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A partial realization problem for positive linear discrete-time systems is addressed. Sufficient conditions for the existence
of its solution are established. A procedure for the computation of a positive partial realization for a given finite sequence
of the values of the impulse response is proposed. The procedure is illustrated by four numerical examples.
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1. Introduction

In positive systems, the inputs, state variables and outputs
take only non-negative values. Examples of positive sys-
tems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems,
compartmental systems, or water and atmospheric pol-
lution models. A variety of models having positive lin-
ear system behaviour can be found in engineering, man-
agement science, economics, social sciences, biology and
medicine, etc.

Positive linear systems are defined on cones and
not on linear spaces. Therefore, the theory of pos-
itive systems is more complicated and less advanced.
Overviews of the state of the art in positive systems
theory are given in the monographs (Farina and Ri-
naldi, 2000; Kaczorek, 2002). The realization problem for
positive linear systems was considered in many papers and
books (Benvenuti and Farina, 2004; Farina and Rinaldi,
2000; Kaczorek, 1992; Kaczorek, 2002; Kaczorek, 2006a;
Kaczorek, 2006b; Kaczorek, 2004; Kaczorek, 2005; Ka-
czorek, 2006c; Kaczorek, 2006d; Kaczorek, 2006e; Ka-
czorek and Busłowicz, 2004).

The problem of constructing linear state variable
models from given impulse responses (or Markov para-
meters) was considered in (Ho and Kalman, 1966; Ka-
czorek, 1992). The partial realization problem consists in
constructing state variables models from given finite se-
quences of impulse responses.

In this paper the partial realization problem will be
addressed for positive linear discrete-time systems. Suf-
ficient conditions for the existence of its solution will be
established and a procedure for the computation of its pos-
itive realization for a given finite sequence of the values of
the impulse response will be proposed. To the best of the
author’s knowledge, the positive partial realization prob-
lem for discrete-time linear system has not been consid-
ered yet.

2. Preliminaries and Problem Formulation

Let R
n×m be the set of n × m real matrices and R

n :=
R

n×1. The set of n × m real matrices with non-negative
entries will be denoted by R

n×m
+ and the set of non-

negative integers by Z+.
Consider the linear discrete-time system

xi+1 = Axi + Bui, i ∈ Z+,

yi = Cxi + Dui, (1)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
p are the state, input and

output vectors, and A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n

and D ∈ R
p×m.

The system (1) is called (internally) positive if and
only if xi ∈ R

n
+ and yi ∈ R

p
+, i ∈ Z+ for every x0 ∈ R

n
+

and any input sequence ui ∈ R
m
+ , i ∈ Z+. The system (1)

is (internally) positive if and only if (Kaczorek, 2002; Fa-
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rina and Rinaldi, 2000):

A ∈ R
n×n
+ , B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

(2)
The transfer matrix of (1) is given by

T (z) = C[Iz−A]−1B+D = C[I−Ad]−1dB+D, (3)

where d = z−1 is the delay operator.
Let

G(d) =
∞∑

i=0

Gid
i (4)

be the impulse response matrix of the system (1). From
the well-known equality

Gi =

{
D for i = 0,
CAi−1B for i = 1, 2, . . .

(5)

and (2), it follows that for the positive system (1) we have
that Gi ∈ R

p×m
+ for i ∈ Z+

The partial positive realization problem can be for-
mulated as follows: Given a finite sequence of non-
negative matrices

Ĝi ∈ R
p×m
+ for i = 0, 1, . . . , N, (6)

find the matrices (2) of the positive system (1) such that

Ĝi = Gi for i = 0, 1, . . . , N, (7)

with Gi defined by (4).
In this paper sufficient conditions for the existence of

a solution to the above problem will be established and
a procedure for the computation of the matrices (2) for a
given finite sequence Gi ∈ R

p×m
+ , i = 0, 1, . . . , N will be

proposed.

3. Problem Solution

First, the idea of the proposed method will be outlined for
a single-input single-output (SISO m = p = 1) system. In
this case the transfer function of (1) can be written down
in the form

T (d) =
b(d)
a(d)

=

n∑
i=0

bid
i

1 −
n∑

i=1

aidi

, (8)

and its impulse response is

g(d) =
∞∑

i=0

gid
i, gi ∈ R+, i ∈ Z+. (9)

The partial positive realization problem can be decom-
posed into the following two subproblems:

Subproblem 1. Given a finite sequence

ĝi ≥ 0 for i = 0, 1, . . . , N, (10)

find n ≤ N and the transfer function (8) such that

ĝi = gi for i = 0, 1, . . . , N, (11)

where gi is defined by (9).

Subproblem 2. Given the transfer function (8), find its
positive realization (2).

3.1. Solution of Subproblem 1. Taking into account
that

T (d) =
∞∑

i=0

gid
i (12)

and using (8), we can write

a(d)g(d) = b(d) (13)

and

a(d)
[
ĝ(d) + ḡ(d)

]
= b(d), (14)

where the polynomial

ĝ(d) =
N∑

i=0

ĝid
i (15)

is known and the sum

ḡ(d) =
∞∑

i=N+1

ḡid
i (16)

is unknown.

Equation (14) can be rewritten in the form

a(d)ĝ(d) = b(d) + g̃(d), (17)

where

g̃(d) = −a(d)ḡ(d) =
∞∑

i=N+1

g̃id
i. (18)

The subproblem has thus been reduced to the follow-
ing one: Given the polynomial (15), find the polynomials
a(d) and b(d) of (8) such that (17) holds for some g̃(d).
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Using (8) and (15), we obtain

a(d)ĝ(d) =
(
1−

n∑

i=1

aid
i
)( N∑

j=0

ĝjd
j
)

=
N∑

j=0

ĝjd
j−

n∑

i=1

i+N∑

k=i

aiĝk−id
k

=
N∑

k=0

(
ĝk−

n∑

i=1

aiĝk−i

)
dk

+
N+n∑

k=N+1

( n∑

i=k−N

aiĝk−i

)
dk

=
N∑

k=0

qkdk+
N+n∑

k=N+1

( n∑

i=k−N

aiĝk−i

)
dk, (19)

where

qk = ĝk −
n∑

i=1

ĝk−iai. (20)

Let qk = 0 for k = n + 1, . . . , N . Then from (20)
we have

ĜnNa = ĝnN , (21)

where

ĜnN =

⎡

⎢⎢⎢⎣

ĝn ĝn−1 . . . ĝ1

ĝn+1 ĝn . . . ĝ2

. . . . . . . . . . . .

ĝN−1 ĝN−2 . . . ĝN−n

⎤

⎥⎥⎥⎦ ,

a =

⎡

⎢⎢⎢⎢⎣

a1

a2

...

an

⎤

⎥⎥⎥⎥⎦
, ĝnN =

⎡

⎢⎢⎢⎢⎣

ĝn+1

ĝn+2

...

ĝN

⎤

⎥⎥⎥⎥⎦
. (22)

We assume that

rank ĜnN = rank [ĜnN , ĝnN ], (23)

and Eqn. (21) has a non-negative solution, i.e., a ∈ R
n
+. In

(Kaczorek, 2006e), a method was proposed for the com-
putation of a positive solution to (21). Note that (19) has
the form (17) if and only if qk = 0 for k = n + 1, . . . , N
or, equivalently, the coefficients a1, a2, . . . , an of the
polynomial a(d) are a solution to (21). Knowing the co-
efficients ai, i = 0, 1, . . . , n, we can compute the coeffi-
cients bj, j = 0, 1, . . . , n of the polynomial b(d) using the
formula

bk = ĝk −
n∑

i=1

ĝk−iai for k = 0, 1, . . . , n. (24)

It follows from the comparison of the right-hand sides
of (17) and (19) for qk = 0, k = n + 1, . . . , N.

In summary, we have the following result:

Theorem 1. Let n ≤ N . Given a finite sequence (10),
there exists a transfer function of the form

T (z) =
b0z

n + · · · + bn−1z + bn

zn − a1zn−1 − · · · − an−1z − an

= D +
b̄1z

n−1 + · · · + b̄n−1z + b̄n

zn − a1zn−1 − · · · − an−1z − an
, (25)

with non-negative coefficients if Eqn. (21) has a non-
negative solution, i.e., a ∈ R

n
+ and

b̄k = ĝk −
k−1∑

i=1

ĝk−iai ≥ 0, k = 1, . . . , n. (26)

3.2. Solution of Subproblem 2. It is well known
(Kaczorek, 2002; Benvenuti and Farina, 2004; Kaczo-
rek, 2004; Kaczorek, 2006a; Kaczorek, 2006c) that if
the coefficients a1, . . . , an and b0, b1, . . . , bn are non-
negative, then there always exists a positive realization (2)
of the transfer function (25). For example, we may choose
the positive realization as follows:

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1
an an−1 an−2 . . . a1

⎤

⎥⎥⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

C =
[

b̄n b̄n−1 . . . b̄1

]
, D = b0,

(27a)

or

Ā =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 an

1 0 . . . 0 an−1

0 1 . . . 0 an−2

. . . . . . . . . . . . . . .

0 0 . . . 1 a1

⎤

⎥⎥⎥⎥⎥⎥⎦
, B̄ =

⎡

⎢⎢⎢⎢⎣

b̄n

b̄n−1

...

b̄1

⎤

⎥⎥⎥⎥⎦
,

C̄ =
[

0 0 . . . 1
]
, D̄ = b0. (27b)

From (25) we have

D = b0, b̄1 = b1 + a1b0,

b̄2 = b2 + a2b0, . . . , b̄n = bn + anb0 (28)

and, using (24), we obtain (26).
Therefore, if the coefficients a1, . . . , an and

b0, b1, . . . , bn are non-negative, then so are the coeffi-
cients b̄1, b̄2, . . . , b̄n, and the realizations (27) are then
positive. From (28) it follows that b̄k ≥ 0 and ak ≥ 0 do
not imply that bk ≥ 0, k = 1, . . . , n.
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If (21) has a non-negative solution a ∈ R
n
+, then a

positive realization (2) for a given finite sequence (19) can
be computed using the following procedure:

Procedure 1. (SISO systems)

Step 1. Given a sequence (10), find a non-negative solu-
tion a ∈ R

n
+ to (21).

Step 2. Using (24), compute the coefficients b0, b1, . . . , bn

and find the transfer function (25).

Step 3. Using one of the well-known methods (Benvenuti
and Farina, 2004; Farina and Rinaldi, 2000; Kaczo-
rek, 2002; Kaczorek, 2006a; Kaczorek, 2006b; Kaczo-
rek, 2004; Kaczorek, 2005; Kaczorek, 2006c; Kaczorek,
2006d; Kaczorek, 2006e; Kaczorek and Busłowicz, 2004)
compute a desired positive realization (2) of the transfer
function (25), e.g., the positive realization (27).
Remark 1. If n is not known a priori, then it is recom-
mended to start the procedure with its small value and to
increase it in the next step.

Example 1. Find a positive realization (2) for the se-
quence

ĝ0 = 1, ĝ1 = 3, ĝ2 = 8, ĝ3 = 19, ĝ4 = 46. (29)

Using the procedure for N = 4 and n = 2, we obtain the
following:

Step 1. In this case, Eqn. (21) for (29) has the form
[

8 3
19 8

][
a1

a2

]
=

[
19
46

]

and its solution is a1 = 2, a2 = 1.

Step 2. Using (24), we compute the coefficients

b0 = ĝ0 = 1, b1 = ĝ1 − ĝ0a1 = 1,

b2 = ĝ2 − ĝ1a1 − ĝ0a2 = 1.

The desired transfer function has the form

T (z) =
z2 + z + 1
z2 − 2z − 1

= 1 +
3z + 2

z2 − 2z − 1
(30)

and

3z + 2
z2 − 2z − 1

= 3z−1 + 8z−2 + 19z−3 + 46z−4 + · · ·

Step 3. Using (27a) for (30), we obtain the desired positive
realization

A =

[
0 1
a2 a1

]
=

[
0 1
1 2

]
, B =

[
0
1

]
,

C =
[
b̄2 b̄1

]
= [2 3] , D = [1] . (31)

Now let us assume that only the first four numbers of the
sequence (29) are given, i.e., N = 3 and n = 2. In this
case, Eqn. (21) takes the form

8a1 + 3a2 = 19. (32)

One of the coefficients a1, a2 can be chosen arbitrarily. If
we choose a1 = 2, then a2 = 1, and we obtain the same
transfer function (30) and its positive realization (31). If
we choose a1 = 1, then a2 = 11/3 and b0 = 1, b1 =
2, b2 = 4/3.

The corresponding transfer function has the form

T (z) =
3z2 + 6z + 4
3z2 − 3z − 11

= 1 +
3z + 5

z2 − z − 11
3

(33)

and its positive realization is given by

A =

[
0 1
11
3 1

]
, B =

[
0
1

]
,

C = [5 3] , D = [1] . (34)

In this case

3z + 5
z2 − z − 11

3

= 3z−1 + 8z−2 + 19z−3 + 48z−4 + · · ·

Note that g4 = 48 is different from ĝ4 = 46 in the
previous case. �

Theorem 2. Let a finite sequence

ĝi > 0 for i = 0, 1, . . . , 2n (35)

be given. Then a positive realization of the form (27) ex-
ists if

ĝn

ĝn+1
>

ĝn+1

ĝn+2
> . . . >

ĝ2(n−1)

ĝ2n−1
>

ĝ2n−1

ĝ2n
,

ĝn

ĝn+2
>

ĝn+1

ĝn+3
> . . . >

ĝ2(n−1)

ĝ2n
>

ĝn−1

ĝn+1
,

...

ĝn

ĝ2n
>

ĝ1

ĝn+1
> . . . >

ĝn−2

ĝ2(n−1)
>

ĝn−1

ĝ2n−1
,

(36)

and

b̄k = ĝk −
k−1∑

i=1

ĝk−iai ≥ 0, k = 1, . . . , n, (37)

with ai, i = 1, . . . , n, constituting the solution to (21)
for N = 2n.
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Proof. Given a sequence (35), Eqn. (21) takes the form

⎡

⎢⎢⎢⎢⎢⎢⎣

ĝn ĝn−1 . . . ĝ2 ĝ1

ĝn+1 ĝn . . . ĝ3 ĝ2

. . . . . . . . . . . . . . .

ĝ2(n−1) ĝ2n−3 . . . ĝn ĝn−1

ĝ2n−1 ĝ2(n−1) . . . ĝn+1 ĝn

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

a1

a2

...

an−1

an

⎤

⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎣

ĝn+1

ĝn+2

...

ĝ2n−1

ĝ2n

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Therefore,
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĝn

ĝn+1

ĝn−1

ĝn+1
. . .

ĝ2

ĝn+1

ĝ1

ĝn+1

ĝn+1

ĝn+2

ĝn

ĝn+2
. . .

ĝ3

ĝn+2

ĝ2

ĝn+2

. . . . . . . . . . . . . . .
ĝ2(n−1)

ĝ2n−1

ĝ2n−3

ĝ2n−1
. . .

ĝn

ĝ2n−1

ĝn−1

ĝ2n−1

ĝ2n−1

ĝ2n

ĝ2(n−1)

ĝ2n
. . .

ĝn+1

ĝ2n

ĝn

ĝ2n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎣

a1

a2

...

an−1

an

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1
1
...

1
1

⎤

⎥⎥⎥⎥⎥⎥⎦
. (38)

If the conditions (36) are met, then the coefficient matrix
of (38) has a cyclic structure and, by Theorem A (see the
Appendix), Eqn. (38) has a positive solution ai > 0 for
i = 1, . . . , n. In this case, using (37), we may find the
coefficients b̄k for k = 1, . . . , n and the positive realiza-
tion (27).

Example 2. (Continuation of Example 1)
For the sequence (29) we have that N = 2n = 4 and (38)
takes the form

⎡

⎢⎣

8
19

3
19

19
46

8
46

⎤

⎥⎦

[
a1

a2

]
=

[
1
1

]
. (39)

It is easy to see that the coefficient matrix of (39)
satisfies the conditions (36) since

8
19

>
19
46

and
8
46

>
3
19

.

The transfer function has the form (30) and the de-
sired positive realization is given by (31). �

Theorem 3. A positive asymptotically stable realiza-
tion (27) of the finite sequence (35) exists if

ĝi+1 < ĝi for i = 1, . . . , 2n − 1, (40)

and the conditions (36) and (37) satisfied.

Proof. If the conditions (36) are met, then by Theorem A
Eqn. (38) has a positive solution ai > 0 for i = 1, . . . , n.
We shall show that if (40) holds, then

n∑

i=1

ai < 1. (41)

Let

Si =
n∑

j=1

�
gn−i+j

�
gn+j

be the sum of the entries of the i-th column of the coeffi-
cient matrix in (38), i = 1, . . . , n. Adding the n equations
of (38), we obtain

n∑

i=1

Siai = n. (42)

Note that if (40) holds, then each entry
�
gn−i+j/

�
gn+j of the coefficient matrix is greater

than 1. Write S̄ = min
i

Si. Then from (42) we have

S̄

n∑

i=1

ai ≤ n

and
n∑

i=1

ai ≤ n

S̄
< 1

since S̄ > n.
From the well-known final value theorem we obtain

g∞ = lim
i→∞

gi = lim
z→1

(z−1)T (z)

= lim
z→1

(z−1)
[
C

[
Inz−A−1

]
B+D

]

= lim
z→1

(z−1)
b0z

n+. . .+b1z+b0

zn−a1zn−1 − · · · − an−1z−a0
= 0

since (41) holds. Therefore, the positive realization (27)
is asymptotically stable.

Example 3. We wish to find a positive realization (2) for
the sequence

�
g 0 = 0,

�
g 1 = 1,

�
g 2 = 0.9,

�
g 3 = 0.6,

�
g 4 = 0.5. (43)
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This sequence satisfies the conditions (40), (36) and (37)
for n = 2 and, by Theorem 3, there exists a positive as-
ymptotically stable realization. Using Procedure 1, we ob-
tain the following:

Step 1. We have the system of equations
⎡

⎢⎢⎢⎣

�
g2
�
g3

�
g 1
�
g 3

�
g3
�
g4

�
g 2
�
g 4

⎤

⎥⎥⎥⎦

[
a1

a2

]
=

⎡

⎢⎣

9
6

10
6

6
5

9
5

⎤

⎥⎦

[
a1

a2

]
=

[
1
1

]

and its solution is a1 = 4/21, a2 = 9/21.

Step 2. Using (37), we compute the coefficients

b̄1 = ĝ1 = 1, b̄2 = ĝ2 − ĝ1a1 =
14.9
21

.

The desired transfer function has the form

T (z) =
z + 14.9

21

z2 − 4
21z − 9

21

=
21z + 14.9

21z2 − 4z − 9
. (44)

Step 3. Using (27a) for (44), we obtain the asymptotically
stable realization

A =

[
0 1

−a2 −a1

]
=

⎡

⎣
0 1
9
21

4
21

⎤

⎦ , B =

[
0
1

]
,

C =
[

b̄2 b̄1

]
=

[
14.9
21

1
]

, D = [0] .

4. Extension for Multi–Input Multi–Output
Systems

The method presented in Section 3 can be easily extended
for linear discrete-time systems with m inputs and p out-
puts (MIMO systems). In this case, the modified proce-
dure has the following form:

Procedure 2. (MIMO systems)

Step 1. Given a sequence (6), find a non-negative solution

a = [a1Im a2Im . . . anIm]T

to (21) with

ĜnN =

⎡

⎢⎢⎢⎣

Ĝn Ĝn−1 . . . Ĝ1

Ĝn+1 Ĝn . . . Ĝ2

. . . . . . . . . . . .

ĜN−1 ĜN−2 . . . ĜN−n

⎤

⎥⎥⎥⎦ ,

ĜnN =

⎡

⎢⎢⎢⎢⎣

Ĝn+1

Ĝn+2

...

ĜN

⎤

⎥⎥⎥⎥⎦
. (45)

Step 2. Using

Bk = Ĝk −
n∑

i=1

Ĝk−iai for k = 0, 1, . . . , n, (46)

compute the matrices B0, B1, . . . , Bn and the transfer
matrix

T (z) =
1

zn − a1zn−1 − · · · − an−1z − an

× [
B0z

n+B1z
n−1+. . .+Bn−1z+Bn

]
. (47)

Step 3. Using one of the well-known methods (Benvenuti
and Farina, 2004; Farina and Rinaldi, 2000; Kaczo-
rek, 2002; Kaczorek, 2006a; Kaczorek, 2006b; Kaczo-
rek, 2004; Kaczorek, 2005; Kaczorek, 2006c; Kaczorek,
2006d; Kaczorek, 2006e; Kaczorek and Busłowicz, 2004)
compute the desired positive realization (2) of the transfer
matrix (47).

Example 4. We wish to find a positive realization (2) for
the sequence

Ĝ0 =

[
1
2

]
, Ĝ1 =

[
2
3

]
, Ĝ2 =

[
5
7

]
,

Ĝ3 =

[
7
10

]
, Ĝ4 =

[
12
17

]
.

(48)

We have m = 1 and p = 2. Using Procedure 2 for N = 4
and n = 2, we obtain the following:

Step 1. In this case, Eqn. (21) with (45) has the form
⎡

⎢⎢⎢⎣

5 2
7 3
7 5
10 7

⎤

⎥⎥⎥⎦

[
a1

a2

]
=

⎡

⎢⎢⎢⎣

7
10
12
17

⎤

⎥⎥⎥⎦ (49)

and its solution is a1 = a2 = 1.

Step 2. Using (46), we compute the matrices

B0 = Ĝ0 =

[
1
2

]
, B̂1 = Ĝ1 − Ĝ0a1 =

[
1
1

]
,

B̂2 = Ĝ2 − Ĝ1a1 − Ĝ0a2 =

[
2
2

]
.

The desired transfer matrix (47) has the form

T (z) =
1

z2 − z − 1

[
z2 + z + 2
2z2 + z + 2

]

=
1

z2 − z − 1

[
2z + 3
3z + 4

]
+

[
1
2

]
. (50)
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Step 3. Using (27a), we obtain the desired positive real-
ization (2) of (50) in the form

A =

[
0 1
1 1

]
, B =

[
0
1

]
,

C =

[
3 2
4 3

]
, D =

[
1
2

]
. (51)

5. Concluding Remarks

The partial realization problem for positive discrete-time
linear systems has been formulated and solved. It was
shown that it has a solution if Eqn. (21) has a non-negative
solution and (26) holds (Theorem 1). A procedure for
SISO and MIMO systems was proposed for the compu-
tation of positive partial realizations for a given finite se-
quence (10) (or (6)). The procedure was illustrated with
four numerical examples. It was shown that if the condi-
tions (40), (36) and (38) are satisfied, then there exists a
positive asymptotically stable realization of the form (27).

The deliberations can be extended for linear
continuous-time systems and for 2D linear systems (Ka-
czorek, 2002).

Acknowledgment

This work was supported by the Ministry of Science and
Higher Education in Poland under Grant No. 3 T11A 006
27.

References
Benvenuti L. and Farina L. (2004): A tutorial on the posi-

tive realization problem. — IEEE Trans. Automat. Contr.,
Vol. 49, No. 5, pp. 651–664.

Farina L. and Rinaldi S. (2000): Positive Linear Systems: Theory
and Applications. — Wiley, New York.

Ho B.L. and Kalman R.E. (1966): Effective construction of lin-
ear state-variable models from input/output functions. —
Regelungstechnik, Bd. 12, pp. 545–548.

Kaczorek T. (1992): Linear Control Systems, Vol. 1. — Taunton:
Research Studies Press.

Kaczorek T. (2002): Positive 1D and 2D Systems. — London:
Springer.

Kaczorek T. (2004): Realization problem for positive discrete-
time systems with delay. — System Sci., Vol. 30, No. 4,
pp. 17–30.

Kaczorek T. (2005): Positive minimal realizations for singular
discrete-time systems with delays in state and control. —
Bull. Pol. Acad. Sci. Techn. Sci., Vol. 53, No. 3, pp. 293–
298.

Kaczorek T. (2006a): Realization problem for positive multivari-
able discrete-time linear systems with delays in the state
vector and inputs. — Int. J. Appl. Math. Comput. Sci.,
Vol. 16, No. 2, pp. 169–174.

Kaczorek T. (2006b) A realization problem for positive
continuous-time linear systems with reduced number of de-
lay. — Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 3,
pp. 325–331.

Kaczorek T. (2006c): Computation of realizations of discrete-
time cone-systems. — Bull. Polish Acad. Sci. Techn. Sci.,
Vol. 54, No. 3, pp. 347–350.

Kaczorek T. (2006d): A realization problem for posi-
tive continuous-time systems with reduced numbers of
delays.— Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 3,
pp. 101–107.

Kaczorek T. (2006e): Minimal positive realization for discrete-
time systems with state time-delays. — Int. J. Comput.
Math. Electr. Eng. COMPEL, Vol. 25, No. 4, pp. 812–826.

Kaczorek T. and Busłowicz M. (2004): Minimal realization
problem for positive multivariable linear systems with de-
lay. — Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 2,
pp. 181–187.

Merzyakov J.I. (1963): On the existence of positive solutions of a
system of linear equations. — Uspekhi Matematicheskikh
Nauk, Vol. 18, No. 3, pp. 179–186 (in Russian).

Appendix

Definition A. A positive matrix

A =

⎡

⎢⎣
a11 . . . a1n

. . . . . . . . .

an1 . . . ann

⎤

⎥⎦ , aij > 0,

i = 1, . . . , n; j = 1, . . . , n, (A1)

is called a matrix with a (strictly) cyclic structure if and
only if

aii > ai+1,i > · · · > ani > a1i > · · · > ai−1,i (A2)

for i = 1, . . . , n.
For example, the matrix

⎡

⎢⎣
5 2 3
3 8 1
2 6 6

⎤

⎥⎦

has a cyclic structure and the matrix
⎡

⎢⎣
5 2 3
2 8 1
3 6 6

⎤

⎥⎦

does not have a cyclic structure since a21 = 2 < a31 = 3.

Theorem A. (Merzyakov, 1963) The system of linear al-
gebraic equations

ai1x1 + ai2x2 + · · · + ainx1 = 1, i = 1, . . . , n, (A3)

with aij > 0, i, j = 1, . . . , n has a positive solution xi >
0, i = 1, . . . , n if and only if its coefficient matrix (A1) has
a cyclic structure.
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