∞ if even qT0 is exceeded. Clearly, p
should be monotonously increasing if exc is in the interval
[1, q]. Such a function is shown in Fig. 2.

exc

p

q1

Fig. 2. Possible permissive penalty function.

In the rest of this paper, we will use the strict gain
function (cf. (1)) as well as the permissive gain function
(cf. (3)) with suitable penalty functions.

Finally, we would like to point out that using a gain
function that does not give an infinite penalty to non-valid
partitions requires extra precautions. Although one might
get better results by temporarily allowing small exceed-
ing of the real-time constraint, it has to be guaranteed that
in the end the output will be a valid partition, i.e., one
that obeys the real-time constraint. For this purpose, the
semantics of Pbest should be changed slightly: Pbest is al-
ways the best valid partition found so far. That is, Pbest is
updated only if a better valid partition has been found; if
we find a partition with a lower hardware cost but exceed-
ing the time limit, then Pbest should not be updated.

5.2. Updating Gain Values. At the beginning of each
pass, the gains of all nodes are calculated. Moreover, after
each move, the gains are updated, see Algorithm 1. The
initial computation of the gains is straightforward. Now
we focus on the updating step.

In the following, a function ϕ : V → R is said to pos-
sess the (∗)-property if the following holds: when moving
a node v from one part to the other, ϕ(w) does not change
for any w that is not adjacent to v nor the same as v. In
other words: only the ϕ value of v and its neighbours can
change, and all other ϕ values remain the same.2 Note
that, in the case of the original FM algorithm, the gain
function, which was defined in (Fiduccia and Matthey-
ses, 1982) as the decrease in the cutsize, possesses the
(∗)-property.

2 Hence the notation (∗): the nodes for which ϕ can change define
a star-shaped (not necessarily induced) subgraph of G.
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If the gain function possesses the (∗)-property, then
the update of the gains after a move can be very efficiently
implemented, see Algorithm 2. If d(v) denotes the num-
ber of neighbours of node v, then the updating after mov-
ing v requires O(1 + d(v)) time, therefore all updating
steps of a pass require

∑
v∈V O(1 + d(v)) = O(n + m)

time, where m denotes the number of the edges in the
graph.

Algorithm 2. Updating the gains after moving node v,
assuming the (∗)-property.

recalculate and store gain of v
foreach free neighbour w of v do
{

recalculate gain of w
store gain of w

}

Conversely, if the (∗)-property does not hold, then
the gain of all nodes has to be recomputed after each
move. Therefore, there is no need to store the gain val-
ues at all. Rather, the node with maximum gain can be se-
lected whilst computing the gain values (see Algorithm 3).
In this case, the number of steps is O(n) after each move,
yielding a total of O(n2) per pass.

Algorithm 3. Recomputing the gains and selecting
the maximum after a move when
the (∗)-property does not hold.

max_gain = −∞
best_node = undefined
foreach free w ∈ V do
{

recalculate gain(w)
if gain(w) > max_gain
{

max_gain = gain(w)
best_node = w

}
}

As can be seen, the (∗)-property has important im-
plications on the efficiency of the algorithm, since O(n2)
is much bigger than O(n + m) for sparse graphs, and
typical communication graphs are sparse. The follow-
ing theorem—which will have important consequences in
Section 5.4 and Section 5.6—shows the connection be-
tween the (∗)-property and our different gain notions:

Theorem 1.
(i) ΔH possesses the (∗)-property.
(ii) ΔT possesses the (∗)-property.
(iii) The gain functions defined in Section 5.1 do not neces-
sarily possess the (∗)-property. In fact, not even the strict
gain function does.

Proof. (i) From the definition of ΔH it is obvious that

ΔH(v) =

{
h(v) if v ∈ VS ,

−h(v) if v ∈ VH .

Therefore, when moving v from one context to the other,
only its own hardware gain changes, and that of the other
nodes remains the same. Thus ΔH possesses the (∗)-
property.

(ii) Again, from the definition of ΔT , it is obvious that

ΔT (v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

th(v) − ts(v) +
∑

w∈VS

(v,w)∈E

c(v, w) −
∑

w∈VH

(v,w)∈E

c(v, w)

if v ∈ VS ,

ts(v) − th(v) +
∑

w∈VH

(v,w)∈E

c(v, w) −
∑

w∈VS

(v,w)∈E

c(v, w)

if v ∈ VH .

As can be seen, ΔT (v) depends on the context of v and
that of its neighbours. Hence, when moving a node,
the ΔT (v) value of itself and that of its neighbours can
change; that of other nodes remains the same. That is,
ΔT possesses the (∗)-property.

(iii) As can be seen from (1), ‘gain’ depends on TPcurr .
When a node is moved from one context to the other,
TPcurr changes, and thus potentially the gain of all nodes
can change. �

Section 5.6 describes how the efficiency of the al-
gorithm can still be enhanced, although the (∗)-property
does not hold.

5.3. Starting Partition. In order to guarantee that Pbest

will always be a valid partition, it is also necessary to start
from a valid partition. There are several possibilities to
generate a valid initial partition:

• As has been mentioned earlier, it can be assumed
that the all-hardware partition is valid, and hence it
is a good candidate for the starting partition. While
this approach is very simple, it has the drawback
that typically the all-hardware partition is far from
the optimum. A starting partition of higher quality
would make it more likely that the algorithm eventu-
ally finds a good partition.

• Any algorithm that produces a valid partition can
be used to generate the starting partition. Since the
whole KL algorithm is typically quite fast, the algo-
rithm to create its starting partition should also be
very fast. It can be, e.g., a simple greedy algorithm.
This works as follows: It starts from the all-hardware
partition. In each step, it checks which nodes can
be moved from hardware to software without hurting



Evaluating the Kernighan–Lin heuristic for hardware/software partitioning 257

the real-time constraint, and moves the node with the
highest hardware cost from these. It stops when no
more moves are possible.

• A general way of improving the results of heuristics
is to run them multiple times and take the best result.
Of course, this is only useful for randomized algo-
rithms; hence, it would be useful to start KL from a
random partition. Unfortunately, it is by no means
obvious how one can quickly generate random valid
partitions at least with an approximately uniform dis-
tribution. Here, we present a method that generates
valid partitions randomly (see Algorithm 4)—but not
with uniform distribution. The idea is to randomly
map each node to either software or hardware, and to
check if the resulting partition is valid. If it is not,
then we decrease the probability of mapping nodes
to software. Sooner or later we surely reach a valid
partition: in the worst case, when the probability of
mapping nodes to software becomes zero, we get the
all-hardware solution. But we return the first valid
partition that is found in this way.

Algorithm 4. Randomly generate a valid initial
partition.

1. Let r = 1 and N be a positive integer; let dr = 1/N .
2. Map each node independently with probability r to software,

with probability 1 − r to hardware.
3. If the resulting partition is valid, return with it.
4. Otherwise: let r = r − dr and goto 2.

5.4. Tie–Breaking. Whenever the node with maxi-
mum gain is not unique, a tie-breaking strategy has to be
used to select one of the nodes with maximum gain. As
was discussed in Section 2.2, the tie-breaking strategies
suggested in the KL literature can be roughly categorized
into two groups: those that are based on look-ahead mech-
anisms and those based on previous behaviour. Since all
suggested look-ahead mechanisms are useful mainly for
hypergraphs, we will consider here only the second group.
It consists basically of the following strategies (M denotes
the set of nodes with maximum gain):

• random, i.e., a node is randomly selected from M ,

• LIFO, i.e., the node which was the last to get into M
is selected,

• FIFO, i.e., the node which was the first to get into M
is selected.

It has been reported that, in general, the LIFO strat-
egy outperforms the other two (Hagen et al., 1997). This
can be intuitively explained as follows: One of the prob-
lems with the FM algorithm is that it only moves one node
at a time, and hence it often does not recognize that a
much better partition could be reached through moving

a highly connected subgraph from one of the parts to the
other. Therefore, if a node is moved from one part to the
other, then it is often beneficial to also let its neighbours
follow it. The LIFO strategy encourages this, because
in the FM algorithm the gain function possesses the (∗)-
property, hence the gain of a free node is changed only if
one of its neighbours is moved, and thus the node selected
by the LIFO strategy will be the one whose neighbour was
moved recently.

Now let us investigate to what extent this can be
transferred to our case. Unlike in the original KL algo-
rithm, our gain function is real-valued. Hence, in our case
it is very unlikely that more than one node have exactly
the same gain value. Thus one could argue that no tie-
breaking is needed. However, if there are some nodes
with very similar gain values, it might be better to regard
them as if they had the same gain value, and use one of
the above tie-breaking strategies to select the winner from
them.

Thus it seems that we face a one-dimensional cluster-
ing problem: given n points with their gain values, it has
to be determined which nodes have similar gains. Fortu-
nately, the problem is actually simpler because we only
need to determine the best cluster, i.e., the cluster with
the highest gain value (denoted by M above). A possible
method for this task is the following: Let us fix a constant
0 < τ ≤ 1, and let B denote the highest gain value. We
define M as the set of nodes with gain values in the in-
terval [τB, B]. (Note that the case τ = 1 corresponds to
the strategy of considering only the node with the highest
gain value.) τ should be chosen near 1, so that only a few
nodes will be in the interval [τB, B].

The second difference between our case and the FM
algorithm is that, according to Theorem 1, now the (∗)-
property does not necessarily hold. Unfortunately, the
LIFO strategy implicitly assumes the (∗)-property in that
the node whose gain changed the last time is the same as
the one whose neighbour was moved the last time.

Therefore, the straightforward adaptation of the
LIFO tie-breaking strategy would presumably be less ef-
ficient than in the case of the FM algorithm. Hence, we
suggest a more direct implementation of the actual aim
of this tie-breaking strategy, i.e., to encourage moving the
neighbours of recently moved nodes. More specifically,
we define a variable �(v) for each node v, which stores the
last time step when a neighbour of v was moved. (That is,
we maintain a counter ctr, which is initialized to be zero
at the beginning of each pass, and is incremented by one
each time when a node is moved. Moreover, when node
v is moved, we update the � values corresponding to its
neighbours: for each neighbour w, let �(w) = ctr. All this
can be done in linear time per pass.) Now the LIFO strat-
egy can be adapted as selecting the node with the highest �
value from M and, similarly, FIFO is adapted as selecting
the node with the lowest � value from M .
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5.5. Locking Schemes. From the numerous alterna-
tive locking schemes that have been suggested for KL
(see Section 2.2 and (Alpert and Kahng, 1995)), the most
promising for our purposes is the dynamic locking scheme
proposed by Hoffman (1994). The other suggested lock-
ing schemes have been reported to be mainly beneficial
for multiway partitioning with many parts, whereas hard-
ware/software partitioning is inherently a bipartitioning
problem.

Hoffman’s method is based on the same intuition
as the LIFO tie-breaking strategy discussed above: after
moving a node from one part to the other, its neighbours
should be encouraged to follow it. Hence, Hoffman sug-
gests that after moving a node from part A to part B, its
neighbours in A should be freed (the moved node, how-
ever, becomes locked). In order to prevent endless loops,
a node can only be freed a given number of times—ten in
Hoffman’s work—during a pass.

Fortunately, this locking scheme can be adapted to
hardware/software partitioning without any problems. On
the other hand, it is questionable whether ten is the right
number in this context as well.

5.6. Efficiency. One pass of the FM algorithm can be
implemented in linear time, i.e., in O(n + m) time. This
depends on the following two crucial facts: (i) the possible
moves can be indexed by their associated gain values, and
thus stored in the gain bucket array data structure; (ii) the
(∗)-property holds for the gain function, i.e., after moving
a node, only its own gain and the gain of its neighbours
have to be updated.

Unfortunately, these two properties do not hold in the
case of hardware/software partitioning: the gains can be
large real numbers, which prohibits the usage of a gain
bucket array, and the (∗)-property does not hold (see The-
orem 1). In the following, we investigate under which
circumstances we can still provide an efficient—but more
tricky—implementation.

As it turns out, the efficiency of our algorithm de-
pends very much on the gain function. First, let us con-
sider the most general case: the gain is specified by some
function f , on which we do not pose any restrictions, ex-
cept that it can be calculated in O(1) time. In the worst
case, the gain of all nodes can change after each move.
Since a pass consists of Θ(n) moves (exactly n moves
when using the original locking scheme, and at most cn
moves when using dynamic locking, where c is a small
constant), and after each move, the gain of all free nodes
has to be calculated, and there are n/2 free nodes on av-
erage. This means that the duration of one pass is Θ(n2).
Also note that this can be achieved without any compli-
cated data structures: the maximum gain can be selected
while calculating the gains of all nodes, and there is no
need to even store the calculated gain values, since only

their maximum is needed, and all of them will be recom-
puted after the move anyway.

However, we are interested in a special class of gain
functions, so that one can hope for a more efficient imple-
mentation. One could even hope for a linear-time imple-
mentation, as was the case with FM. As it turns out, this
is not possible.

Theorem 2. When using the strict gain function, every
implementation has at least Ω(n log n) time complexity.

Proof. We will show that it is possible to sort numbers us-
ing our algorithm. Since it is known that sorting n num-
bers takes Ω(n log n) time (Cormen et al., 2001), the the-
orem will follow.

Assume that the numbers x1, . . . , xn have to be
sorted. We define a graph with n vertices (v1, . . . , vn)
and no edges. For each node vi, let ts(vi) = th(vi) = 0
and h(vi) = xi. Let T0 be any non-negative number, then
TP ≤ T0 will always hold (since TP will always be 0).
Assume that the initial partition is the all-hardware parti-
tion. In each step of the first pass, a node will be moved
from hardware to software until each node is in software.
The gain of a free node vi will always be h(vi) = xi.
Since the algorithm moves the nodes in the decreasing or-
der of their gain values, observing the order in which the
nodes are moved yields the decreasing order of the xis.

Since the permissive gain function family contains
the strict gain function as a special case, the same holds
also for the permissive gain functions.

Now we present an implementation which is almost
as efficient as this lower bound. First, the case of the strict
gain function is considered.

According to Theorem 1, not even the strict gain
function possesses the (∗)-property, and thus it is by no
means obvious how the algorithm can be faster than triv-
ial O(n2). The key is that ΔH and ΔT do possess the
(∗)-property, and the strict gain function has such a simple
structure that the node with the highest gain can be found
without actually storing or even computing the gain values
of each node explicitly. Rather, we only store the ΔH and
ΔT values for each node. Because of the (∗)-property,
these can be updated efficiently: all updating steps require
O(n + m) time per pass.

The gain depends, beside ΔH(vi) and ΔT (vi) also
on TPcurr . In a given step of the algorithm, we have a con-
crete TPcurr value. We are only interested in those nodes for
which TPcurr + ΔT (vi) ≤ T0 because all other nodes have
gain −∞. And from these ‘good’ nodes, the one with the
highest hardware gain has to be selected.

The nodes can be thought of as points in the plane,
where the x coordinate of vi is xi := ΔT (vi) and its y
coordinate is yi := ΔH(vi). Then, the task of selecting
the node with the highest gain becomes this: select the
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point with the lowest y coordinate in the x ≤ T0 − TPcurr

half plane.
Thus a data structure is needed in which two-

dimensional points can be stored, such that queries of the
form ‘select the point with the lowest y coordinate from
the ones with x ≤ x0’ can be executed efficiently, and
it can be updated efficiently if the coordinates of a point
change or a point is deleted. Fortunately, such a data struc-
ture is known in the computational geometry community:
it is the range tree (de Berg et al., 2000). Actually, the
range tree was developed to support queries of the form
‘select all points in the rectangle x1, y1, x2, y2’. However,
it can very easily be adapted to the kind of query that we
face. With a range tree, all the needed operations can be
performed in O(log n) time, thus yielding a time com-
plexity of O((n + m) log n) for one pass of our algorithm
(O(n) searches and O(n + m) updates).

As can be seen, the simple structure of the strict gain
function and the powerful range tree data structure made
it possible to find the node with the highest gain without
explicitly calculating the gain of each node, and only stor-
ing and updating the ΔH and ΔT values. Now let us
investigate how this can be generalized to permissive gain
functions. The problem here is that the penalty function is
not constant between T0 and qT0. In the case of the strict
gain function it was possible to rephrase the problem as a
simple geometric query because the penalty function had
only two values, one of which was infinite.

Fortunately, we have some freedom in choosing the
penalty function. It is not prescribed what it should look
like between T0 and qT0, it is only required that it should
be monotonously increasing from 0 to ∞. For the sake
of efficiency, we require p to be a ‘staircase’-like func-
tion, i.e. it should consist of a small number of constant
parts. Actually, this is not a fundamental restriction, since
every function can be approximated with staircase-like
functions. For instance, the function in Fig. 2 can be ap-
proximated with the staircase-like function in Fig. 3. The
reason for using staircase-like penalty functions is that one
stair of such a function is similar to the strict penalty func-
tion, and so it is possible to apply the method used for the
strict penalty function to each stair.

More specifically, our algorithm works as follows for
a staircase-like penalty function: Let (x1, x2) be an inter-
val in which p is constant. This means that in this inter-
val the software gain does not influence the gain; the gain
is proportional to the hardware gain. Therefore, we have
to select the point with the lowest y coordinate from the
‘track’ {(x, y) : x1 ≤ x ≤ x2}. Again, a range tree
can be used to efficiently implement such queries. We can
thus obtain a best node in each interval where p is con-
stant. Afterwards, the winner is selected from this hand-
ful of nodes based on their gains. That is, the gain has to
be explicitly calculated only for these nodes. This way,
assuming that there are O(1) intervals with constant p,

1
exc

p

q

Fig. 3. Staircase-like penalty function. This is an
approximation of the function in Fig. 2.

the whole pass can be implemented in O((n + m) log n)
time for (staircase-like) permissive gain functions as well.
Note that for sparse graphs, i.e., if m = O(n), this is
the same as O(n log n), so that this algorithm has optimal
performance—up to constant factors—for sparse graphs.

6. Extension Possibilities

As was demonstrated in Section 2.1, the hard-
ware/software partitioning problem has several formula-
tions. Until now, we have focused on one of the simpler
problem formulations, in which partitioning only aims at
deciding which components should be mapped to hard-
ware and which ones to software, and only two cost met-
rics were considered. In this section, we investigate how
more than two cost metrics can be taken into account (Sec-
tion 6.1), and how scheduling and other tasks can be in-
corporated (Section 6.2).

6.1. Considering More Than Two Cost Metrics. Un-
til now, we have focused on two cost metrics: execu-
tion time and hardware cost. However, in some cases,
other cost metrics have to be considered as well, such
as power consumption or chip size. In general, assume
there are k cost metrics (where k is a small constant)
c1, . . . , ck. In order to define a proper optimization prob-
lem, assume that there is a constraint on k − 1 of the cost
metrics, and the aim is to minimize the k-th cost met-
ric. That is, the problem is to find partition P such that
c1(P ) ≤ C1, . . . , ck−1(P ) ≤ Ck−1 and ck(P ) is minimal
among all such partitions.

Just as above, for each node vi and each cost metric
cj we can define the change in that cost metric caused
when moving vi, denoted by Δcj(vi). The gain of a node
vi is now defined as

gain(vi) = f(Δc1(vi), . . . , Δck(vi))

= − Δck(vi) −
k−1∑

j=1

pj(Δcj(vi), cj(Pcurr), Cj),
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where the pjs are appropriate penalty functions (pj pe-
nalizes the violation of the constraint on cj). Again, it is
possible to define strict or permissive penalty functions.

If no further assumptions can be made concerning the
gain function or the Δcj functions, then the algorithm can
be again implemented in a straightforward way yielding
a performance of O(n2). Conversely, if the Δcj func-
tions satisfy the (∗)-property, and if the penalty functions
are staircase-like, then it is again possible to devise an
O((n + m) log n) implementation. In this case, the nodes
can be modelled as points of the k-dimensional space
with coordinates (Δc1(vi), . . . , Δck(vi)), and queries of
the form ‘select the point (x1, . . . , xk) with minimum xk

from the set a1 ≤ x1 ≤ b1, . . . , ak−1 ≤ xk−1 ≤ bk−1’
must be performed. This, too, can be implemented effi-
ciently using k-dimensional range trees.

6.2. Incorporating Scheduling and Other Tasks.
Until now, it has been assumed that the cost metrics are
additive. For example, it was assumed that the hardware
cost of a partition is the sum of the hardware cost of the
nodes in hardware. Likewise, it was assumed that the ex-
ecution time of the system can be calculated as the sum of
the execution time of the nodes (where the execution time
of a node depends on whether it is implemented in hard-
ware or in software) plus the sum of the communication
overhead of the edges. In this respect, we followed the
assumptions of Vahid (1997). On the other hand, Vahid’s
model is somewhat restrictive: it assumes a single hard-
ware unit and a single software unit and limits parallelism
between the two. In a more general framework with sev-
eral hardware and software units, some additional factors
have to be considered, e.g.:

• In general, execution time is not additive. Rather, it
depends on the number of available processing units,
and on the precedence constraints between the nodes
that constrain parallelism. Therefore, the calculation
of the execution time involves scheduling the mod-
ules on the given processing units. Parallelism is es-
pecially relevant in hardware, where usually several
operations can be executed concurrently.

• Likewise, communication events have to be sched-
uled on the available communication links. More-
over, depending on the topology of the communi-
cation links, communication events may have to be
routed along the communication links.

• Hardware costs are often not additive because of
hardware sharing. That is, several modules can use
the same hardware resource, thus reducing costs. It
has to be noted that scheduling and hardware sharing
are not independent: if two modules share a hard-
ware resource, then they must not be active at the
same time.

A hardware/software co-design framework has to
consider all of these effects. Conversely, as was demon-
strated in Section 2.1, there is no consensus in the liter-
ature on whether all these aspects should be considered
during partitioning. In some works, the whole co-design
framework is a single optimization step, in which parti-
tioning, scheduling, routing etc. are performed together;
in others, partitioning only means deciding which mod-
ules to implement in hardware and which ones in soft-
ware. In the latter group, powerful methods have been
devised to decouple partitioning from the other problems
(see, e.g, (Madsen et al., 1997)). Such decoupling results
in a loss of precision because the partitioning algorithm
has only an estimate of the cost metrics. Conversely, the
complexity of the problem is drastically reduced, and thus
a bigger percentage of the search space can be searched.
This way, similar or even better results are achieved than
by considering all aspects together but scanning only a
small fraction of the huge search space.

An example of the loss of precision is estimating ex-
ecution time with the sum of the execution times of the
nodes, without taking into account the concurrent execu-
tion of the operations in hardware. How rough this esti-
mate is depends on several factors. For example, concur-
rency plays a major role in the case of fine-grained opera-
tions (e.g., single instructions), because many of them can
be concurrently executed. However, if the nodes of the
graph represent bigger modules (e.g., complex functions),
then the level of parallelism decreases because it is not
possible to execute many such operations concurrently.

Another aspect is the order of magnitude of the exe-
cution times. Usually, hardware execution times are sig-
nificantly lower than software execution or communica-
tion times. Therefore, a loss in the precision in the cal-
culation of the hardware execution time hardly effects the
overall execution time, which is dominated by software
execution and communication time. In such cases, it is
even possible to assume hardware execution times to be
zero. With this assumption, the scheduling of hardware
operations becomes dispensable (Arató et al., 2003a). Of
course, on architectures where this assumption is not jus-
tified, scheduling does play an important role.

Our adaptation of the KL algorithm, as described so
far, clearly belongs to the group of ‘pure’ partitioning ap-
proaches, i.e., without considering scheduling, etc. We
believe that the KL algorithm is intrinsically more appro-
priate for this group because its strength lies in the effi-
cient optimization of simple cost metrics. However, we
will now briefly sketch how it can also accommodate the
scheduling of modules, the scheduling of communication
events, routing, hardware sharing, etc. The cost metrics
are then not additive any more; rather, the cost metrics are
calculated by external scheduling or routing algorithms
that can be included as a black box into our algorithm.
The Δcj(vi) values that are needed by our algorithm are
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calculated by tentatively moving vi to the other part, and
then running the appropriate external algorithm in charge
of calculating cj (e.g., running a scheduler to calculate the
execution time), and then moving the node back. For de-
tails, see Algorithm 5. In this case, the (∗)-property is
clearly lost, because after moving a node, all Δcj values
can change. For instance, moving a node from hardware
to software can make that node so slow that every sched-
ule considered so far becomes invalid.

Algorithm 5. Extended gain calculation.

foreach free v ∈ V
{

for j=1 to k do
{

move v to the other context
run external algorithm to calculate cnew

j (v)
move v back
let Δcj(v) = cnew

j (v) − cj(v)
}
compute gain(v) from Δc1(v), . . . , Δck(v)

}

Therefore, no ‘tricky’ implementation can be hoped
for. The time complexity of the algorithm for one pass is
O(n2�), where O(�) is the time needed to run the exter-
nal algorithms. This is because a pass consists of O(n)
moves, and after each move, the gain of O(n) nodes has
to be recomputed, and one such recomputation takes O(�)
time. Typically, � will be non-negligible, since it is the
time for solving a hard problem such as scheduling. The
fastest list schedulers need O(n) time, more advanced
schedulers much more (e.g., a force-directed scheduler
takes O(n3) time, see also (Arató et al., 2005b)). There-
fore, the complexity of our algorithm will be at least
Ω(n3), maybe significantly more.

We can conclude that it is possible to include
scheduling and hardware sharing into the KL algorithm;
however, the algorithm will then lose its main advan-
tages. (For example, it will calculate numerous schedul-
ings, many of which will turn out to be equivalent and/or
not needed.) Therefore, it is an important future research
direction to investigate whether the efficiency of the KL
algorithm can be maintained in such an extended version
of it. However, we have demonstrated that it is indeed very
efficient for the other group of hardware/software parti-
tioning formulations that make use of simplified cost met-
rics.

7. Empirical Results

As can be seen from the previous sections, the algorithm
has many variants and many parameters that can be tuned.
We implemented several versions in a C++ program in or-
der to compare them empirically.

The testing process consisted of two phases. In the
first phase, our aim was to select the ‘best’ configuration,
or a handful of ‘best’ configurations, i.e., a set of configu-
rations that work well on typical problem instances. These
experiments are described in Section 7.2. In the second
phase, we compared our best configurations with a num-
ber of other partitioning heuristics (see Section 7.3). The
benchmark problem instances used are presented in Sec-
tion 7.1.

7.1. Benchmarks Used. In order to have a representa-
tive mix of benchmark problems, we used three different
sources:
• the MiBench benchmark suite (Guthaus et al., 1997),

• own designs of our research group,

• large random graphs.

The characteristics of the test cases are summarized
in Table 1. Here n and m denote the numbers of nodes
and edges, respectively, in the communication graph.

Table 1. Summary of the benchmarks used.

Name n m Description

crc32 25 34 32-bit cyclic redundancy check.
From the Telecommunications cate-
gory of MiBench.

patricia 21 50 Routine to insert values into Patricia
tries, which are used to store routing
tables. From the Network category
of MiBench.

dijkstra 26 71 Computes shortest paths in a graph.
From the Network category of
MiBench.

segment 150 333 Image segmentation algorithm in a
medical application.

fuzzy 261 422 Clustering algorithm based on fuzzy
logic.

rc6 329 448 RC6 cryptographic algorithm.
mars 417 600 MARS cipher.
ray 495 908 Ray-tracing algorithm for volume

visualization.
random1 1000 1000 Random graph.
random2 1000 2000 Random graph.
random3 1000 3000 Random graph.
random4 1500 1500 Random graph.
random5 1500 3000 Random graph.
random6 1500 4500 Random graph.
random7 2000 2000 Random graph.
random8 2000 4000 Random graph.
random9 2000 6000 Random graph.

It has to be noted that most previous algorithms were
tested on graphs with only some dozens of vertices, like
the crc32, patricia, or dijkstra benchmarks. The next five
benchmarks (segment, fuzzy, rc6, mars, and ray) are sig-
nificantly larger, and they are typical of current industrial
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problems. Conversely, the systems to be designed be-
come more and more complex, and therefore we also in-
cluded some really large random benchmarks, which are
above today’s typical problem sizes. Note also that the
graphs corresponding to the real designs are sparse, i.e.,
they have few edges. The densest is the dijkstra example
with m/n = 2.73, and the sparsest is the rc6 benchmark
with m/n = 1.39. Therefore, the random graphs were
also generated with similar m/n ratios.

In the case of our own designs, all cost values were
available. However, in the case of the benchmarks from
MiBench only a software implementation was available,
and thus the software costs could be determined using pro-
filing, but the other cost values were not available. And,
of course, in the case of the random graphs, no cost values
were available at all.

Therefore, we made use of the following methodol-
ogy to generate the missing cost values:

• Where software costs were not available, they were
generated as uniform random numbers from the in-
terval [1,100].

• Where hardware costs were not available, they were
generated as random numbers from a normal distri-
bution with expected value κsi and standard devia-
tion λκsi, where si is the software cost of the given
node. That is, there is a correlation, as defined by
the value of λ, between a node’s hardware and soft-
ware costs. (If λ = 0, then hi = κsi will hold for
each node. But when λ is higher, the hi values can
deviate from the respective κsi values, and thus the
correlation becomes lower.) This corresponds to the
fact that more complicated components tend to have
both higher software and higher hardware costs. We
tested two different values for λ: 0.1 (high correla-
tion) and 0.6 (low correlation). The value of κ only
corresponds to the choice of units for software and
hardware costs, and thus it has no algorithmic impli-
cations.

• Where communication costs were not available, they
were generated as uniform random numbers from the
interval [0, 2μ smax], where smax is the highest soft-
ware cost. Thus, communication costs have an ex-
pected value of μsmax, and μ is the so-called com-
munication to computation ratio (CCR). We tested
two different values for μ: 1 (computation-intensive
case) and 10 (communication-intensive case).

• Finally, the limit T0 can be arbitrarily defined for
every benchmark. Note that T0 =

∑
thi means

that all components have to be mapped to hardware,
whereas T0 =

∑
tsi means that all components can

be mapped to software. All sensible values of T0 lie
between these two extremes. We tested two values
for T0: one generated as a uniform random num-
ber from the interval

[∑
thi,

1
2 (

∑
thi +

∑
tsi

]
)

(strict real-time constraint) and one taken randomly
from

[
1
2 (

∑
thi +

∑
tsi),

∑
tsi

]
(loose real-time

constraint).

Half of the benchmarks were used to find the best
configurations of our algorithm, and the other half to com-
pare the best configurations found to other partitioning
heuristics.

7.2. Determining the Best Configurations. As has al-
ready been mentioned, there are several possible configu-
rations for our algorithm. Here is a list of the implemented
variants and parameters:

• Penalty function: strict vs. permissive.

• In the case of the permissive penalty function: what
exactly should the penalty function be like?

• Initial partition: all-hardware vs. greedy heuristic vs.
Algorithm 4.

• Tie-breaking strategy: FIFO vs. LIFO vs. random.
Moreover, the value of τ also had to be tuned.

• Locking scheme: original vs. dynamic.

• In the case of dynamic locking: how many moves
should be allowed?

As can be seen from this list, there are altogether 36
configurations, plus an integer and a real-valued parame-
ter, plus the choice of a function. In the latter three cases
discretization is needed in order to have a finite set of con-
figurations.

Selecting the best configuration essentially means a
search in a high-dimensional space, which is a non-trivial
problem. A further difficulty is that there is often no clear
‘better-than’ relation between the different configurations,
i.e., it is possible that configuration A is better on one of
the benchmarks than configuration B, but it is worse on
another benchmark. To sum up: running all configurations
on all benchmarks results in a huge set of data that is hard
to analyze.

Therefore we used a more careful methodology.
When comparing two configurations, we used the follow-
ing guidelines:

• Very similar results were not considered different.

• When comparing configuration A to configuration
B, the basic criterion was the number of benchmarks
on which A was better than B.

• The actual difference in result quality was considered
only if

– the configuration that was worse according to
the previous guideline won by significantly
more on the benchmarks on which it won than
it lost on the benchmarks on which it lost; or
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Table 2. Cost of the resulting partition for different configurations.
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crc32 15 15 15 15 15 15 15 15 15 15 15 16

dijkstra 32 32 32 32 32 32 32 32 32 32 32 32

fuzzy 223 223 224 223 230 229 224 223 221 220 224 222

mars 1009 978 710 710 951 920 1009 920 704 704 1019 971

random2 3955 3955 3840 3812 3889 3866 3796 3841 3789 3775 3821 3807

random4 5708 5625 5625 5609 5629 5630 5625 5625 5616 5609 5645 5650

random6 7412 7193 7361 7147 7307 7220 7049 7068 7120 7067 7241 7091

random8 9715 9677 9642 9538 9819 9708 9603 9540 9538 9520 9656 9613

– the number of wins for A was about the same
as the number of wins for B.

• The running time of the algorithms was not consid-
ered because all versions are very fast.

Based on these guidelines, we managed to compare
the different configurations in an intuitive way.

In a first set of experiments, we tuned the non-
discrete parameters, independently from the others. Not
taking into account some interdependencies naturally re-
sults in a loss of precision, but it enabled us to always fo-
cus on a manageable number of configurations at a time.
This way, we made the following findings:

• Concerning the permissive penalty function: We
tested several different polynomials (actually, their
staircase-like approximations). The best results were
achieved with a fourth-order polynomial.

• Allowed number of moves: in contrast to the result
reported in (Hoffmann, 1994), we found that allow-
ing more than five moves per node per pass does not
improve the performance significantly anymore.

• The effect of the value of τ on the result quality was
not clear at all because the deviation of the results
was too high. On the other hand, the setting τ = 1
was clearly not optimal. This means that it is indeed
useful to choose from the best couple of moves using
a tie-breaking strategy, instead of choosing simply
the best one. Eventually we fixed τ to be 0.95, which
seemed to be a plausible value with quite good per-
formance.

Next, we divided the set of configurations into two
subsets: those starting with a random initial partition and
those that start with a deterministically selected initial par-
tition (i.e., all-hardware or by the deterministic greedy
heuristic). The reason is that—according to previous ex-
perience with KL-type algorithms—the effectiveness of
the algorithm depends heavily on the initial partition, and
hence running the algorithm several times with random
initial partitions increases the chance of finding a good
initial partition and thus good results. Therefore, if the
algorithm starts with a random initial partition, its effec-
tiveness can be presumably significantly improved by run-
ning it multiple times and taking the best result, which is,
of course, not possible with a deterministic algorithm. (A
second source of randomization can be the random tie-
breaking strategy, but our first experiences showed that it
is much less promising than the random initial partition.)

First, we searched for the best configuration with
a deterministic initial partition. The results are summa-
rized in Table 2. Each column of the table corresponds
to a configuration of a gain function, tie-breaking strategy
and locking scheme: e.g., ‘strict–FIFO–original’ means
a strict gain function, the FIFO tie-breaking strategy, and
the original locking scheme. In these experiments, a mix
of low and high CCR as well as of low and high T0 val-
ues was used, because we were not interested in the effect
of these factors at this point (this effect will be investi-
gated in Section 7.3). In each case, the initial partition
was the all-hardware partition. We do not include here
the results obtained from the partition found by the deter-
ministic greedy heuristic, because there was no significant
difference between the two choices of the initial partition.
This may be attributed to the fact that the KL algorithm
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itself is an improved greedy algorithm, and thus a greedy
pre-optimization does not improve it.

As can be seen from the table, the best results were
found when using a permissive gain function, the LIFO
tie-breaking strategy, and the dynamic locking scheme.
We will denote this configuration by KL1. A closer look
also reveals that the permissive gain function was in most
cases better than the strict gain function, the LIFO tie-
breaking strategy was generally better than the other two
tie-breaking strategies, and the dynamic locking scheme
was also in most cases better than the original locking
scheme. This justifies that KL1 is indeed the best config-
uration. Furthermore, it shows that the improvements that
had been suggested for the original KL algorithm are also
useful in the context of hardware/software partitioning.

Next, we turned our attention to the configurations
with random initial partitions. In these cases, we ran the
algorithms fifty times on each benchmark and took the
best result. When searching for the best of these config-
urations, we made very similar observations as with the
deterministic configurations: the permissive gain func-
tion, LIFO tie-breaking strategy, and dynamic locking
won again. We denote the resulting algorithm by KL2.
That is, KL2 is essentially fifty runs of KL1 from random
initial partitions, after which the best result is returned.

7.3. Comparison with Other Heuristics. In this
section, we compare KL1 and KL2 to other hard-
ware/software partitioning heuristics:

• A genetic algorithm (GA) (Arató et al., 2003a).

• A combinatorial algorithm (MFMC) that works by
creating a number of auxiliary graphs, determining
their minimum cuts, and returning the best partition
found this way (Arató et al., 2005a).

• An algorithm based on hierarchical clustering (HC)
that works by repeatedly coalescing vertices of the
graph based on local closeness metrics until the re-
sulting graph is small enough so that it can be par-
titioned optimally using branch-and-bound relatively
quickly (Arató et al., 2007).

All algorithms were implemented in C/C++, and
compiled and linked using gcc v3.2. The tests were per-
formed on a PC with a 400MHz PII Celeron processor,
128 kB cache, and 128 MB main memory. The operating
system was SuSE Linux 8.1 with Kernel 2.4.19-4GB. For
time-related measurements, GNU time v1.7 was used.

The comparison was based on two metrics: the run-
ning time of the algorithms and the cost of the best solu-
tion they found. The results are summarized in Figs. 4–
7. The four figures correspond to the possible combina-
tions of CCR and T0 values. (Our previous experience
showed that these factors might have significant impact on
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the heuristics (CCR=high, T0=low).

the relative performance of different partitioning heuris-
tics. Therefore, we applied different CCR and T0 values
to each benchmark used in order to obtain these figures.)
Each algorithm is represented by a point in the diagrams.
The x-coordinate of the point is the cumulated running
time of the given algorithm on the given set of bench-
marks. The y-coordinate of the point is the cumulated
cost of the resulting partition found by the algorithm for
the benchmarks. On both axes, smaller values are better.
Also note the logarithmic scale of the x-axis.
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Fig. 7. Running time vs. result cost tradeoff of
the heuristics (CCR=high, T0=high).

The figures clearly show the different running time
vs. result quality characteristics of the algorithms. The
following observations can be made:

• The best results are achieved in all cases by the HC
algorithm. However, its running time is very high,
even higher than indicated in the figures. This is be-
cause we used a timeout of 10 hours for each run, and
for the biggest benchmarks the HC algorithm did not
finish within this time limit. In such cases, we cal-
culated with a running time of 10 hours. Actually, it
is not surprising that the running time of the HC al-
gorithm is very high on large benchmarks, because it
makes use of an exact partitioning algorithm.

• The MFMC algorithm and the GA achieved some-
what worse results, but produced running times that
are orders of magnitudes lower.

• The results found by the KL1 algorithm were the
poorest. However, they were only about 15% worse
on average than those of the HC algorithm. Con-
versely, KL1 was extremely fast: it solved even the
largest problems in a couple of seconds. This makes
it very well suited both for quick design space explo-
ration (e.g. in an interactive design environment) and
as a pre-optimization step in a hybrid partitioning al-
gorithm.

• The results of the KL2 algorithm were comparable
to those of the HC algorithm: they were only about
1% worse on average and 3% worse in the worst
case. This disadvantage is actually negligible when
considering that partitioning usually works with esti-
mated and thus unprecise cost values. On the other
hand, the KL2 algorithm was much faster than HC:
it solved even the biggest benchmarks, for which the
HC algorithm is clearly not practical anymore, in a
couple of minutes. Thus it can be stated that from
the practical algorithms it produced consistently the
best results.

• The choice of CCR and T0 did not fundamentally
affect the running time of the algorithms, nor their
order concerning result quality. Conversely, it did
have clear impact on the difference between the re-
sult quality of the algorithms. In particular, the differ-
ence was smaller in the CCR=high cases. We believe
that this can be attributed to the easier nature of these
problems: when communication is the dominant cost
factor, the partitioning problem essentially becomes
a minimum cut problem, which can be solved opti-
mally in polynomial time.

Finally it should be noted that the KL2 algorithm can
be effectively parallelized since it consists of independent
KL runs. Thus, if sufficient computational resources are
available, it can be approximately as fast as the KL1 algo-
rithm.

8. Conclusions

In this paper, we investigated the applicability of KL-type
algorithms for the problem of hardware/software parti-
tioning. We have seen that, although the original problem
formulation for which the KL algorithm was developed
is in several aspects simpler than hardware/software parti-
tioning, the basic idea can be used in this context as well.

We investigated different choices of the gain func-
tion, the initial partition, as well as the possibility of
transferring improvement suggestions (concerning tie-
breaking strategies and locking schemes) for the KL al-
gorithm to the domain of hardware/software partitioning.
We also showed that, with the help of a suitable data struc-
ture, the algorithm can be very efficiently implemented for
the hardware/software partitioning problem as well.

Our empirical results on real and randomly gener-
ated benchmarks provided practical evidence for the ap-
plicability of the presented approach. In particular, the
best configurations of the algorithm used permissive gain
functions, LIFO tie-breaking, and dynamic locking. This
shows that the presented improvement possibilities really
enhance the effectiveness of the algorithm.

We compared the two most promising variants—
KL1 and KL2—with some other state-of-the-art partition-
ing algorithms. We found that KL1 is extremely fast with
acceptable result quality, and thus it is well suited as a pre-
optimization step or for quick design space exploration.
KL2 produced excellent results with acceptable running
time even for the largest benchmarks. Thus it is a high-
quality partitioning algorithm on its own.
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