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POSITIVE PARTIAL REALIZATION PROBLEM FOR LINEAR
DISCRETE-TIME SYSTEMS

TADEUSZ KACZOREK

Faculty of Electrical Engineering
Biatystok Technical University
Wiejska 45D, 15-351 Biatystok

e-mail: kaczorek@isep.pw.edu.pl

A partial realization problem for positive linear discrete-time systems is addressed. Sufficient conditions for the existence
of its solution are established. A procedure for the computation of a positive partial realization for a given finite sequence
of the values of the impulse response is proposed. The procedure is illustrated by four numerical examples.
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1. Introduction

In positive systems, the inputs, state variables and outputs
take only non-negative values. Examples of positive sys-
tems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems,
compartmental systems, or water and atmospheric pol-
lution models. A variety of models having positive lin-
ear system behaviour can be found in engineering, man-
agement science, economics, social sciences, biology and
medicine, etc.

Positive linear systems are defined on cones and
not on linear spaces. Therefore, the theory of pos-
itive systems is more complicated and less advanced.
Overviews of the state of the art in positive systems
theory are given in the monographs (Farina and Ri-
naldi, 2000; Kaczorek, 2002). The realization problem for
positive linear systems was considered in many papers and
books (Benvenuti and Farina, 2004; Farina and Rinaldi,
2000; Kaczorek, 1992; Kaczorek, 2002; Kaczorek, 2006a;
Kaczorek, 2006b; Kaczorek, 2004; Kaczorek, 2005; Ka-
czorek, 2006c; Kaczorek, 2006d; Kaczorek, 2006e; Ka-
czorek and Bustowicz, 2004).

The problem of constructing linear state variable
models from given impulse responses (or Markov para-
meters) was considered in (Ho and Kalman, 1966; Ka-
czorek, 1992). The partial realization problem consists in
constructing state variables models from given finite se-
quences of impulse responses.

In this paper the partial realization problem will be
addressed for positive linear discrete-time systems. Suf-
ficient conditions for the existence of its solution will be
established and a procedure for the computation of its pos-
itive realization for a given finite sequence of the values of
the impulse response will be proposed. To the best of the
author’s knowledge, the positive partial realization prob-
lem for discrete-time linear system has not been consid-
ered yet.

2. Preliminaries and Problem Formulation

Let R™"*™ be the set of n X m real matrices and R" :=
R™*1, The set of n x m real matrices with non-negative
entries will be denoted by R’*™ and the set of non-
negative integers by Z. .

Consider the linear discrete-time system

Tig1 = Ax; + Bu;, 1€ Z+,
y; = Cx; + Duy, (D

where z; € R", u; € R™, y; € RP are the state, input and
output vectors, and A € R"*", B € R"*™ (' € RP*"
and D € RP*™,

The system (1) is called (internally) positive if and
only if z; € R and y; € RY , i € Z forevery zp € R}
and any input sequence u; € R, 7 € Z . The system (1)
is (internally) positive if and only if (Kaczorek, 2002; Fa-
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rina and Rinaldi, 2000):

AeRY", BeRY™, CeRY™, DeRY™.
2

The transfer matrix of (1) is given by
T(z) = C[Iz— A 'B+D = C[I-Ad)"'dB+D, (3)

where d = z~! is the delay operator.
Let

G(d)=> Gid' (4)
=0

be the impulse response matrix of the system (1). From
the well-known equality

Gi:{D‘ for i =0, )
CA™'B fori=1,2,...
and (2), it follows that for the positive system (1) we have
that G; € RE*™ fori € Z,

The partial positive realization problem can be for-
mulated as follows: Given a finite sequence of non-
negative matrices

G; €RY™ for i=0,1,...,N, (6)
find the matrices (2) of the positive system (1) such that
Gi=G,; for i=0,1,...,N, 7

with G; defined by (4).

In this paper sufficient conditions for the existence of
a solution to the above problem will be established and
a procedure for the computation of the matrices (2) for a
given finite sequence G; € RE*™ i =0,1,..., N will be
proposed.

3. Problem Solution

First, the idea of the proposed method will be outlined for
a single-input single-output (SISO m = p = 1) system. In
this case the transfer function of (1) can be written down
in the form

3 b;d
)
T =g = —a ®)
1- Z aidi
i=1
and its impulse response is
© .
g(d)=> gid', gi€Ry, i€Zy. )

=0

The partial positive realization problem can be decom-
posed into the following two subproblems:

Subproblem 1. Given a finite sequence

g;>0 for i=0,1,...,N, (10)
find n < N and the transfer function (8) such that
gi=g; for i=0,1,..., N, (11)

where g; is defined by (9).

Subproblem 2. Given the transfer function (8), find its
positive realization (2).

3.1. Solution of Subproblem 1. Taking into account
that

T(d) =Y gid’ (12)
=0

and using (8), we can write
a(d)g(d) = b(d) (13)

and

a(d)[3(d) + g(d)] = b(a), (14)
where the polynomial
N .
g(d) =" gid’ (15)
i=0
is known and the sum
gd)= > gd (16)

is unknown.
Equation (14) can be rewritten in the form

a(d)g(d) = b(d) + g(d), (17
where
g(d) = —a(d)g(d) = Y Gd'. (18)
i=N+1

The subproblem has thus been reduced to the follow-
ing one: Given the polynomial (15), find the polynomials
a(d) and b(d) of (8) such that (17) holds for some g(d).
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Using (8) and (15), we obtain

a(d)j(d) = (1 —zn: aidi) (i gjdj)
i=1 =0

N n i+N
=2 0¥ =3 ) aigi-id
7=0 1=1 k=1
N
Z (gk_zazgk z)
k=0

N+n n

k=N+1 i=k—N
N+n n

N
=S ad+ Y (Y wdei)d, a9)
k=0

k=N+1 i=k—N

where
G =Gk — > Gr—iti- (20)

Let gy = 0fork = n+1,...,N. Then from (20)

we have X
CVVnNaJ = gan (21)
where
I gn gn—l s gl
énN _ gn-i-l gn s 92 7
|l gNn—1 gN-2 -+ IN-n
[ ay In+1
az X Gn+2
a = ,  OnN = . . (22)
L On gN
We assume that
rank G,y = rank [GnN, nn ], (23)

and Eqn. (21) has a non-negative solution, i.e.,a € R’}. In
(Kaczorek, 2006e), a method was proposed for the com-
putation of a positive solution to (21). Note that (19) has
the form (17) ifand only if gy =O0fork=n+1,....N
or, equivalently, the coefficients a1, aso,...,a, of the
polynomial a(d) are a solution to (21). Knowing the co-
efficients a;,7 = 0,1,...,n, we can compute the coeffi-
cients bj, j = 0, 1,...,n of the polynomial b(d) using the
formula

kaﬁk—ng,iai for k=0,1,...,n. (24)

It follows from the comparison of the right-hand sides
of (17)and (19) for g, = 0,k =n+1,..., N.

In summary, we have the following result:

Theorem 1. Let n < N. Given a finite sequence (10),
there exists a transfer function of the form

boz" + -+ by_12+ b,
T(Z): n n—1
2" — a1z — e — Qp_1Z — Ay,
bzl .. b b
- D 12 4+ F+0p—12+bp . (25)

2 — a2l — o — a2 — ay

with non-negative coefficients if Eqn. (21) has a non-
negative solution, i.e., a € R’j_ and

k1
be =gk — »_ Gk—iai > 0,

i=1

E=1,....n.  (26)

3.2.  Solution of Subproblem 2. It is well known
(Kaczorek, 2002; Benvenuti and Farina, 2004; Kaczo-
rek, 2004; Kaczorek, 2006a; Kaczorek, 2006c) that if
the coefficients a1,...,a, and by, b1,...,b, are non-
negative, then there always exists a positive realization (2)
of the transfer function (25). For example, we may choose
the positive realization as follows:

0 1 0 0 0

0 1 0 0
A= . , B= ,

0 0 0 1

Ap  Ap—1 Ap—2 a 1
C—[Bn b1 b, D = by,

(27a)

or

0 0 0 an b,
- 1 0 0 Ap—1 - anl
A= 0 1 0 Ap—2 ) B= )

0 0 ... 1 by
C:[o 0 1}, D=ty (27b)

From (25) we have
D = bO; l_)l = bl + (I,lb(),

BQ = by + asbg, . .. ,Bn = by +anby (28)

and, using (24), we obtain (26).
Therefore, if the coefficients aq,...,a, and
bo, b1, ... N b, are_non-negative, then so are the coeffi-

cients by, ba, ..., by, and the realizations (27) are then
positive. From (28) it follows that by, > 0 and a; > 0 do
not imply thatb, >0, k=1,....,n

aamcs
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If (21) has a non-negative solution a € R”, then a
positive realization (2) for a given finite sequence (19) can
be computed using the following procedure:

Procedure 1. (SISO systems)

Step 1. Given a sequence (10), find a non-negative solu-
tion a € RY} to (21).

Step 2. Using (24), compute the coefficients by, b1, . .., by,
and find the transfer function (25).

Step 3. Using one of the well-known methods (Benvenuti
and Farina, 2004; Farina and Rinaldi, 2000; Kaczo-
rek, 2002; Kaczorek, 2006a; Kaczorek, 2006b; Kaczo-
rek, 2004; Kaczorek, 2005; Kaczorek, 2006c; Kaczorek,
2006d; Kaczorek, 2006e; Kaczorek and Bustowicz, 2004)
compute a desired positive realization (2) of the transfer
function (25), e.g., the positive realization (27).

Remark 1. If n is not known a priori, then it is recom-
mended to start the procedure with its small value and to
increase it in the next step.

Example 1. Find a positive realization (2) for the se-
quence

go=1, g1 =3, 2=28, ga=19, ga=46. (29)

Using the procedure for N = 4 and n = 2, we obtain the
following:

Step 1. In this case, Eqn. (21) for (29) has the form

8 3 al - 19
19 8 || ax | | 46
and its solutionis a; = 2, ag = 1.
Step 2. Using (24), we compute the coefficients
bo =go=1, b1 =g1 — goar =1,
by = g2 — g1a1 — goaz = 1.

The desired transfer function has the form

224241 3z +2
T()= 21270 4 T2 30
(2) 22 —2z—-1 +22—2z—1 (30)
and
2
g8 195 6
z¢—2z—1

Step 3. Using (27a) for (30), we obtain the desired positive

realization
a0 11:l0 1]732[0]7
ag al 1 2 1
C=lb bh] =[2 3], D=[1]. (@3

Now let us assume that only the first four numbers of the
sequence (29) are given, i.e., N = 3 and n = 2. In this
case, Eqn. (21) takes the form

8ay + 3ag = 19. (32)

One of the coefficients a1, as can be chosen arbitrarily. If
we choose a; = 2, then as = 1, and we obtain the same
transfer function (30) and its positive realization (31). If
we choose a; = 1, then as = 11/3 and by = 1,b; =
2,by =4/3.

The corresponding transfer function has the form

322 +62+4 3z+5
() 322 -32—-11 +z2—z—% (33)
and its positive realization is given by
5 1 1
Cc =10 3, D =11]. (34)

=321 4827241923 4+482"4 4 ...

Note that g4 = 48 is different from g4 = 46 in the
previous case. ¢

Theorem 2. Let a finite sequence
G >0 for i=0,1,...,2n (35)

be given. Then a positive realization of the form (27) ex-
ists if

Agn > gnJrl S > gAQ(n—l) > 92An71 :
In+1 In+2 92n—-1 g2n
Agn > gnJrl S > gQ(An—l) > gnfl7
9n+2 9n+3 92n In+1 (36)
?n > Agl S>> Agn72 > Agnfl :
92n In+1 92(n—1) g2n—1
and
k—1
bk:gk_zgk—7a7207 k:177n7 (37)
i=1
with a;, © = 1,...,n, constituting the solution to (21)

for N = 2n.
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Proof. Given a sequence (35), Eqn. (21) takes the form

Jn In—1 g2 g1 a1
§n+1 gn §3 g? az
gQ(nfl) an—S cee gn gn—l Ap—1
Gon—1  G2(n—1) Gn+1 gn an

§n+1

§n+2

g2n71
an

Therefore,

[ On n—1 g2 g1
gnJrl gnJrl Qn+1 §n+1
gn+1 gn 93 QQ
§n+2 gn+2 o gn+2 §n+2

gQ(n—l) §2n73 gn gnfl
Jon—1 Jon—1 Jon—1 Jon—1
92n—1 J2(n—1) In+1 In.

L g2n an o QQn §2n J

ay
as 1
X : = - (38)
Ap—1 1
an 1

If the conditions (36) are met, then the coefficient matrix
of (38) has a cyclic structure and, by Theorem A (see the
Appendix), Eqn. (38) has a positive solution a; > 0 for
i = 1,...,n. In this case, using (37), we may find the
coefficients by, for k = 1,...,n and the positive realiza-
tion (27). [ |

Example 2. (Continuation of Example 1)
For the sequence (29) we have that N = 2n = 4 and (38)
takes the form

8 3

19 19 ap | |1

A P A
46 46

It is easy to see that the coefficient matrix of (39)
satisfies the conditions (36) since
8 19

— > — and §>i
19~ 46 46 ~ 19°

The transfer function has the form (30) and the de-
sired positive realization is given by (31). ¢

Theorem 3. A positive asymptotically stable realiza-
tion (27) of the finite sequence (35) exists if
Jiv1 < g; for i=1,...2n—1, (40)

and the conditions (36) and (37) satisfied.

Proof. If the conditions (36) are met, then by Theorem A

Eqn. (38) has a positive solution a; > 0 fori =1,...,n.
We shall show that if (40) holds, then
> ai<1. (41)
i=1
Let

n —~

S =3 ot

j=1 gn+]

be the sum of the entries of the i-th column of the coeffi-
cient matrix in (38),7 = 1, ..., n. Adding the n equations
of (38), we obtain

zn: Siai =n. (42)
i=1

Note that if (40) holds, then each entry
Gn—itj/Gny; of the coefficient matrix is greater
than 1. Write S = min S;. Then from (42) we have

3

and

<1

Wil 3

n
Z a; <
i=1

since S > n.
From the well-known final value theorem we obtain
Joo = lim g; = lim (2—1)T (2)
1—00 z—1
_ _ 41
= lim (z—1) [C [I,2—A""] B+ D]
boz"+...+b1z+bg

= lim (2—1) T =0
z—1 Zh—a1Zz" T — s —ap1z2—ag

since (41) holds. Therefore, the positive realization (27)
is asymptotically stable. ]

Example 3. We wish to find a positive realization (2) for
the sequence

G90=0,9,=1,9,=09,G5=06,79, =05 (43)

@amcs
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This sequence satisfies the conditions (40), (36) and (37)
for n = 2 and, by Theorem 3, there exists a positive as-
ymptotically stable realization. Using Procedure 1, we ob-
tain the following:

Step 1. We have the system of equations

92 91 9 10
g3 93 ar | _ 6 6 ar | _ 1
93 92 l@] 69 l@] [1]
91 9 50

and its solution is a; = 4/21, a2 = 9/21.

Step 2. Using (37), we compute the coefficients

- . - R R 14.9
bi =01 =1,b2 =02 — gra1 = ST
The desired transfer function has the form
z 4 149 21z 4 14.9
T = 21 == . 44
(2) 22—%2'—% 2122 —42 -9 (34

Step 3. Using (27a) for (44), we obtain the asymptotically
stable realization

0 1
a=| " 1]:94,13:(1)],
_a2 _al ﬁ ﬁ
- - 14.9
C:[b2 bl}:[T 1}, D=0].
4. Extension for Multi-Input Multi—-Output
Systems

The method presented in Section 3 can be easily extended
for linear discrete-time systems with m inputs and p out-
puts (MIMO systems). In this case, the modified proce-
dure has the following form:

Procedure 2. (MIMO systems)

Step 1. Given a sequence (6), find a non-negative solution

a=lail, azly, ... anIm]T
to (21) with
[ G, Ga G1
e @
| Gvo1 G2 GN-n
_ C:¥n+1
Gun = GTTH ~ (@3)

Step 2. Using

By =Gp— Y Grja; for k=0,1,....n, (46)
i=1

compute the matrices By, Bi,..., B, and the transfer
matrix
1
T(z) =
2" — a2zl — o —a,_12 —ay,

x [Boz"+B1z" '+.. .+ Bn_12+By]. (47)

Step 3. Using one of the well-known methods (Benvenuti
and Farina, 2004; Farina and Rinaldi, 2000; Kaczo-
rek, 2002; Kaczorek, 2006a; Kaczorek, 2006b; Kaczo-
rek, 2004; Kaczorek, 2005; Kaczorek, 2006c; Kaczorek,
2006d; Kaczorek, 2006e; Kaczorek and Bustowicz, 2004)
compute the desired positive realization (2) of the transfer
matrix (47).

Example 4. We wish to find a positive realization (2) for
the sequence

e (1] oc[s) e [2)
o [i) o[t

We have m = 1 and p = 2. Using Procedure 2 for N =4
and n = 2, we obtain the following:

Step 1. In this case, Eqn. (21) with (45) has the form

(48)

5 2 7
1
7T 3 ar | _ 0 (49)
7 5 a2 12
10 7 17

and its solution is a; = a9 = 1.

Step 2. Using (46), we compute the matrices

By = Gp =

A A A 1
, BlZGl—G0a1=l1]7

N N N A 2
By = Gy — Giar — Goag =

The desired transfer matrix (47) has the form

1 224242
T(z) = ———
(2) 22—2—1| 2224242
1 2243 1
- + 50
22—2—1] 3244 2 (50)
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Step 3. Using (27a), we obtain the desired positive real-
ization (2) of (50) in the form

O 1‘|’ B:[O‘|7
11 1
3 2 1
43], D:lA. (51)

5. Concluding Remarks

A:

C:

The partial realization problem for positive discrete-time
linear systems has been formulated and solved. It was
shown that it has a solution if Eqn. (21) has a non-negative
solution and (26) holds (Theorem 1). A procedure for
SISO and MIMO systems was proposed for the compu-
tation of positive partial realizations for a given finite se-
quence (10) (or (6)). The procedure was illustrated with
four numerical examples. It was shown that if the condi-
tions (40), (36) and (38) are satisfied, then there exists a
positive asymptotically stable realization of the form (27).

The deliberations can be extended for linear
continuous-time systems and for 2D linear systems (Ka-
czorek, 2002).
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Appendix
Definition A. A positive matrix
a1 Lo Q1n
A= , aij>0,
ap1 .. Qpp
i1=1,...,n; 7=1,...,m, (A1)

is called a matrix with a (strictly) cyclic structure if and
only if

Qji > Qi1 >0 > Ay > Q15 > > -1 (A2)

for 1 =1,...,n.
For example, the matrix

[5 2 3]
3 8 1
2 6 6 |

has a cyclic structure and the matrix

[5 2 3]
2 8 1
36 6 |

does not have a cyclic structure since as; = 2 < az; = 3.

Theorem A. (Merzyakov, 1963) The system of linear al-

gebraic equations
a;17T1 + ai2T2 + - taprr =1, i=1,...,n, (A3)

with a;; > 0, 4,7 = 1,...,n has a positive solution x; >
0,i=1,...,nifand only if its coefficient matrix (Al) has
a cyclic structure.
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