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Some methods for the numerical approximation of time-dependent and steady first-order Hamilton-Jacobi equations are
reviewed. Most of the discussion focuses on conformal triangular-type meshes, but we show how to extend this to the
most general meshes. We review some first-order monotone schemes and also high-order ones specially dedicated to steady
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1. Introduction

This paper describes some of the schemes that are cur-
rently used to compute approximated solutions of first-
order Hamilton-Jacobi equations, namely, the steady
Dirichlet problem

H(x, u,Du) =0, x ∈ Ω ⊂R
d,

u =ϕ, x ∈ ∂Ω,

or the Cauchy problem

∂u

∂t
+H

(
x, u(x), Du

)
= 0, x ∈ R

d, t > 0,

u(x, 0) = u0(x).

In many problems of physical interest, one needs to
compute the solution of such an equation. One of the sim-
plest examples is the computation of a distance function,
more sophisticated examples include evaluating the arrival
time of a front (a wave front, a flame front, etc.) in a non-
homogeneous medium. Similar problems also appear in
control theory, thermodynamics, etc.

We will concentrate on the numerical approximation
of these equations on conformal triangular-type meshes.
This is a more general situation than for the standard
Cartesian meshes, where this problem was considered

originally, but still less general than the case of non-
conformal meshes. However, we sketch how to extend
the schemes we describe here to the most general case.
Indeed, the situation we consider is an intermediate one,
but it is general enough to be obliged to imagine solutions
that are not too specific so that the structure of the mesh
does not play too rigid a role.

In the first part, we briefly recall the notion of viscos-
ity solutions for HJ equations, either for the Cauchy prob-
lem or for the steady one with Dirichlet boundary condi-
tions. Then, in two particular cases, we recall the exact
solution. The next section is devoted to the numerical ap-
proximation of the Cauchy problem. In the third section
we discuss the approximation of the Dirichlet problem.
The fourth section considers a general formulation for a
high-order discretization. The bridge between Cartesian
and non-conformal meshes is sketched in the fifth sec-
tion. The last section is devoted to some numerical ap-
plications.

As we have already said, our point of view is quite
biased. There are basically two classes of approximation
techniques. The first one tries to directly use the notion of
viscosity solutions, see Section 2, and this is our point of
view. In the second class of methods, one tries to exploit
a formal link between some systems of conservation laws



404 R. Abgrall and V. Perrier

and HJ equations. The link is that if one differentiates the
equation

∂u

∂t
+H(Du) = 0

with respect to x and y, then setting

pi =
∂u

∂xi
, p = Du,

we have
∂pi

∂t
+
∂H

∂x
(p) = 0.

This is the point of view of the papers that extend fi-
nite volume or discontinuous Galerkin methods, see, e.g.,
(Osher and Shu, 1991).

2. Short Review of HJ Equations
and Viscosity Solutions

We consider the Cauchy problem: find u ∈ C0(Ω), the
space of continuous functions on the open subset Ω ⊂ R

d,
such that

H(x, u,Du) = 0, x ∈ Ω ⊂ R
d,

u = g, x ∈ ∂Ω
(1)

in the viscosity sense. In (1), (x, s, p) ∈ Ω × R × R
d �→

H(x, s, p) is uniformly continuous.
Before going further, let us briefly review the no-

tion of the viscosity solution for (1). For any function z,
we consider the upper semi-continuous (u.s.c) and lower
semi-continuous (l.s.c) envelopes of z with respect to all
variables. They are respectively defined by

z∗(x) = lim sup
x→y

z(y), z∗(x) = lim inf
x→y

z(y).

Following (Barles, 1994), we introduce the function G:

G(x, s, p) =

{
H(x, s, p), x ∈ Ω,
s− g(x), x ∈ ∂Ω.

The computation of G∗ and G∗ is easy and we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G∗(x, s, p)=G∗(x, s, p)=H(x, s, p) if x ∈ Ω,

G∗(x, s, p)=min
(
H(x, s, p), s− g(x)

)
if x ∈ ∂Ω,

G∗(x, s, p)=max
(
H(x, s, p), s− g(x)

)
if x ∈ ∂Ω.

(2)
A locally bounded u.s.c function u defined on Ω is a

viscosity sub-solution of (1) if, and only if, for any φ ∈
C1(Ω), if x0 ∈ Ω is a local maximum of u− φ, then

G∗
(
x0, u(x0), Dφ(x0)

)
≤ 0. (3)

Similarly, u, a locally bounded, l.s.c. function de-
fined on Ω is a viscosity super-solution of (1) if, and only

if, for any φ ∈ C1(Ω), if x0 ∈ Ω is a local minimum of
u− φ, then

G∗(x0, u(x0), Dφ(x0)
)
≥ 0. (4)

A viscosity solution is simultaneously a sub- and a
super-solution of (1). This can be generalized to other
types of boundary conditions such as Neumann, etc.

In the case of the Cauchy problem, we have

∂u

∂t
+H

(
x, u(x), Du

)
= 0, x ∈ R

d, t > 0,

u(x, 0) = u0(x),
(5)

where u0 belongs to the set of bounded and uniformly
continuous functions, BUC(R2). One can easily adapt
the arguments raised for the steady problem. Here, G is
simply

G(x, s, p) = pt +H(x, s, px), x ∈ R
d, s ∈ R

d,

p = (pt, px) ∈ R × R
d,

so that G∗ = G∗ = G. Sub-solutions (resp. super-
solutions) are elements of BUC(Rd × [0, T ]) where T >
0, so that (3) (resp. (4)) holds.

All this can be extended to the Cauchy–Dirichlet
problem

∂u

∂t
+H

(
x, u(x), Du

)
= 0, x ∈ Ω ⊂ R

d, t > 0

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = g(x, t), x ∈ ∂Ω, t > 0.
(6)

Under standard assumptions regarding the open sub-
set Ω, g and H and u0, one can prove the existence and
uniqueness of the viscosity solutions of (1), (5) and (6),
see (Barles, 1994). In particular, this is true if the Hamil-
tonian H is convex in p ∈ R

d and if ∂Ω is Lipschitz con-
tinuous.

In this paper, we assume that (1) has a unique-
ness principle, that is, any sub-solution u and any super-
solution v of (1) satisfy

u(x) ≤ v(x), ∀x ∈ Ω, (7)

and
u(x, t) ≤ v(x, t), ∀x ∈ R

d, t > 0, (8)

in the case of the Cauchy problem.

3. Some Exact Solutions

Two examples are considered. Either we look for the
steady problem (1) with a convex Hamiltonian, or we look
for the Cauchy problem (5) with either a convex (or con-
cave) Hamiltonian or a convex (or concave) initial condi-
tion.
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The main tool is the Legendre transform. If f is a
convex function such that

lim
‖x‖→+∞

f(x)
‖x‖ = +∞, (9)

we define the Legendre transform of f by

f�(p) = sup
y∈Rd

(
p · y − f(y)

)
.

If the supremum is reached at y�, we have the relation

f�(p) + f(y�) = p · y�.

This shows that f�(p) can be seen as the abscissa of the
tangent of the graph of f at y∗. This graphic interpretation
helps us to see that, if f is regular enough, the graph of f
is the envelope of its tangent, so that

(f�)� = f.

Of course, this relation is generalizable to convex f when
it satisfies (9).

All this generalizes to concave functions (since −f
is convex):

f�(p) = −(−f)�(p) = inf
y∈Rd

(
− y · p− f(y)

)
.

3.1. Steady Problem. We assume that the Hamiltonian
is given by

H(x, u, p) = sup
v∈V

{−b(x, v) · p+ λu− f(x, v)} ,

where the space of controls V is compact, and we have
standard assumptions on b, f and λ > 0, see (Barles,
1994). For the Dirichlet condition, the solution of (1) is
given by the dynamic programming principle. For any
T > 0, we get

u(x)

= inf
v(·)

[ min(T,τ)∫

0

f
(
yx(t), v(t)

)
e−λtdt

+1{T<τ}u
(
yx(T )

)
e−λT + 1{T≥τ}ϕ

(
yx(τ)

)
e−λτ

]
.

(10)

The trajectory yx(·) satisfies yx(0) = x ∈ Ω and

d
dt
yx(t) = b

(
yx(t), v(t)

)
for t > 0.

They are defined if f is regular enough, e.g., Lipschitz
continuous. The exit time τ is

τ = inf
{
t ≥ 0, yx(t) �∈ Ω

}
.

Details can be found in (Lions, 1982; Barles, 1994).

3.2. Cauchy Problem. Analytical formulas for the so-
lution of (5), when H only depends on p ∈ R

d, are given
in (Bardi and Evans, 1984).

1. When H is uniformly Lipschitz continuous and u0

convex, we have

u(x, t) = sup
p∈Rd

[
x · p− u�

0(p) − tH(p)
]
, (11)

and when u0 is concave, we get

u(x, t) = inf
p∈Rd

[
− x · p+ u�

0(p) − tH(p)
]
. (12)

2. When u0 is uniformly continuous, we have for a con-
vex Hamiltonian

u(x, t) = inf
y∈Rd

[

u0(y) + tH�

(
y − x

t

)]

, (13)

and for a concave Hamiltonian

u(x, t) = sup
y∈Rd

[

u0(y) + tH�

(
x− y

t

)]

. (14)

The formulas (11) and (12) reflect Huygens’s principle,
while (13) and (14) are consequences of the dynamic pro-
graming principle (10).

Note that if u0 is linear in x, then u0(x) = A+ p · x,
and we have

u(x, t) = u0(x) − tH(p).

These results are only valid for special initial condi-
tions or a particular Hamiltonian. We have the following
more general results:

Lemma 1. (Bardi and Osher, 1991) If u0 = uconv
0 +uconc

0 ,
where uconv

0 (resp. uconc
0 ) is convex (resp. concave), then

the solution u of (5) satisfies

ψ2(x, t) ≤ u(x, t) ≤ ψ1(x, t), ∀(x, t) ∈ R
d × [0, T ],

with

ψ1(x, t) = inf
q∈Rd

sup
p∈Rd

(
x · p−

(
uconv

0

)�(p)

−
(
uconc

0

)�(q) − tH(p− q)
)

and

ψ2(x, t) = sup
p∈Rd

inf
q∈Rd

(
− x · q −

(
uconv

0

)�(p)

−
(
uconc

0

)�(q) − tH(q − p)
)
.
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Proof. The proof uses the fact that

uconc
0 (x) = sup

p∈Rd

(
x · p−

(
uconc

0

)�(p)
)

so that for any p

uconc
0 (x) ≥ vp,0(x) := x · p−

(
uconc

0

)�(p).

Then we solve the Cauchy problem for v0 + u0 which
is convex, use the comparison principle (8), and take the
maximum. This gives the first inequality. The second one
is obtained in a similar way. �

Lemma 2. (Abgrall, 1996) If H = Hconv +Hconc, where
Hconv (resp. Hconc) is convex (resp. concave) uniformly
continuous, the solution of the Cauchy problem (5) satis-
fies

Φ2(x, t) ≤ u(x, t) ≤ Φ1(x, t)

with

Φ1(x, t)

= inf
q∈Rd

sup
y∈Rd

[

u0(y)+tH�
conv(q)+tH

�
conc

(
y − x

t
+q

)]

,

Φ2(x, t)

= sup
p∈Rd

inf
y∈Rd

[

u0(y)+tH�
conc(q)+tH

�
conv

(
x− y

t
+q

)]

.

The proof is similar and is given in (Abgrall, 1996).

4. First-Order Approximation of the
Cauchy Problem

For simplicity, from now on we assume that d = 2, but all
the results can be easily generalized to other dimensions,
in particular d = 3. We consider a triangulation of R

2

for which the vertices are {Mi}i=1,ns and the triangles
are {Tj}j=1,nt . We denote by T a generic triangle. The
vertices of Tk are Mi1 , Mi2 and Mi3 . For simplicity, we
often denote them by i1, i2, i3 or by 1, 2, 3 when there is
no ambiguity. The family of triangulations we consider is
shape regular.

Up to our knowledge, the first paper to discuss in de-
tail the approximation of (5) is (Crandall and Lions, 1984).
As in this reference, (5) is approximated by

un+1
i = un

i − ΔtHi, i = 1, . . . ns, n ∈ N
∗,

u0
i = u0(Mi), (15)

where Δt > 0 is the time step and un
i is an approxima-

tion of u(Mi, nΔt), and the numerical Hamiltonian Hi

depends on un
i , the values of un

j where j ∈ Vi (Vi is the
set of neighbors of Mi including Mi by convention), and
if necessary on Mi,

Hi := H
(
Mi, u

n
i , {un

i }j∈Vi

)
. (16)

In this reference the notion of consistency is intro-
duced. The numerical Hamiltonian Hi is consistent when,
if vi = A+ p · �OMi, then for anyMj and s ∈ R, we have

H
(
Mj , s, {vi}j∈Vi

)
= H(M, s, p). (17)

A less restrictive definition, which is helpful for the proof,
is given in (Barles and Souganidis, 1991),

Definition 1. We say that the Hamiltonian H is weakly
consistent if for all x ∈ Ω and φ ∈ C∞

b (Ω) (the set ofC∞

bounded functions)

lim sup
h→0,y→x,ξ→0

H
(
y, φ(y) + ξ, φ+ ξ

)

≤ G∗(x, φ(x), Dφ(x)
)

(18)

and

lim inf
ρ→0,y→x,ξ→0

H
(
y, φ(y) + ξ, φ+ ξ

)

≥ G∗
(
x, φ(x), Dφ(x)

)
. (19)

A scheme that satisfies (17) is said to be strongly consis-
tent. A strongly consistent scheme is weakly consistent.

The structure of the solution of (5) was first used
in (Bardi and Osher, 1991; Osher and Shu, 1991). In
particular, the results of Lemma 1 were used to define
a Godunov-like scheme. In (Abgrall, 1996), it is shown
that, in general, for non-structured meshes, the general-
ization of the Godunov-like scheme of (Bardi and Os-
her, 1991) leads to a non-consistent Hamiltonian. How-
ever, Lemma 2 provides a solution.

Assume that {un
j }j=1,...,ns is known and denote by

un
h the piecewise linear interpolation of these data. For

any mesh point Mi, we consider the set {Ωi}i=1,...,ωi of
angular sectors at Mi, see Fig. 1. Each angular sector
Ωi corresponds to one of the triangles that share Mi, and
we denote by Ui the gradient of un

h in that triangle. The

Ωi

Ωi+1

�ni+1/2

Mi

θi

Duh|Ωi+1/2
= Ui+1/2

Fig. 1. Illustration of the angular sectors Ωi, θi and
the vectors �ni+1/2 that are needed in numerical
Hamiltonians definitions.
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functions Φ1 and Φ2 evaluated at x = Mi are

Φ1(Mi,Δt)

= un
i −Δtmin

q∈R2
max

1≤k≤ωi

sup
z∈Ωk

(
Ui ·z−H∗

1 (z−q)−H∗
2 (q)

)
,

Φ2(Mi,Δt)

= un
i−Δtmax

q∈R2
min

1≤k≤ωi

inf
z∈Ωk

(
Ui·z−H∗

1 (z−q)−H∗
2 (q)

)
.

A key observation is that any of the terms multiplied
by Δt, e.g., min

q∈R2
max

1≤k≤ωk

sup
z∈Ωk

(Ui ·z−H∗
1 (z−q)−H∗

2 (q))

reduces to H(p) when Ui ≡ p, ∀i. Hence any of these
terms defines a consistent numerical Hamiltonian, for ex-
ample,

Hi := max
q∈R2

min
1≤k≤ωi

inf
z∈Ωk

(
Ui · z −H∗

1 (z − q) −H∗
2 (q)

)
.

(20)
The dependence on un

j , j ∈ Vi appears here in the
gradients Ui. This formula can be easily extended to the
more general case H = H(x, u,Du) and simplifies when
H is convex, e.g.,

Hi = max
1≤k≤ωi

max
z∈Ωi

(
Ui · z −H∗(z)

)
. (21)

Another observation is that, by construction, Hi de-
fined by (20) or (21) is monotone.

Definition 2. We say that H is monotone if, whatever
Mi ∈ Σ, uj ≤ vj , and for any s ∈ R

H
(
Mi, s, {uj}j∈Vi

)
≥ H

(
Mi, s, {vj}j∈Vi

)
.

The Hamiltonian (20) is monotone by construction
if Δt/hmax‖Du|T ‖∞≤L ‖DpH(p)‖∞ ≤ 1/2: this is a
consequence of (8) and the fact that Φ2 (and Φ1) can be
interpreted as the solution of an Hamilton Jacobi equation
that is introduced in the proof of Lemma 2, see (Abgrall,
1996) for details.

Another key observation is that the value of Hi de-
fined by (20) or (21) does not depend on the structure of
the mesh, but on the interpolant un. In other words, if
one splits an angular sector Ωk in two, without changing
the value of Uk, the numerical Hamiltonian is not modi-
fied. We say that the scheme is intrinsic and we have the
following error estimate:

Theorem 1. (Abgrall, 1996) Let H : R
2 → R

2 be
continuous and u0 ∈ BUC(R2) be Lipschitz continuous
(with constant L). Let T be a triangulation where h is the
largest radius of the circles with centersMi, i = 1, . . . , ns

and contained in all the triangles having the Mis as ver-
tices. We assume that the mesh is shape regular, i.e., the
minimum angle α of the triangles T is uniformly bounded
from below.

Let u be the viscosity solution of (5) and
{un

i }j=1,...,ns be defined by (15). Then there exists a con-
stant c which depends only on α, L, T > 0 and H such

that for any Mi and n with 0 ≤ nΔt ≤ T

|un
i − u(Mi, nΔt)| ≤ c

√
Δt

The proof is an adaptation of the main result of
(Crandall and Lions, 1984) with some technicalities (in
particular, for showing that the time step only depends on
u0) specific to unstructured meshes. We refer the reader
to (Abgrall, 1996).

The practical evaluation of the Legendre transform is
not always an easy task, so other numerical Hamiltonians
exist. The simplest one is the Lax-Friedrichs one, which
is inspired by the Lax-Friedrichs scheme for conservation
laws. It has several versions. The first one is

HLF
i (Duh|Ω1 , . . . , Duh|Ωki

)

= H(Ū) − ε

h

∮

Ch

[
uh(M) − uh(Mi)

]
dl, (22a)

where Ch (resp. Dh) is a circle (disk) with center Mi and
radius h,

Û =

∫

Dh

Duh dxdy

πh2
,

and ε is greater than any Lipschitz constant of H divided
by 2π. This defines a monotone scheme provided that
Δt/h ≤ ε/2π.

A different version of the Lax Friedrichs Hamil-
tonian, which is monotone under the same constraint, is
the following:

HLF
h (Duh|Ω1 , . . . , Duh|Ωki

)

=

∫

Dh

H(Duh)

πh2
− ε

h

∮

Ch

[
uh(M)−uh(Mi)

]
dl.

(22b)

This version can be rewritten as

HLF
h (Duh|Ω1 , . . . , Duh|Ωki

)

=
∑

0≤l≤ki

θi
l

2π
H(Duh|Ωi

l
)

+ε
∑

0≤l≤ki

tan θi
l

�ni
l−1/2 + �ni

l+1/2

2
·Duh|Ωi

l
.

The vector �nl+1/2 is the unit vector of the edge that sepa-
rates the angular sectors Ωl and Ωl+1, the angle θi

l is the
angle of the angular sector at Mi, see Fig. 1. The parame-
ter ε is the same as in the previous version.
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The third version is

HLF (Duh|Ω1 , . . . , Duh|Ωki
)

=

∑

T	Mi

|T |H(Duh|T ) + α
∑

Mj∈T

(ui − uj)
∑

T	Mi

|T | , (22c)

where α ≥ hT maxp ‖DpH‖, hT being the length of the
longest edge of T .

The main difference between these different formu-
las is that (22a) and (22b) are intrinsic in the sense given
in (Abgrall, 1996), while (22c) is not. Hence, follow-
ing the same reference, (22a) and (22b) are convergent
and the error estimate is O(h1/2). For (22c), such an er-
ror estimate is not available (at least when following the
technique of (Abgrall, 1996)), but the scheme is conver-
gent: this is a straightforward application of (Barles and
Souganidis, 1991).

The advantage of (22c) over the other two versions is
its simplicity in coding compared with (22a) and (22b).

5. Dirichlet Problem

The approximation of the Dirichlet problem is not as sim-
ple as it may seem. An illustration is the problem of find-
ing u : [0, 1] → R such that

|u′| − 1 = 0 in x ∈ [0, 1], u(0) = 1, u(1) = 2,

which has no classical solution, but whose viscosity so-
lution, defined only in [0, 1[, is u(x) = x. We have
lim

x→1−
u(x) = 1 �= 2. In other cases, e.g., u(0) = u(1) =

0, we have u(x) = |x− 1/2|, which matches strongly the
boundary conditions.

In order to define a scheme, we start from (10), and
consider a triangulation of Ω. First we assume that Mi ∈
∂Ω. In (10), the set of controls can be splitted into two
parts: the set V1 for which T < τ , and V2 for which T ≥
τ . Hence

u(x) = min
(

inf
v∈V1

[· · · ] , inf
v∈V2

[· · · ]
)
.

Let �n be the interior normal to Ω at x ∈ Ω. Since
T is arbitrary, it can be chosen as small as possible. In
the limit T → 0, the set V1 would be the set of controls
for which b(x, v) · �n > 0, i.e., the control for which the
trajectory goes into Ω. The dynamic programing principle
infv∈V1 [· · · ] − u(x) = 0 corresponds to the Hamiltonian

Hb(x, t, p) = sup
v∈V1

{
b(x, v) . p+ λt− f(x, v)

}
.

We also have the relation Hb ≤ H .
If T is small, the “inf” on V2 can be approximated

by ϕ(yx(τ)). Since T ≤ τ , provided that we can choose
controls for which T � τ , we get

ϕ
(
yx(τ)

)
� ϕ(x)

because ϕ is continuous. We see that, at a boundary point,
(10) can be approximated by

0 = max
(
Hb

i , u(x) − ϕ(x)
)
,

where Hb is a consistent approximation of Hb.
When Mi �∈ ∂Ω, taking T small enough, we can see

formally that the boundary plays no role, so that we can
take any consistent Hamiltonian, e.g., those defined in the
previous section.

The scheme is then

S(Mi, ui, {uj}j∈Vi) = 0, ∀i (23)

with

S(x, s, {uj}j∈Vi)

=

⎧
⎨

⎩

H
(
x, s, {uj}j∈Vi

)
if x �∈ ∂Ω,

max
(
Hb(x, s, {uj}j∈Vi), s− ϕ(x)

)
otherwise.

(24)

The scheme (23)–(24) can be extended to other types of
boundary conditions. There is an implicit dependence
of S with respect to h. We extend the definition of
S to any y ∈ Ω by saying that S(x, s, {uj}j∈Vj ) =
S(Mi, s, {uj}j∈Vj ) if x belongs to the dual control vol-
ume associated with Mi.

Theorem 2. (Abgrall, 2004) Assume that

1. Hb ≤ H ,

2. H, Hb are monotone and the solutions of (23) are
uniformly bounded,

3. for all φ ∈ C∞
b (Ω), we have the following:

(a) For any x ∈ Ω,

lim
h→0,y→x,ξ→0

H
(
y, ϕ(y) + ξ, ϕ+ ξ

)

= H
(
x, ϕ(x), Dϕ(x)

)
, (25a)

(b) For any x in a neighborhood of ∂Ω,

lim
h→0,y→x,ξ→0

Hb(y, ϕ(y) + ξ, ϕ+ ξ)

= Hb

(
x, ϕ(x), Dϕ(x)

)
, (25b)

4. Equation (1) satisfies a uniqueness principle.

Then the family uh defined by (24) converges locally uni-
formly to the solution of (1) in Ω.

Proof. The key argument of the proof is a convergence
result by Barles and Souganidis (1991). �

Unfortunately, this results is not sufficient to guar-
antee a “good” convergence. Take the example from the
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beginning of the section, a regular mesh (1/Δx = N+1);
the Godunov scheme that reduces here to

Hi = H(ui−1, ui, ui+1)

= max
(
|ui+1 − ui|

Δx
,
|ui−1 − ui|

Δx

)
− 1

and Hb = −∞. This amounts to setting u0 = 0 and
uN = 2. Theorem 2 applies but numerical experiments
indicate that the gradient of the solution is not bounded,
so that there is no hope to have a convergence like Δxα

with α > 0 reasonable.
In (Abgrall, 2004), this problem is studied and it is

shown that if H is convex, if the Godunov scheme con-
structed on the boundary Hamiltonian Hb is constructed,
and if a coercivity assumption holds forH ,Hb and the as-
sociated numerical Hamiltonian, then one can controlDu,
and in (Abgrall and Perrier, 2007) it is shown that the error
behaves like h−1/2. Similar error estimates (for Cartesian
meshes) were obtained in (Deckelnick and Elliot, 2004).

6. High-Order Extension

Up to now, all the examples have been only first-order ac-
curate schemes. There are several ways to construct high-
order schemes.

One possible construction is a consequence of the
following fact: The “Du” dependence in the Hamiltonian
comes from the term “{uj, j ∈ Vi}” in (16). More pre-
cisely, in all known examples, this dependence occurs
through differences, uj − ui for j ∈ Vj . These quanti-
ties can be rewritten in terms of the gradients of u in the
triangles surrounding Mi (this remark has already been
used in (22a)–(22c)). One can exploit this remark, as,
e.g., in (Osher and Shu, 1991), by modifying the evalu-
ation of the gradients in the triangles. Instead of a linear
interpolant, one can use higher-degree polynomials thanks
to the ENO/WENO methodology (Abgrall, 1996; Qiu and
Shu, 2005; Zhang and Shu, 2003).

Another solution is the discontinuous Galerkin strat-
egy (Hu and Shu, 1999; Li and Shu, 2005; Augoula and
Abgrall, 2000). We do not detail this technique here.

The last method is a mixed strategy (Abgrall, 2007).
The idea is to combine a low-order, monotone Hamil-
tonian (HM ) with a high-order consistent Hamiltonian
(HH). By “high-order” we mean that if u is a smooth
solution to (1), then

HH
(
Mi, ui, {uj}j∈Vi

)
= O(hk) (26)

for k > 1. The scheme is

H
(
Mi, ui, {uj}j∈Vi

)

= �iHM (Mi, ui, {uj}j∈Vi)

+ (1 − �i)HH
(
Mi, ui, {uj}j∈Vi

)
+ ε(h), (27)

where ε(h) = Chk for some positive constant C and �i is
chosen such that, if ri := HH

i /HM
i , we have

�i + (1 − �i)ri ≥ ε′(h), (28)

where ε′(h)−1ε(h) = o(1). We have the following lemma
whose proof is immediate:

Lemma 3. If HM and HH are strongly consistent, H
defined by (27) is weakly consistent.

The justification of (28) comes from the simple rela-
tion

H
(
Mi, ui, {uj}j∈Vi

)

=
(
�i+(1−�i)ri

)
HM (Mi, ui{uj}j∈Vi)+ε(h), (29)

from which, using once more the technique of the con-
vergence result of (Barles and Souganidis, 1991), one can
show the following result for the scheme (23)–(24), where
H is given by (27):

Theorem 3. (Abgrall, 2007) We consider the scheme (23),
where H in (24) is defined by (27). We assume that

1. HM , HH and Hb are strongly consistent,

2. HM and Hb are monotone Hamiltonians,

3. Hb ≤ H ,

4. the mixture parameter � belongs to [0, 1] and satisfies

r =
HH(x, uh(x), uh)
HM (x, uh(x), uh)

, �(x)+
(
1−�(x)

)
r ≥ ε′(h),

where the parameters ε(h) and ε′(h) satisfy
ε′(h)−1ε(h) = o(1),

5. there exists a unique solution uh of (23) that satisfies
an L∞ bound that is uniform in h,

6. Equation (1) has a uniqueness principle.

Then the family uh defined by the scheme converges lo-
cally uniformly to the solution of (1) in Ω.

Given constants α− ≥ 1, α+ > 0 and β > 0, an
exemplary mixture parameter is

� =

⎧
⎪⎨

⎪⎩

min(1, α−|r|) if r ≤ 0,
0 if 0 ≤ r ≤ β,

min
(
1, α+(r − β)

)
otherwise.

(30)

This is the one we have chosen in practical applications
with β = 0 and α+ = 1. Implementation details can be
found in (Abgrall, 2007).
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7. Links Between Cartesian and
Non-Conformal Meshes

It is not difficult to construct numerical Hamiltonians that
work on general non-conformal meshes. The only key
point is to construct monotone Hamiltonians. The con-
vergence results of (Barles and Souganidis, 1991) and
Theorem 2 can be easily adapted: a close inspection of
the proof shows that the structure of the mesh plays no
role. What matters is the problem of how to define, for
any mesh point Mi, a local interpolation π that oper-
ates on Ui := {uj}j∈Vj onto the space of piecewise lin-
ear functions, and such that if uj ≤ vj , j ∈ Vj , then
π(Ui) ≤ π(Vi).

Consider Fig. 2. The neighbors of Mi are
{Pi}i=1,...,8, from which we construct a local triangula-
tion (dotted lines) that is used to define a piecewise lin-
ear interpolant. It does not need to be continuous. Then

M

P1
P2

P3
P4

P5

P6

P7

P8

Fig. 2. Case of a non-conformal mesh.

we can use our Hamiltonians to define schemes that are
clearly consistent and monotone. The tricky part is the
choice of the neighbors. Figure 2 shows an extreme
case. A probably better choice would be to choose only
{P2, P3, P4, P5, P7} because the aspect ratio of the trian-
gles is larger.

Note that the Hamiltonians of (Osher and Shu, 1991),
thanks to this set of remarks, are particular cases of our
formula.

8. Numerical Results

In general, it is difficult to compute analytically the so-
lution of a first-order Hamilton-Jacobi equation, and the
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Fig. 3. Computational domain for the problem (31). Γ1 is the
inner circle with center (0, 0) and radius r = 1, Γ2 is
the outer circle (center (0, 0.5), radius r = 3).

situation is even worse when the Hamiltonian is not con-
vex (nor concave) because the analogy with hyperbolic
systems becomes looser in general. Hence it becomes
more difficult to assess the quality of numerical results.
To overcome this difficulty in a special case, we consider
H(p) = (‖p‖ − 1)3 and the problem

H(Du) = 0 on Ω,
u = 0 on Γ1,

u = 10 on Γ2

(31)

where Ω is displayed in Fig. 3. Since t �→ t3 is monotone
increasing, u is a solution of (31) if and only if it is a
solution of

‖Dv‖ − 1 = 0 on Ω,
v = 0 on Γ1,

v = 10 on Γ2.

(32)

The solution of (31) and (32) is the distance to Γ1.
In order to discretize (31), we write H = H1 + H2

withH1(p) = max(‖p‖−1, 0
)3

andH2(p) = min(‖p‖−
1, 0

)3
. These functions are respectively convex and con-

cave. The numerical Hamiltonian is the Lax-Friedrich one
and the boundary Hamiltonian is Godunov’s. The numer-
ical solution is displayed in Fig. 4(a). The solution of (32)
with the Godunov Hamiltonian is provided in Fig. 4(b). A
comparison reveals that they are (almost) identical.

Another application of the boundary conditions is
given by the approximation to the following problem on
the same geometry:

H(Du) = 0 on Ω,
u(x, y) = 0 (x, y) ∈ Γ1,

u(x, y) = 3 cos(2πx) (x, y) ∈ Γ2.

(33)

Since H is not convex, it is difficult to assert a priori what
would be the value of the solution on the boundary. The
computed solution is given in Fig. 5(a). It can be seen that
the solution satisfies strongly the boundary condition on
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(a) (b)

Fig. 4. Computed solutions:
(a) Problem (31), min = 0, max = 1.48,
(b) Problem (32), min = 0, max = 1.504.

Γ2 and only weakly on Γ1 (in contrast to the previous ex-
ample). Note, however, that they have been numerically
weakly imposed on Γ1 and Γ2. The solution is also in very
good agreement with the one obtained from the discretiza-
tion of

‖Dv‖ − 1 = 0 on Ω,
v(x, y) = 0 (x, y) ∈ Γ1,

v(x, y) = 3 cos(2πx) (x, y) ∈ Γ2,

(34)

which is displayed in Fig. 5(b).

(a) (b)

Fig. 5. Computed solutions:
(a) Problem (33), min = −3, max = −1.53,
(b) Problem (34), min = −3, max = −1.47.

We also show how the high-order extension of Sec-
tion 6 works when the Godunov solver is employed with
P 2 interpolation for the high-order scheme. The zoom is
displayed in Fig. 6. Clearly, a very large overshoot ex-
ists where u is not C1. There the solution of the blended
scheme is monotone and very similar to the first-order
one. In the smooth part of the solution, the second-order
and mixed schemes are very similar (the results by the
mixed scheme are slightly more dissipative than those of
the second-order unlimited scheme).

The last figure shows that our implementation of the
boundary conditions is effectual if we impose strongly the
boundary conditions, as in Fig. 7(a). This has to be com-

O1.desc

u,  min = -3,  max = -1.993

O2.desc

u,  min = -3,  max = 23.25

O2blend.desc

u,  min = -3,  max = -1.996

Fig. 6. Comparison of the solution of the problem (34) with
several schemes. (Blue: first-order scheme, min =
−3, max = −1.993, green: second-order unlimited
scheme, min = −3, max = 23.25, red: second-order
mixed scheme, min = −3, max = −1.996.)

(a) (b)

Fig. 7. (a) Solution of the problem (34) when the bound-
ary conditions are imposed strongly, (b) mesh.

pared with Fig. 5. Figure 7 shows that there is a strong
boundary layer in parts of the outer boundary (where the
isolines bunch). This is not true for Fig. 7(a). In fact, in
some parts of the outer boundary, the compatibility con-
dition of (Lions, 1982) is true, so that one can impose the
boundary conditions strongly, and in other parts this is not
true and we have to apply them weakly. This partition of
the boundary is not known a priori: our implementation
takes this into account automatically.

9. Conclusions

We have described several techniques for the solution of
first-order Hamilton-Jacobi equations. We attempted to
explain the hidden details and the origins of the schemes.
Several theoretical results were provided and the proofs
were given in the references. Once more, there are many
other methods for solving these problems. Some are very
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general and some are specially tuned for a specific exam-
ple such as computing a distance function, which is one of
the key ingredients of the level set method.
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