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We prove that there exist infinitely may values of the real parameter α for which the exact value of the spectral subradius of
the set of two matrices (one matrix with ones above and on the diagonal and zeros elsewhere, and one matrix with α below
and on the diagonal and zeros elsewhere, both matrices having two rows and two columns) cannot be calculated in a finite
number of steps. Our proof uses only elementary facts from the theory of formal languages and from linear algebra, but
it is not constructive because we do not show any explicit value of α that has described property. The problem of finding
such values is still open.
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1. Introduction

One of the most important ideas in control theory is the
absolute asymptotic stability of linear discrete systems.
This idea is strongly related to the value of the spectral
radii of sets of matrices that describe possible behaviour
of such systems. There are two generalizations of the idea
of the spectral radius that can be found in many publi-
cations. Those are the joint spectral radius (ρ̂) and the
generalized spectral radius (ρ), given respectively by the
following formulae:

ρ̂(Σ) = lim [sup{ρ(A) :A ∈ Σn}] 1
n =sup

n∈N

sup
A∈Σn

ρ(A)
1
n ,

ρ(Σ) = lim [sup{‖A‖ :A ∈ Σn}] 1
n = inf

n∈N

sup
A∈Σn

‖A‖ 1
n ,

where Σ is the set of k × k matrices and

Σn =
{
AnAn−1An−2 . . . A1 : Ai ∈ Σ

}
.

Recall that for all bounded sets of matrices we have
(Elsner, 1995):

ρ̂(Σ) = ρ(Σ)

and this common value is denoted by ρ(Σ). But even
when we know it, it is still hard to compute the value of

the spectral radius of a set of matrices because the above
formulae include limits and suprema that can be rarely
calculated in an analytical way. Therefore, any algorithm
that produces an exact or well estimated value of the spec-
tral radius in a finite number of steps would be of para-
mount importance. One of the concepts that could lead to
such an algorithm was the so-called finiteness conjecture
(Lagarias and Wang, 1995). It says that for every finite set
of matrices Σ there is a natural number k such that

ρ(Σ) = sup
A∈Σk

ρ(A)
1
k .

It is obvious that if this conjecture is true, then we
can construct an algorithm that will give us an exact value
of the spectral radius of any finite set of matrices in a finite
number of steps. The only problem that is related to this
algorithm is the computation of the number of steps that
we have to perform to complete the whole process. As the
truth of the above conjecture could form a basis for im-
portant numerical methods, it was strongly investigated.
Tsitsiklis and Blondel (1997) proved that the computa-
tion of the spectral radius could be a very hard task. Un-
fortunately, the finiteness conjecture appeared to be false
(Blondel et al., 2003).
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There are several types of the asymptotic stability of
discrete linear systems except the above-mentioned ab-
solute asymptotic stability, which is the strongest of them
all. It is worth considering the so-called selective asymp-
totic stability, which can be defined as follows.

Definition 1. Let Σ be the set of matrices and

x(t + 1) = f(t)x(t),

where x(0) = x0 and f(t) : N → Σ and x(x0, f, t) is its
solution. We say that such a system is selectively asymp-
totically stable when a function f exists such that

lim
t→∞x(x0, f, t) = 0.

The idea of the selective stability of discrete linear
systems is related to the value of the spectral subradius of
the set of matrices (Czornik, 2005). As for the spectral
radius, there exist generalized and joint spectral radii that
are respectively given by

ρ∗(Σ) = lim [inf{‖A‖ : A ∈ Σn}] 1
n = inf

n∈N

inf
A∈Σn

‖A‖ 1
n

and

ρ̂∗(Σ) = lim [inf ρ(A) : A ∈ Σn]
1
n = inf

n∈N

inf
A∈Σn

ρ(A)
1
n .

Those values are equal for any nonempty set of matrices
and their common value is denoted by ρ∗(Σ) (Czornik,
2005), but it is still hard to compute them in an analytical
way. Since a discrete linear system related to the set Σ
is selectively stable if and only if ρ∗(Σ) < 1 (Czornik,
2005), for a spectral radius it is worth considering whether
there exists a natural number k such that

ρ∗(Σ) = inf
A∈Σn

ρ(A)
1
n .

We shall call this hypothesis the finiteness property of the
spectral subradius, and we shall prove that it is false, too.
The proposed proof will be very similar to that of the falsi-
ness of the finiteness conjecture for the spectral radius
(Blondel et al., 2003), but some parts of it will be quite
different, so that we show here only the altered parts of
the proof and give references to lemmas in other publica-
tions.

2. Main Results

Define the set Σ = {A0, A1}, where

A0 =

[
1 1
0 1

]

and

A1 =

[
1 0
1 1

]

.

Set
ρα = ρ∗

({A0, αA1}
)
.

As ρα > 0, we can write

Aα
0 =

1
ρα

A0, Aα
1 =

α

ρα
A1.

Consider a two-letter alphabet I = {0, 1} and let

I+ =
{
0, 1, 00, 01, 10, 11, 000, . . .

}

be the set of finite nonempty words. Let also I∗ = I+ ∪
{∅}. The length of a word w = w1 . . . wt ∈ I∗ is equal
to t ≥ 0 and it is denoted by |w|. The mirror image of the
word w is defined as

w = wt . . . w1 ∈ I∗.

Any word that is identical to its mirror image will be
said to be a palindrome. In particular, an empty word is a
palindrome, too. For any words u, v ∈ I∗, we write u > v
if ui = 1 and vi = 0 for some i ≥ 1 and uj = vj for all
j < i. This is only a partial order because, e.g., the words
101000 and 1010 cannot be compared. The relation u < v
for u, v ∈ I∗ is defined analogously. For any infinite word
U , we denote by F (U) the set of all finite factors of the
word U . We also say that two words u, v ∈ I+ are es-
sentially equal if the periodic infinite words U = uuu . . .
and V = vvv . . . can be decomposed as U = xwww . . .
and V = ywww . . . for some x, y, w ∈ I+. Words that
are not essentially equal are essentially different.

Now a word w = w1w2 . . . wt ∈ I+ can be as-
sociated with the products Aw = Aw1Aw2 . . . Awt and
Aα

w = Aα
w1

Aα
w2

. . . Aα
wt

. A word w ∈ I+ is be said to be
optimal for some α if ρ(Aα

w) = 1. Define

Jw =
{
α : ρ(Aα

w) = 1
}
.

Lemma 1. Let u, v ∈ I+ be two words that are essen-
tially different. Write U = uuu . . . and V = vvv . . . .
Then in the set F (U)∪F (V ) a pair of words 0p0 and 1p1
exists such that p ∈ I∗ is a palindrome.

Proof. See Lemma 3.1 in (Blondel et al., 2003).

Lemma 2. Let u, v ∈ I+ be two essentially different
words, and let U = uuu . . . and V = vvv . . . . Then there
exist words a, b, x, y ∈ I+ satisfying |x| = |y|, x < y,
x < y, x < y, x < y and a palindrome p ∈ I∗ such that
U = apxpxpx . . . and V = bpypypy . . . , or one of the
words U and V (U , say) can be decomposed as

U = apxpxpx · · · = bpypypy . . .

Proof. By Lemma 1 a pair of words 0p0 and 1p1 exists in
the set F (U)∪F (V ) such that p is a palindrome. Without
loss of generality, we can assume that 1p1 occurs in U .
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Then it occurs in U infinitely many times because U is an
infinite periodic word. Write

U = a′1p1d1p1d . . .

and, analogously,

W = b′0p0f0p0f . . . ,

where W is either U or V . With no loss of generality,
we may assume that |d| = |f |. Otherwise, we can al-
ways take d′ = d1p1d1 . . .1p1d instead of d and f ′ =
f0p0f . . . 0p0f instead of f in such a way that |f ′| = |d′|.
Now we only have to set a = b′0, b = a′1, x = 0f0,
y = 1d1, which completes the proof.

Definition 2. We say that a matrix A is dominated by a
matrix B if A ≤ B componentwise and tr(A) < tr(B).

For all words w, the matrix Aw satisfies det Aw =
1 and tr Aw ≥ 2. We therefore have ρ(Au) < ρ(Av)
whenever Au is dominated by Av.

Lemma 3. For any word w ∈ I+ we have

Aw − Aw = k(w)T,

where k(w) is an integer and

T = A0A1 − A1A0 =

[
1 0
0 −1

]

.

Moreover, k(w) is positive if and only if w > w.

Proof. See Lemma 4.2 in (Blondel et al., 2003).

Lemma 4. Let A, B ∈ R
2×2, detA 	= 0, detB = 0 and

B 	= 0. Then AB 	= 0.

Proof. Let

A =

[
a b

c d

]

.

Since detB = 0 and B 	= 0, we have

B =

[
p q

βp βq

]

and p 	= 0 or q 	= 0. Therefore,

AB = 0 ⇐⇒
[

a b

c d

][
p q

βp βq

]

=

[
0 0
0 0

]

.

Thus
[

p(a + bβ) q(a + bβ)
p(c + dβ) q(c + dβ)

]

=

[
0 0
0 0

]

.

We have rejected the case when p = 0 and q = 0, so
assume without loss of generality that p = 0 and q 	= 0.
Then

q(a + bβ) = 0 ⇐⇒ a + bβ = 0 ⇐⇒ a = −bβ,

q(c + dβ) = 0 ⇐⇒ c + dβ = 0 ⇐⇒ c = −dβ.

But it follows that

0 	= detA = det

[
a b

c d

]

= det

[
−bβ b

−dβ d

]

= 0,

which is a contradiction. Thus AB 	= 0 when p = 0 and
q 	= 0. The proofs that AB 	= 0 when (p 	= 0 and q = 0)
or (p 	= 0 and q 	= 0) are analogous.

Lemma 5. Let A, B ∈ R
2×2, detB 	= 0, detA = 0 and

A 	= 0. Then AB 	= 0.

Proof. The proof is analogous to that of Lemma 4.

Lemma 6. For any word of the form w = psq, where s <
s and q > p, the matrix A′

w with w′ = psq is dominated
by Aw.

Proof. By Lemma 3 we have

A′
w − Aw = ApAsAq − ApAsAq = Ap(As − As)Aq

= k(s)ApTAq

and k(s) ≤ 0. Assume that k(s) = 0. Then

k(s)ApTAq = 0,

but
k(s)ApTAq = Ap(As − As)Aq .

The matrices Ap and Aq are finite products of the matrices
A0 and A1, which are nonsingular. Therefore, the matri-
ces Ap and Aq are nonsingular, too. Since s 	= s, we have
that As − As 	= 0. When the latter matrix is nonsingular,
so is the matrix

Ap(As − As)Aq.

Thus it cannot be the zero matrix and k(s) 	= 0. When
the matrix As − As is singular but nonzero, we can use
Lemmas 4 and 5 to write

Ap(As − As)Aq 	= 0

and therefore k(s) 	= 0, so that k(s) < 0.
Now we can observe that for i = 0, 1 we have

AiTAi = T =

[
1 0
0 −1

]

and

A0TA1 =

[
0 −1
−1 −1

]

.
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Since A0TA1 is dominated by AiTAi for i = 0, 1, the
proof is complete.

Definition 3. If w = psq and the matrix Apsq dominates
the matrix Apsq , then the word s is called the dominating
flip of the word s.

Lemma 7. Let u, v ∈ I+ be two words that are essen-
tially different. Then Ju ∩ Jv = ∅.

Proof. Let u, v ∈ I+ be two words that are essentially
different. In order to prove the result, we show that if
ρ(Aα

u) = ρ(Aα
v ) for some value of α, then there is a word

w satisfying ρ(Aα
w) < ρ(Aα

u).
By Lemma 2, there exist words a, b, x, y ∈ I+ sat-

isfying |x| = |y|, x < y, x < y, x < y, x < y, and a
palindrome p ∈ I∗ such that

U = apxpxpx . . . and V = bpypypy . . .

or
U = apxpxpx · · · = bpypypy . . . .

Since neither U nor V is equal to 000 . . . or 111 . . . , the
matrices Axp and Ayp are strictly positive.

Consider the word xpxpxpypypyp. Setting s = xpy,
we make a dominating flip in this word and get the word
xpxpypxpypyp. Then we set s = xpypxpy and make an-
other dominating flip. As a result, by Lemma 6 the matrix
Axpxpxpypypyp is dominated by the matrix Axpypxpyxpyp.
Analogously, any matrix AsAvAr, v ∈ I∗ is dominated
by the matrix As′AvAr′ , where s = xpxpxp, r =
ypypyp, s′ = xpypxp and r′ = ypxpyp.

Let us denote by L and L′ the linear operators A →
AsAAr and A → As′AAr′ acting in R

4 as well as their
4 × 4 matrices. It is known that L = AT

r ⊗ As and
L′ = (A′

r)T ⊗ A′
s, where ⊗ denotes the Kronecker prod-

uct (Horn and Johnson, 1991, Lem. 4.3.1). Both L and
L′ are strictly positive. The minimal closed convex cone
in R

4 containing all matrices Av, v ∈ I∗, is the cone of
all nonnegative 2 × 2 matrices of the form βAw, β > 0,
w ∈ I∗. In particular, this is true for the matrices

[
1 0
0 0

]

,

[
0 1
0 0

]

,

[
0 0
1 0

]

,

[
0 0
0 1

]

.

Hence L′ ≤ L elementwise and L 	= L′. From the
Perron-Frobenius theory (see Problem 8.15 in (Horn and
Johnson, 1985)) we get ρ(L′) < ρ(L). The spectral ra-
dius of a Kronecker product is the product of the spec-
tral radii (Horn and Johnson, 1991, Th. 4.2.12), and hence
ρ(L′) = ρ(As′)ρ(Ar′) < ρ(As)ρ(Ar) = ρ(L). Since the
flips performed do not change the average proportion of
the matrices A0 and A1 in the product, we can also write

ρ(Lα) = ρ(Aα
s )ρ(Aα

r )

and
ρ(L

′α) = ρ(Aα
s′)ρ(Aα

r′)

for each α > 0, where Lα and L
′α are defined analo-

gously to L and L′, respectively.
Suppose that ρ(Aα

u) = ρ(Aα
v ) = 1. Then ρ(Aα

s ) =
ρ(Aα

r ) = 1, and hence either ρ(Aα
s′) < 1 or ρ(Aα

r′) < 1,
which is a contradiction. This completes the proof of the
lemma.

Now we are ready to prove the main result of this
paper.

Theorem 1. There are uncountably many values of the
real parameter α for which the pair of matrices

[
1 1
0 1

]

, α

[
1 0
1 1

]

does not satisfy the finiteness property of the spectral sub-
radius.

Proof. We have

Jw ∩ (0, 1) =
{
α ∈ (0, 1) : ρ(Aα

w) = 1
}

or, equivalently,

Jw ∩ (0, 1) =
{

α ∈ (0, 1) :
(
ρ(Aw)α|w|1

) 1
|w|

= inf
v∈I+

(
ρ(Av)α|v|1

) 1
v

}
, (1)

where |w|1 denotes the number of the letters ‘1’ in the
word w. Now we define the function

h(w, β) =
1
|w|

(
ln ρ(Aw) + |w|1β

)

associated with w ∈ I+, and let

h(β) = inf
w∈I+

h(w, β).

Passing on to the logarithmic scale in the expression (1),
we get

Jw ∩ (0, 1)

=
{
eβ : β ∈ R, h(w, β) = h(β)

} ∩ (0, 1). (2)

The functions h(w, β) are affine and h(β) ≤ h(w, β) for
all w ∈ I+ and β ∈ R, so we only have to show that h is
convex and continuous. Let us start with the proof of the
continuity of the function h(w, β).

The function

h(w, β) =
1
|w|

(
ln ρ(Aw) + |w|1β

)

is not continuous only in the case when |w| = 0 or
ρ(Aq) = 0. We do not have to care about the case when
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|w| = 0 because |w| = 0 only for an empty word that
does not belong to the set I+.

Let us consider the eigenvalues of the 2×2 matrix in
the general case:

det

([
a b

c d

]

−
[

λ 0
0 λ

])

= det

[
a − λ b

c d − λ

]

= (a − λ)(d − λ) − bc

= ad − dλ − aλ + λ2 − bc

= λ2 − (a + d)λ + ad − bc = 0.

The spectral radius of the matrix considered will be zero
only when both of the solutions to the above equation are
equal (i.e., λ1 = λ2), and therefore

(a + d)2 − 4(ad − bc) = 0.

The second important condition is that the trace of the
considered matrix has to be zero. Therefore,

a + d = 0 =⇒ a = −d

and

(a + d)2 − 4(ad − bc) = 0 − 4(ad − bc) = 0.

Hence
ad − bc = 0,

which is equivalent to

−a2 − bc = 0 =⇒ a2 = −bc.

This implies that the numbers b and c have opposite signs
or a = 0 and (b = 0 or c = 0). There exists no product of
the matrices A0 and A1 that includes negative numbers or
zeros on the main diagonal. Therefore, the spectral radius
of any product of the matrices A0 and A1 is not equal to
zero, and this proves that the function h(w, β) is continu-
ous.

Now we are ready to prove that the function h(β) is
continuous, too. Assume that

inf
w∈I+

h(w, β1) − inf
w∈I+

h(w, β2) > 0.

Then for |β1 − β2| < δ we have
∣
∣
∣
∣ inf
w∈I+

h(w, β1) − inf
w∈I+

h(w, β2)
∣
∣
∣
∣

≤
∣∣
∣
∣ sup
w∈I+

h(w, β1) − inf
w∈I+

h(w, β2)
∣∣
∣
∣

=
∣
∣
∣
∣ sup
w∈I+

(h(w, β1) − h(w, β2))
∣
∣
∣
∣

=
∣
∣∣
∣ sup
w∈I+

(
1
|w|

(
ln ρ(Aw) + |w|1β1

)

− 1
|w|

(
ln ρ(Aw) + |w|1β2

))
∣
∣
∣
∣

=
∣
∣∣
∣ sup
w∈I+

( |w|1
|w| (β1 − β2)

)∣
∣∣
∣ ≤ |β1 − β2| < δ.

Assume now that

inf
w∈I+

h(w, β1) − inf
w∈I+

h(w, β2) < 0.

Then for |β1 − β2| < δ we have

∣∣
∣
∣ inf
w∈I+

h(w, β1) − inf
w∈I+

h(w, β2)
∣∣
∣
∣

≤
∣
∣
∣
∣ sup
w∈I+

h(w, β2) − inf
w∈I+

h(w, β1)
∣
∣
∣
∣

=
∣∣
∣
∣ sup
w∈I+

(h(w, β2) − h(w, β1))
∣∣
∣
∣

=
∣
∣
∣
∣ sup
w∈I+

(
1
|w|

(
ln ρ(Aw) + |w|1β2

)

− 1
|w|

(
ln ρ(Aw) + |w|1β1

)
)∣

∣∣
∣

=
∣
∣
∣
∣ sup
w∈I+

( |w|1
|w| (β2 − β1)

)∣
∣
∣
∣

≤ |β2 − β1| = |β1 − β2| < δ.

Therefore, for all ε > 0 there exists δ = ε such that

|h(β1) − h(β2)| < ε

when |β1 − β2| < δ, and thus the function h(β) is contin-
uous.

The last thing that we have to prove before we pro-
ceed to the next part of the proof is that the function h(β)
is convex. Let t ∈ [0, 1]. Then

(1 − t)h(β1) + th(β2)
= (1 − t) inf

w∈I+
h(w, β1) + t inf

w∈I+
h(w, β2)

= (1 − t) inf
w∈I+

1
|w|

(
ln ρ(Aw) + |w|1β1

)

+t inf
w∈I+

1
|w|

(
ln ρ(Aw) + |w|1β2

)

= inf
w∈I+

ln ρ(Aw)
|w| + inf

w∈I+

|w|1β1

|w| −t inf
w∈I+

ln ρ(Aw)
|w|

−t inf
w∈I+

|w|1β1

|w| + t inf
w∈I+

ln ρ(Aw)
|w|

+t inf
w∈I+

|w|1β2

|w|
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= inf
w∈I+

ln ρ(Aw)
|w| + β1 inf

w∈I+

|w|1
|w| − tβ1 inf

w∈I+

|w|1
|w|

+tβ2 inf
w∈I+

|w|1
|w|

= inf
w∈I+

ln ρ(Aw)
|w| + inf

w∈I+

|w|1
|w| (β1 − tβ1 + tβ2)

= inf
w∈I+

ln ρ(Aw)
|w| + inf

w∈I+

|w|1
|w| ((1 − t)β1 + tβ2)

= inf
w∈I+

(
ln ρ(Aw)

|w| +
|w|1
|w| ((1 − t)β1 + tβ2)

)

= inf
w∈I+

1
|w| (ln ρ(Aw) + ((1 − t)β1 + tβ2)|w|1)

= inf
w∈I+

h(w, (1−t)β1+tβ2) = h((1−t)β1+tβ2),

and this implies that the function h(β) is convex.
The above deliberations prove that the set

{
β ∈ R : h(w, β) = h(β)

}

is an interval of the real line. This interval is the zero set
of a continuous function, and it is therefore closed.

From (2) we conclude that the set Jw ∩ [0, 1] is a
closed subinterval of [0, 1]. Let us finally show that (0, 1)
cannot be covered by countably many disjoint closed in-
tervals Hi for i ≥ 1 (possibly single points). One can
find in (Blondel et al., 2003) the proof that the interval
[0, 1] cannot be covered by countably many disjoint inter-
vals Hi for i ≥ 1 (possibly single points) unless it is a
single interval. Thus the interval (0, 1) cannot be covered
by countably many disjoint intervals, either. Observe that

[0, 1] = (0, 1) ∪ {0, 1},

and if we were able to cover the interval (0, 1) by count-
ably many disjoint intervals, then we could cover [0, 1]
with the same intervals and the points {0} and {1}, which
makes a contradiction and completes the proof of the
whole theorem.

3. Conclusion

Since, in general, the finiteness property of the spectral
subradius is false, there are still many particular cases

when it is true. For example, the spectral radius of any
finite set of diagonal matrices can be calculated in a finite
number of steps. It is worth remarking that the falseness of
the finiteness property of the spectral subradius does not
imply that no algorithm exists that permits to compute an
exact value of the spectral subradius of a finite set of real
matrices in a finite number of steps. It only shows that
it is impossible to set forth such an algorithm in the way
that is suggested in the finiteness property of the spectral
subradius, and therefore the problem of inventing such an
algorithm is still open.
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