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A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammer-
stein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic
are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the
classical kernel nonparametric estimate, regardless of the number of measurements. The convergence in probability of the
proposed estimate to the unknown characteristic is proved and the question of the convergence rate is discussed. Illustrative
simulation examples are included.
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1. Introduction

The problem of elaborating a universal approach to mod-
eling stochastic nonlinear systems has been intensively
discussed in the literature in recent years. In particu-
lar, the idea of a block-oriented system representation as
an interconnection of nonlinear static elements and linear
dynamics (Billings and Fakhouri, 1982; Greblicki, 2001;
Janczak, 1999) has been developed and widely accepted in
the system identification community. The Hammerstein
system (Fig. 1) is the simplest structure of this kind and
hence it is mostly considered in the system identification
literature (see, e.g., (Giannakis and Serpedin, 2001; Haber
and Keviczky, 1999) for the bibliography). It is built of a
static nonlinearity μ( ) and linear dynamics, with the im-
pulse response {γi}∞i=0, connected in a cascade and de-
scribed by the following set of equations: yk = vk + zk,
vk =

∑∞
i=0 γiwk−i, wk = μ(uk) or, equivalently,

yk =
∞∑

i=0

γiμ(uk−i) + zk, (1)

where uk and yk denote the system input and output at
time k, respectively, and zk is the output noise. Since
the structure shown in Fig. 1 has good approximation ca-
pabilities regarding many real processes, the identifica-
tion problem of Hammerstein systems has fundamental

meaning in practice, particularly in domains such as auto-
matic control (Haber and Keviczky, 1999), signal process-
ing (Giunta et al., 1991), telecommunications (Jang and
Kim, 1994), biocybernetics, artificial neural networks, the
modeling of distillation, fermentation (Gomez and Basu-
aldo, 2000) and heat exchange processes (Haber and Zeir-
fuss, 1988), geology (Zhang and Bai, 1996), etc.

Fig. 1. Hammerstein system.

The Hammerstein system was first considered in the
system identification framework by Narendra and Gall-
man (1966) and since then a large number of research pa-
pers have appeared in the literature. Basically, they dif-
fer in the requirements for nonlinear characteristics and
the noise process. One can specify two mutually comple-
menting kinds of approaches, leading to parametric and
nonparametric identification methods. The first of them
(Bai and Li, 2004; Chang and Luus, 1971; Chen, 2005;
Haber and Keviczky, 1999; Ljung, 1987; Söderström and
Stoica, 1982; Söderström and Stoica, 1989; Vörös, 1999)
provides estimates with fast convergence and the model is
given in closed form, but this requires rich a-priori knowl-
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edge about the identified system. The system characteris-
tics must have a known analytic form (e.g., polynomial)
with a finite number of unknown parameters. Moreover,
in most papers only white output noise is admissible. If
the true system characteristic does not belong to the class
of assumed parametric models, then a systematic approxi-
mation error appears. Recently, a number of methods with
various applicability conditions have been offered, e.g.,
frequency domain identification or inverse OBF modeling
(see, e.g., (Bai, 2003; Zhu, 2000; Latawiec, 2004)).

The nonparametric approach to block-oriented sys-
tem identification was proposed in the 1980s by Gre-
blicki, and it is based on regression function estimation
by kernel methods (Greblicki and Pawlak, 1986; Greblicki
and Pawlak, 1989; Greblicki and Pawlak, 1994; Härdle,
1990; Wand and Jones, 1995) or orthogonal series meth-
ods (Greblicki, 1989; Van den Hof et al., 1995). The al-
gorithms involve only a learning sequence and are free of
the risk of improper a-priori knowledge. They are recom-
mended when the nonlinear characteristic cannot be ex-
pressed in a closed form. The cost paid for it is the fact that
the rate of convergence is a bit slower. The convergence
conditions of the estimates were relaxed in (Greblicki et
al., 1984; Krzyżak, 1990; Krzyżak et al., 2001), where
the existence of the input probability density function is
not required. In recent papers (Hasiewicz et al., 2005;
Pawlak and Hasiewicz, 1998), wavelet bases have been
used. In (Hasiewicz and Mzyk, 2004a; Hasiewicz and
Mzyk, 2004b), it was shown that nonparametric methods
enable full decentralization of the block-oriented system
identification task, i.e., independent parameter identifica-
tion of a static nonlinearity and linear dynamics in a com-
pletely decomposed manner.

As the linear dynamics in a Hammerstein system
can be simply identified, e.g., by the standard correlation
method (Greblicki and Pawlak, 1986), we concentrate in
the paper on effective recovering of the nonlinearity μ( ).
In Section 2, the problem is formulated in detail, and the
standard kernel approach is reminded. The idea of averag-
ing kernel estimates for various time-lags is introduced in
Section 3 and analyzed in Section 4. Finally, the most im-
portant special cases are considered and some illustrative
simulation examples are given.

2. Problem Statement

2.1. Assumptions. We make the following assumptions:

(A1) The characteristic μ(u) of a static subsystem fulfils
the condition |μ(u)| ≤ p1 + p2 |u|, where p1, and
p2 are some finite unknown constants.

(A2) The linear dynamics with the unknown impulse re-
sponse {γi}∞i=0 is stable, i.e.,

∑∞
i=0 |γi| < ∞.

(A3) The input {uk} and the noise {zk} are random,
mutually independent i.i.d. processes, and Ezk =0.

There exists a probability density of the input
ϑu(uk).

Without any loss of generality and for the clarity of
exposition, we also assume that μ(0) (for a discussion,
see, e.g., (Hasiewicz and Mzyk, 2004a)).

2.2. Classical Kernel Estimate. The following depen-
dence between the regression functions Rc(u) and the true
system characteristic μ( ) is of paramount importance for
the identification routine of the Hammerstein system de-
veloped in the paper:

Rc(u) = E{yk|uk−c = u}
= E{γcμ(uk−c)+

∑

i�=c

γiμ(uk−i) + zk|uk−c =u}
= γcμ(u) + δc, (2)

where δc = Eμ (u)
∑∞

i�=c γi, and c is any time-lag be-
tween the input and output. Due to (2), the characteristic
μ( ) may be estimated only up to some scaling and shift-
ing constants γc and δc, respectively, provided that we can
estimate Rc(u). This feature is, however, independent of
the identification method and it is a simple consequence
of the inaccessibility of the interior signal {wk} for a di-
rect measurement (for a discussion, see (Hasiewicz and
Mzyk, 2004a)).

In standard nonparametric methods, the Hammer-
stein system is treated in fact as a nonlinear static element
corrupted by correlated noise. Indeed, one can specify
three components of the output,

yk = γcμ(uk−c)
︸ ︷︷ ︸

useful

+
∑

i�=c

γiμ(uk−i)

︸ ︷︷ ︸
“system noise”

+ zk︸︷︷︸
output noise

. (3)

In such a description only the c-th term of the sum
in (1) is privileged (see Fig. 2), which means that most of
the signal yk is in a sense ignored, although the “system
noise”

ξk �
∑

i�=c

γiμ(uk−i) (4)

also depends on the identified function μ( ).

Fig. 2. Impulse response of the linear dynamics.

The classical kernel estimate for the identification
of Hammerstein systems was introduced in the 1980s by
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Greblicki and Pawlak. For the model (3), it has the fol-
lowing form:

μ̂c,M (u) = R̂c,M (u) − R̂c,M (0), (5a)

where

R̂c,M (u) =

M∑

k=1

{

yk+cK

(
uk − u

h(M)

)}

M∑

k=1

K

(
uk − u

h(M)

) , (5b)

K( ) being a kernel function satisfying the conditions

K(x) > 0,

∫ ∞

−∞
K(x) dx < ∞, K(x) = K(−x),

(6)
and h(M) a proper bandwidth parameter. Standard ex-
amples are K(x) = I[−0.5,0.5](x), (1 − |x|)I[−1,1](x) or
(
1/

√
2π

)
e−x2/2 and h(M) = const · M−α with a posi-

tive constant and 0 < α < 1 (Wand and Jones, 1995). Ob-
serve that the estimate (5) requires additional c measure-
ments yM+1, yM+2, . . . , yM+c, but it has no influence on
the limit properties, as the lag c is fixed. In (Greblicki and
Pawlak, 1986), it was proved that if

h(M) → 0 and Mh(M) → ∞ (7)

as M → ∞, then

μ̂c,M (u) → γcμ(u) in probability, as M → ∞ (8)

for each continuity point u of the characteristic μ( ) and
the input probability density function ϑu( ). If, more-
over, μ( ) and ϑu( ) are twice differentiable in u, then for
h(M) = O(M−1/5) we have

|μ̂c,M (u) − μ(u)| = O(M−2/5) in probability. (9)

The rate in (9) is only asymptotic, i.e., valid for large val-
ues of M . In practice (for M � ∞), the value of the
mean square error (MSE):

MSE μ̂c,M (u) = E
(
μ̂c,M (u) − μ(u)

)2

= bias2μ̂c,M (u) + var μ̂c,M (u) (10)

determines the quality of the method. We emphasize that
even for the noise-free output case (zk ≡ 0) the vari-
ance var μ̂c,M (u) in (10) can be large, as it depends on
the component ξk (see (4) and (3)). The main purpose
of the paper is to modify the kernel estimate (5) so as to
obtain lower variance using the same set of observations.
First attempts to solve this problem were based on the esti-
mation of the d-dimensional regression Rc1,c2,...,cd

(u) =
E{yk|uk−c1 = u, uk−c2 = u, . . . , uk−cd

= u} instead
of the simple regression Rc(u). Unfortunately, the appli-
cation of the estimate of Rc1,c2,...,cd

(u) leads to a very

restrictive convergence condition Mhd(M) → ∞. As
we show in Sections 3 and 4, this disadvantage may be
avoided by estimating simple (1-dimensional) regressions
for different time-lags c1, c2, . . . , cd. We limit ourselves
to the estimates involving two lags (d = 2), since the pre-
sented methodology can be simply generalized for d > 2.

3. Improved Kernel Estimate

Let us define the average of two simple regression func-
tions,

Rc1,c2(u) � 1
2

[
Rc1(u) + Rc2(u)

]

= E

{
1
2

[
yk+c1 + yk+c2

]∣
∣
∣ uk = u

}

=
γc1 + γc2

2
μ(u) +

δc1 + δc2

2
(11)

and introduce the averaged kernel estimate of the follow-
ing form (cf. (5)):

μ̂c1,c2,M (u)

=
1
2

[
μ̂c1,M (u) + μ̂c2,M (u)

]

=
1
2

[
R̂c1,M (u)−R̂c1,M (0)+R̂c2,M (u)−R̂c2,M (0)

]

= R̂c1,c2,M (u) − R̂c1,c2,M (0), (12)

where

R̂c1,c2,M (u) =
1
2

[
R̂c1,M (u) + R̂c2,M (u)

]

=

M∑

k=1

{
yk+c1 +yk+c2

2
K

(
uk−u

h(M)

)}

M∑

k=1

K

(
uk − u

h(M)

) . (13)

As we can conclude from (13) and Fig. 3, the method
is in fact based on implementing an additional output
preprocessing block using the output averaging linear fil-

Fig. 3. Graphical interpretation of the method.

ter xk =
∑∞

i=0 λiyk−i with the impulse response

λi =

⎧
⎨

⎩

1
2

if i = c1 or i = c2,

0 otherwise,
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i.e., another ‘fictitious’ system with the input uk and the
output xk is actually considered. Obviously, the system
with the input uk and the output xk also belongs to the
Hammerstein system class, has the same nonlinear char-
acteristic μ(u) as the original one, and a proper kernel
estimate of the adequate regression function is

R̂M (u) =

M∑

k=1

{

xkK

(
uk − u

h(M)

)}

M∑

k=1

K

(
uk − u

h(M)

) .

4. Statistical Properties

4.1. Limit Properties. Since the generalized esti-
mate (12) is a linear combination of the simple esti-
mates (5), it obviously has identical convergence prop-
erties (see (Greblicki and Pawlak, 1994) and Remarks 1
to 3).

Remark 1. If h(M) → 0 and Mh(M) → ∞ as
M → ∞, then μ̂c1,c2,M (u) → 1

2 (γc1 + γc2)μ(u) in prob-
ability as M → ∞ for each continuity point u of the char-
acteristic μ( ) and the input probability density function
ϑu( ).

The consistency of the classical kernel estimate
μ̂c,M (u) (see (5)) was also proved in the case when the
input {uk} has a discrete distribution at the points u for
which P (uk = u) > 0, under mild restrictions imposed
on h(M). This property is obviously inherited by the pro-
posed estimate μ̂c1,c2,M (u).

Remark 2. If

|μ̂c,M (u) − γcμ(u)| = O(M−τ )

in probability, then

|μ̂c1,c2,M (u) − γc1 + γc2

2
μ(u)| = O(M−τ )

in probability.

Remark 3. If h(M) = O(M−1/5), then var μ̂c,M (u) =
O(M−4/5) and var μ̂c1,c2,M (u) = O(M−4/5).

Therefore, the proposed estimate has asymptotically
the same rate of convergence, which means that asymp-
totically (as M → ∞) it provides results of comparable
accuracy. Nevertheless, in practice we have at our disposal
a fixed finite number of observations and we wish to ob-
tain the smallest possible estimation error. The evaluation
of the degree of variance reduction in a general case is dif-
ficult. It can be performed in some popular special cases
(see Section 6). Simulation results show that the percent-
age reduction in the variance compared with the classical
kernel estimate does not significantly depend on M (the
number of data). The superiority of (12) over (5) in the

sense of the absolute error is obviously more visible for
small and moderate M .

In Section 4.2 we construct an upper bound for
var μ̂c1,c2,M (u), and then optimize it with respect to c1

and c2. We emphasize that the class of the analyzed esti-
mates {μ̂c1,c2,M (u)} also includes the subset {μ̂c,M(u)},
as c1 = c2 reduces the generalized kernel estimate to the
classical one.

4.2. Optimal Choice of c1 and c2. As has been
pointed out (see (11), (12) and Remark 1) μ̂c1,c2,M (u)
is (merely) an estimate of 1

2 (γc1 + γc2)μ(u), and hence
its variance obviously does depend on the scale fac-
tor 1

2 (γc1 + γc2). As a consequence, the variance of
μ̂c1,c2,M (u) does not determine unambiguously the qual-
ity of the identification algorithm. Thus the scale 1

2 (γc1 +
γc2) should also be taken into consideration during com-
parisons of the efficiency of the estimates μ̂c1,c2,M (u) for
various c1 and c2. To this end we introduce the following
definition:

Definition 1. Two estimates θ̂1 and θ̂2 of scaled θ∗ (i.e.,
Eθ̂1 = aθ∗ and Eθ̂2 = bθ∗) are said to have the same
relative variance if

var θ̂1

var θ̂2

=
a2

b2
.

The minimization of the relative variances of the es-
timates μ̂c1,c2,M (u) with respect to c1 and c2 is equiva-
lent to the minimization of the variances (in the classical
sense) of the normalized estimates

μc1,c2,M (u) =
2

γc1 + γc2

μ̂c1,c2,M (u), (14)

where γc1 and γc2 are unknown. Introducing the auxiliary
symbol

sk(c1, c2) =
2

γc1 +γc2

yk+c1 +yk+c2

2
=

yk+c1 +yk+c2

γc1 +γc2

(15)
and writing, for simplicity sk instead of sk(c1, c2), they
can be presented in a compact form as

μc1,c2,M (u) =

M∑

k=1

{

skK

(
uk − u

h(M)

)}

M∑

k=1

K

(
uk − u

h(M)

) . (16)

In (Greblicki and Pawlak, 1994), it was proved that
the following convergence holds as M → ∞:

Mh(M)var μ̂c,M (u) →
G

∫ ∞

−∞
K2(v) dv

f(u)
,
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where
G =

∑

i�=c

γ2
i var wk.

Since

G ≤
∞∑

i=0

γ2
i var wk = var yk,

we conclude that, asymptotically,

var μ̂c,M (u) ≤ 1
Mh(M)

var yk,

and, by analogy,

var μc1,c2,M (u) ≤ 1
Mh(M)

var sk.

Hence we obtain the following criterion:

var sk → min
c1,c2

.

Using the well-known fact concerning the variance
of the sum of random variables var (X + Y ) = var X +
var Y + 2cov (X, Y ), from (15) we get

var sk =
1

(γc1 + γc2)
2 var (yk+c1 + yk+c2)

=
σ2

y + σ2
y + 2σ2

yξy(c2 − c1)

(γc1 + γc2)
2

= 2σ2
y

1 + ξy(c2 − c1)
(γc1 + γc2)

2 ,

where ξy( ) is the autocorrelation function of the output
process {yk} (−1 ≤ ξy(τ) ≤ 1), and σ2

y = var yk =
const. Thus, the selection of c1 and c2 should be con-
ducted according the rule

Q(c1,c2) =
1 + ξy(c2 − c1)
(γc1 + γc2)

2 → min
c1,c2

. (17)

Since the autocorrelation of the output and the terms of the
impulse response are unknown, direct application of (17)
in the identification routine is not possible. Therefore,
ξy(τ), and γτ for τ = 0, 1, . . . should be estimated in the
first place (for details, see section 5). Let us emphasize
that the form of Q(c1,c2) is consistent with intuition. We
postulate c1 and c2, which guarantee a small output auto-
correlation for τ = c2 − c1 and, simultaneously, possibly
large values of γc1 and γc2 .

5. Algorithm

In light of (17), we propose the following steps:

Step 1. Nonparametric estimation of the impulse response
{γ̂τ} of the linear dynamics (Greblicki and Pawlak, 1986):

γ̂τ =
κ̂τ

κ̂0
,

where

κ̂τ =
1
N

N−τ∑

k=1

(yk+τ − y)(uk − u)

y =
1
N

N∑

k=1

yk, u =
1
N

N∑

k=1

uk.

Step 2. Nonparametric estimation of the output autocor-
relation ξ̂y(τ) (standard) :

ξ̂y(τ) =
ĉovy(τ)
v̂ar yk

=

1
N − τ

N−τ∑

k=1

(yk+τ − y)(yk − y)

1
N − 1

N∑

k=1

(yk − y)2

Step 3. Selection of c̃1, and c̃2 by the minimization of the
empirical criterion:

Q̂(c1,c2) =
1 + ξ̂y(c2 − c1)
(γ̂c1 + γ̂c2)

2 .

Step 4. Nonparametric (improved) estimation of the non-
linear characteristic using μ̂

�c1,�c2,M (u).

6. Special Cases

6.1. Two-Element Impulse Response. Let us con-
sider the linear FIR filter with the following impulse re-
sponse:

γi

{
�= 0 if i = d1 or i = d2,

= 0 otherwise.

Assuming, for clarity, that zk ≡ 0, after simple computa-
tions we obtain

ξy(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if τ = 0,

γd1γd2

γ2
d1

+ γ2
d2

if τ = d1 − d2 or τ = d2 − d1,

0 otherwise.

Thus three variants of the identification routine are admis-
sible:

(a) classical kernel regression based on the time-lag d1,
i.e., c1 = c2 = d1, with

Q(d1, d1) =
1 + 1

(γd1 + γd1)2
=

1
2γ2

d1

, (18)
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(b) classical kernel regression based on the time-lag d2,
i.e., c1 = c2 = d2, with

Q(d2, d2) =
1 + 1

(γd2 + γd2)2
=

1
2γ2

d2

, (19)

(c) an improved estimate based on the combination c1 =
d1 and c2 = d2 (or, equivalently, c1 = d2 and c2 =
d1), with

Q(d1, d2) =
1 +

γd1γd2

γ2
d1

+ γ2
d2

(γd1 + γd2)2
. (20)

Corollary 1. The estimate (a) is better than (b), i.e.,
Q(d1, d1) < Q(d2, d2) if, and only if,

|γd1 | > |γd2 | . (21)

Proof. The condition (21) is a simple consequence of (18)
and (19).

Corollary 2. The estimate (c) is the best one, i.e.,
Q(d1, d2) < min (Q(d1, d1), Q(d2, d2)) if, and only if,

∣
∣
∣
∣
γd1

γd2

∣
∣
∣
∣ ∈

(
1
η0

, η0

)

, (22)

where η0 is the largest real solution of the equation η(η3−
2) = 1, i.e., 1/ηo ≈ 0.716 and ηo ≈ 1.396.

Proof. Observe that the relations between indices Q given
by (18)–(20) are not sensitive to the scaling of γd1 and γd2 .
Replacing γd1 and γd2 in (18)–(20) by γd1

= αγd1 and
γd2

= αγd2 , respectively, has the same influence on Q for
each of the variants (a)–(c) (i.e., Q = Q/α2). Therefore,
without any loss of generality, we can set α = 1/γd1 and
compare Qs for γd1

= 1 and γd2
= γd2/γd1 . The con-

dition (22) thus results from the solution of the following
system of inequalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +
γd2

1 + γ2
d2

(1 + γd2
)2

<
1
2
,

1 +
γd2

1 + γ2
d2

(1 + γd2
)2

<
1

2γ2
d2

,

with respect to γd2
.

Observe, in particular, that if γd1 = γd2 , we obtain
the best possible (25%) reduction of Q, i.e., Q(d1, d2) =
3
4Q(d1, d1).

6.2. Finite-Memory Integrator. For the Hammerstein
system with the linear dynamics of the form

γi =

{
1 if i < d,

0 if i ≥ d,

the output autocorrelation function is as follows:

ξy(τ) =

⎧
⎨

⎩

d − |τ |
d

if |τ | < d,

0 if |τ | ≥ d.

Since for |c1 − c2| ≥ d we obtain γc1γc2 = 0,
the tags c1 and c2 must not be shifted more than d, i.e.,
|c1 − c2| < d, and then

Q(c1,c2) =
1 +

d − |c1 − c2|
d

4
=

2 − |c1 − c2|
d

4
.

Observe, in particular, that for d large and
|c1 − c2| = d − 1 we obtain a 50% reduction of Q, i.e.,
Q(0, d − 1) = 1

2Q(0, 0).

6.3. ARX(1) Linear Dynamics. We shall show that,
in some cases, the application of the four-step procedure
from Section 5 as the classical kernel regression estimate
cannot be improved, independently of the c1 and c2 selec-
tion. Let us examine the Hammerstein system with sta-
ble ARX(1) linear dynamics (Hannan and Deistler, 1998),
i.e., the one described by the difference equation vk =
λvk−1 + wk, where 0 < λ < 1. Its impulse response is of
the form

γi = λi, i = 0, 1, 2, . . . ,∞.

For simplicity of presentation, assume that zk = 0,
Ewk = 0 and var wk = 1. In this case, we obtain the
following two families of methods:

(a) c1 = c2 = d, i.e., classical kernel regression esti-
mates based on the time-lag d = 0, 1, . . . ,∞, with
Q(d, d) = 1/2γ2

d;

(b) c1 �= c2, where c1, c2 ∈ {0, 1, . . .}, i.e., generalized
kernel estimates.

Corollary 3. The optimal choice of the time-lag in (a)
with respect to Q is d = 0.

Proof. It is sufficient to observe that Q(d, d) = 1/2λ2d

and arg mind Q(d, d) = 0.

Corollary 4. For each c1 ≤ c2, we have

Q(c1, c2) ≥ Q(c1, c1). (23)

Proof. We shall show that arg minc2 Q(c1, c2) = c1. For
c1 = 0, we have

Q(0, c2) =
1 + ξ(c2)
(1 + λc2)2

.

Since

var yk =
∞∑

i=0

λ2i =
1

1 − λ2
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and the output autocovariance function has the form

Ay(τ) =
∞∑

i=0

λ2i+τ =
λτ

1 − λ2
,

we obtain

ξ(c2) =
Ay(c2)
var yk

=
λc2

1−λ2

1
1−λ2

= λc2

and further

Q(0, c2) =
1 + λc2

(1 + λc2)2
=

1
1 + λc2

.

Consequently, we conclude that argminc2 Q(0, c2) =
0 = c1. The proof of (23) for c1 �= 0 can be conducted
following the same steps.

7. Simulation Examples

7.1. Example 1. For illustration, let us analyze the
Hammerstein system with {γi} = {1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, . . .}, μ(u) = atan u and uk ∼ U [−1, 1]. The
system output was disturbed by white random noise zk ∼
U [−0.1, 0.1]. Simple computations lead to the following
conclusions:

ξy(τ) =

⎧
⎪⎨

⎪⎩

10 − |τ |
10

if |τ | < 10,

0 if |τ | ≥ 10,

Q(c1,c2) =
1 + ξy(c2 − c1)
(γc1 + γc2)

2 =
2 − |τ |

10
4

→ min
c1,c2

,

arg min
|τ |=0,1,2,...,9

Q(c1,c2) = 9 → c∗1 = 0, c∗2 = 9.

We tested the performance of the four-step algorithm in
practice using N = 100 simulated data pairs {uk, yk}N

k=1,
and obtained the same results, i.e., c̃1 = c∗1 = 0, c̃2 =
c∗2 = 9. The sample mean square error (MSE) obtained
in the experiment (see Tab. 1) shows the superiority of the
combined estimate μ̂0,9( ) over μ̂0 and μ̂9( ).

Table 1. Sample mean square errors.

M̂SE �µ0(u = 0) M̂SE �µ9(u = 0) M̂SE �µ0,9(u = 0)

2.13 2.16 1.20

7.2. Example 2. Replacing the linear filter from Ex-
ample 1 with

γ =
{
1,

1
100

,
1

100
,

1
100

,
1

100
,

1
100

,
1

100
,

1
100

,
1

100
,

1
100

, 0, 0, 0, . . .
}
,

we obtain c∗1 = c∗2 = 0. The domination of the term
γ0 over the others reduces the improved estimate μ̂c1,c2( )
to its classical version μ̂c( ) (since the estimate μ̂0,0( ) is
equivalent to μ̂0( )).

7.3. Example 3. In the experiment described in Exam-
ple 1, the linear dynamics were replaced by the IIR filter
with the transfer function

K(z) =
z5 + 1

z5 − 0.5z4

(see the impulse response in Fig. 4(a)). For various num-
bers of data, the following aggregated estimation error
was computed:

AEE (M) =
1
P

P∑

p=1

(
μ̂M (u[i]) − μ(u[i])

)2

,

where u[1], . . . , u[P ] were deterministic equispaced esti-
mation points in the domain of μ( ). As Q̂ is minimal for
c1 = 0 and c2 = 5 (see Figs. 4(b)–(c)), we compared the
classical kernel regression estimate μ̂5( ) with μ̂0,5( ). The
estimation errors are presented in Fig. 4(d). It illustrates
the advantage of using the generalized approach also for
IIR systems.

8. Conclusions

A simple modification of the classical kernel regression
estimate in Hammerstein system identification makes it
possible to limit the influence of the “system noise” pro-
duced by the linear dynamics, and reduces the variance
of the estimate. The convergence conditions and asymp-
totic convergence rate are not changed. The only cost paid
for an increased accuracy is the fact that the computa-
tional complexity is a bit greater. In general, nonparamet-
ric methods are recommended when the nonlinear charac-
teristic cannot be expressed in a closed form including a
finite number of unknown parameters and hence paramet-
ric approaches cannot be applied. However, their good
properties appear asymptotically (for large M ). Hence, to
obtain a satisfactory accuracy a large number of collected
data is required. The main advantage of the strategy pre-
sented in the paper is the fact that, under the expected ac-
curacy, it allows us to apply nonparametric methods for
relatively smaller M in comparison with the classical ker-
nel regression. The generalized estimate is recommended
instead of the classical one independently of the number of
collected data. In addition, observe that the idea of averag-
ing nonparametric estimates with various time-lags can be
also applied to variance reduction in the orthogonal series
approach.
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(a)

(b)

(c)

(d)

Fig. 4. (a) Impulse response of the IIR filter, (b) estimated out-

put autocorrelation, (c) sample �Q versus c1 and c2, (d)
estimation error versus M .
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