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We develop a new multidimensional finite-volume algorithm for transport equations. This algorithm is both stable and
non-dissipative. It is based on a reconstruction of the discrete solution inside each cell at every time step. The proposed
reconstruction, which is genuinely multidimensional, allows recovering sharp profiles in both the direction of the trans-
port velocity and the transverse direction. It constitutes an extension of the one-dimensional reconstructions analyzed

in (Lagoutiere, 2005; Lagoutiere, 2006).
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1. Introduction

The present study' concerns reconstruction schemes for
transport equations. We are especially interested in
schemes that are not dissipative, in particular for initial
conditions with discontinuities. This motivates us to con-
sider reconstructions that are not smooth, in contrast to
the usual reconstructions. Indeed, we develop a scheme
which consists in reconstructing the constant-in-cell da-
tum as a discontinuous (inside each cell) function.
Typically, the goal is to develop transport schemes
for mass or volume fractions in multi-fluids. These frac-
tions can be discontinuous (at interfaces between compo-
nents) or continuous (in mixing zones). A former algo-
rithm was already developed in (Després and Lagoutiere,
2007). In one dimension it was based on the limited down-
wind scheme (equivalent to the Ultra-bee limiter for ad-
vection with constant velocity), and the multidimensional
algorithms were obtained via an alternate direction split-
ting strategy. The results are satisfying, in particular for
interfaces (see results in the cited reference for interface
instabilities in two and three dimensions). The main draw-
back of this method is precisely the dimensional splitting,

' This work was partially supported by CEA/DIF
Bruyeres-le-Chétel.

which prevents the algorithm from being used on non-
Cartesian grids.

Here we present a way to generalize the limited
downwind scheme to the case of a general triangular
grid. It is based on the geometrical approach followed
in (Lagoutiere, 2005; Lagoutiere, 2006), which provided
a new interpretation of the limited downwind algorithm in
terms of reconstruction schemes.

The paper is organized as follows: Sections 2 and 3
present the mathematical and numerical problems and the
notation. Then we recall the reconstruction procedure
leading to the limited downwind scheme in one dimension
(Section 4). In Section 5, the main subject of the paper is
addressed, namely, the extension of the preceding proce-
dure to more dimensions. The presentation deals with two
dimensions. Finally, Section 6 presents numerical results.

Nowadays, the most efficient algorithms for pure
transport rest upon interface reconstruction, see, e.g.,
SLIC and Youngs’ method (Noh and Woodward, 1976;
Youngs, 1984) and Mosso’s method (Mosso and Cleancy,
1995), which constitutes a recent promising enhancement.
These methods are essentially limited to Cartesian grids.
Here we try to derive a truly multidimensional reconstruc-
tion algorithm.
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2. Model Problem

The model considered is the linear transport equation with
constant (given) velocity

Owu(t, x) + div (au) (¢, z)
= dwu(t,r) +a  Vyu(t,z) =0 for t>0, (1)

u(0,-) = u® € L>®(R?),

where a is a smooth divergence-free velocity field:
diva(t,z) = 0 forall (¢,z) € RT x R2,

The main issue for the numerical treatment of this
PDE problem is the numerical diffusion. This phenom-
enon, easily understandable in one dimension, is much
more complex in more dimensions. It is going to be de-
composed into two different types of diffusion. The dif-
fusion of the first type, which will be called the longitu-
dinal diffusion is the one that occurs in the direction of
the velocity. It is the diffusion which is present in classi-
cal one-dimensional algorithms. The diffusion of the sec-
ond type, i.e., the so-called transverse diffusion, is typi-
cally multidimensional and is due to the fact that the mesh
may not be aligned with the velocity. This distinction be-
tween the two phenomena could appear arbitrary, but is
in accordance with the numerical tests. It is illustrated in
Figs. 2 and 3 representing numerical solutions obtained
with the classical upwind scheme on a square mesh with
the characteristic function of a square as the initial condi-
tion (Fig. 1). The transport velocity is a = (1, 0) (aligned
with the mesh) for Fig. 2 and a = (1,1) (diagonal, not
aligned with the mesh) for Fig. 3, and the boundary con-
ditions on [0, 1]? are periodic. The results are displayed
for time ¢t = 1 (after one period).

The difference between longitudinal and transverse
diffusions appears clearly in (Després and Lagoutiere,
2001), which was a previous attempt to elaborate non-
dissipative schemes on non-Cartesian grids. Based on
one-dimensional techniques, the schemes derived from
this work were longitudinally anti-dissipative, but not
transversely.

The new method described here is based on an in-
terpretation of the (anti-dissipative) limited downwind
scheme which was proposed in (Lagoutiere, 2006) (pre-
vious works are (Després and Lagoutiere, 2001; Després
and Lagoutiere, 2007)). This paper shows that the limited
downwind scheme (in one dimension) can be understood
as a reconstruction scheme, decomposed into three stages
at each time step:

e a reconstruction stage, which, starting from a
constant-in-cell datum, constructs a new datum, pre-
senting in each cell one discontinuity that separates
two constant values,

e a transport stage, which solves the transport opera-
tion with the new datum,

Fig. 2. Upwind scheme: a = (1,0), aligned with the mesh.
Time ¢ = 1. The longitudinal diffusion applies in the
direction of transport. There is no transverse diffusion.
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Fig. 3. Upwind scheme: a = (1, 1), not aligned with the mesh.
Time ¢ = 1. The diffusion which applies orthogonally
to the transport direction is brought to light.

e a projection stage, which computes the mean value
of the transported datum in each cell,
(see Section 4 for details of the reconstruction stage).

A natural extension of the multidimensional trans-
port problem consists in reconstructing the datum in two
steps: in the first step, a transverse reconstruction is per-
formed, and the second step includes a longitudinal recon-
struction. This is the technique which is proposed in this
work. The following describes precisely these two opera-
tions.

3. General Numerical Formalism

This is one of finite volume methods for the problem (1).
We consider a mesh of R? composed of non-empty open
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triangles () ;,, such that U, T, =R%?and T;NT; = ()
for every i, every j # 4. For each cell T} (for j € Z), we
denote by K () the set of indices of neighbouring cells of
T} (that is to say, cells having a common edge with T}),

K(j) = {k € Z\ {j} s.t. measy (T; N T) >0},

where meas; denotes the Lebesgue measure in one dimen-
sion. For j € Z and for k € K (j) (T; and T} have an edge
in common), we denote by /; ;. the length of the common
edge,

ljx = measy (T; NTy) ,

and by n;  the unit vector normal to the common edge
outward to T%. We thus have I, = I j and n;, = —ny ;
for every j € Z and every k € K (j). We then denote by
K (j) the set of the indices of the downwind neighbours
of Tj, and by K~ (j) the set of the indices of the upwind
neighbours of T};:

K*(j) = {k € K(j) st. (a,njx) > 0},
KT(j) = {k € K(j) st (a,n;) < 0}

k,l,m e K(j)
k,le Kt (j)
m e K~ (j)

Fig. 4. Mesh and notation.

Let s; denote the surface of the cell T:
s; = measy (T}),

where measy denotes the Lebesgue measure in two dimen-
sions. The general form of the schemes considered here is
obtained by choosing a time step A¢ > 0 and by integrat-
ing the transport equation (1) over [nAt, (n+ 1)At] x Tj:

o
7_’__

n n
A 5 > L@y eugy,

K*()

+ Z lj,k(a;},kanj,k)uzk =0. (2
K=(j)

In this formula, the quantities a7/, are approximate
values of the given velocity a(¢, z) on the edges and the
u7 s are approximate values of the solution on the edges
between times nAt and (n-+ 1)At. The upwind scheme is
obtained taking v}, = u} for k € K*(j) and u}, = u}
for k € K (j). We shall propose another definition of
these numerical fluxes, intended to provide more precise
numerical results.

4. Discontinuous Reconstructions
in One Dimension

In the following, for any a, b € R, (a, b) denotes the inter-
val [a, b] if @ < b and the interval [, a] otherwise, i.e., we
adopt the convention

(a,b) = [min(a,b), max(a,b)],

and one has (a,b) = (b, a).

Here we recall the principle of discontinuous recon-
struction schemes in one dimension. Details and proofs
can be found in (Lagoutiere, 2005) with (Lagoutiere,
2006). We consider a mesh (on R) with a constant space
step Az > 0 whose cells are the intervals T; = ((j —
1/2)Az, (j + 1/2)Ax) for j € Z. In (Lagoutiere, 2006),
it is shown that for the transport equation

Oru + alyu = 0,

the limited downwind scheme of (Després and Lagoutiere,
2001) is equivalent to the following three-stage scheme.
Let (u?)jez be a discrete datum (associated with a

constant-in-cell function).

1. In each cell “reconstruct” the discrete datum in a
form with more details (not constant) following the
algorithm detailed above.

2. Perform the (exact) transport of this reconstructed
datum at velocity a for a time At.

3. “Project” the computed solution to obtain a new
constant-in-cell datum and to be able to iterate these
three operations.

It now remains to describe the reconstruction opera-
tion, the other two being trivial.
Let (u?)jEZ be given. We define the discrete func-

tionW(z) = Y- ey UFX((j—1/2)Ax,(j+1/2)Ax) (). The al-
gorithm is defined as follows:

o ifu ¢ (uj_q,uly ), ie.,if uj i.s a local extremum,
we do not reconstruct the datum in the cell T},
o if u} € (uj_q,uj), we define

j—1
n _ .n
Ujp = Uj—1
n _ n
A 3)
n J—
a" Ujpr — Uy
- on n ’
Ujpr = Ujq

@amcs
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and the reconstructed datum is defined inside 7} by

uzl

R ifz € [(j—1/2)A, (j—1/2+d})Az),

() =
u?T

if z € [(j—1/2+d}) Az, (j+1/2)Ax).

Notice that when u} € (u}_;,u?, ), the formula (3) is
well defined. In particular, the denominator in the defi-
nition of dj is non-zero. More precisely, one always has
d} € (0,1),sothat (j —1/2+d})Az € T}. Furthermore,
another essential property of thlS reconstruction is that it
is conservative: dju?; + (1 — d})uj, = uf.

Of course, other values for v, and w7}, are admis-
sible, but this choice leads to the most anti-dissipative
scheme (under the constraints of L°° stability and a de-
crease in the total variation, cf. (Lagoutiere, 2006)). At
last, notice that not to reconstruct the datum is equivalent
to take u7; = u7, = uj and gives the Godunov (upwind)
scheme. The discontinuous reconstruction is illustrated in
Fig. 5.
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Fig. 5. Discontinuous reconstruction.

5. Discontinuous Reconstructions
in Two Dimensions

The two-dimensional extension is not obvious. The gen-
uine two-dimensional nature of the problem, due to the
choice of a non-Cartesian grid, leads to the fact that the
finite-volume method (2) cannot be seen as an exact Go-
dunov one (which would be composed of an exact trans-
port step, preceded by a reconstruction or not, and fol-
lowed by a projection on the mesh) since only edge fluxes
are taken into account, except for node fluxes. In order to
separate the problems of longitudinal and transverse dif-
fusion (see Section 1), we propose to perform the recon-
struction in two steps, each being a one-dimensional re-
construction. In order to simplify the presentation, let us
assume that a is constant in time and space. Let (

7 ez
be a discrete datum at time step n.

The first (tranverse) reconstruction boils down to split-
ting some cells in the direction of the velocity and modify-
ing the value of the datum in each of these two sub-cells.
The cell T} has at least one downwind neighbour and at

most two (thanks to the divergence-free hypothesis). If it
has only one downwind neighbour, we do not perform the
transverse reconstruction (we do not split the cell). Let
us now assume that T; has two downwind neighbours, T},
and T7;. It has then one upwind neighbour, 7,,,. We con-
sider the intersection point of the two edges relative to the
downwind neighbours and cut T} along the line passing
through this intersection point and parallel to a. The two
induced sub-cells are denoted by T 1, and T7 ;: T} 1 has T},
as its downwind neighbour, and 7’ ; has T; as a downwind
neighbour. This cutting is illustrated in Fig. 6.

Fig. 6. Transverse reconstruction.

We denote by s;; and s;; the surfaces of the cells
T} 1 and T7 ;, respectively. Of course, one has s; . +5;,; =
85,85, > 0and s;; > 0.

We now have to assign each sub-cell a value of the
reconstructed solution. The adopted principle is quite sim-
ilar to the one in one dimension, except that the locus
of the discontinuity is determined by the geometrical as-
pect and not the local values of the datum: it is the line
parallel to a defined just above. The aim is to define
a value uf, in the cell T}, and a value w7, in the cell

T;1 by maxumzmg |u - uy k| (to guarantee the anti-
dissipativity) and assuring that s, KU g+ Sj0uf, = sjuf
(to guarantee the conservativity). On the other hand, fol-
lowing the same rules as in one dimension, we impose
the condition that the triplet {7’ u”!;, u7 , } have the same
monotonicity property as the pair {u;’,u} and that the
triplet {u” DU s u}} have the same monotonicity prop-
erty as the pair {u,uy }. These constraints imply in par-
ticular that the datum in T; would not be reconstructed if
u} was a local extremum in the transverse direction. The
algorithm is as follows:

o if u? ¢ (up,up’) (if u} is a local extremum in the
transverse direction), we do not reconstruct 7 in the
(3 n o _ ,n _ ,n
cell T (i.e., ul; = uj = uj ),

o if ul € (up,up),



Genuinely multi-dimensional non-dissipative finite-volume schemes for transport

—if (sjul —sjup’)/sjk € [}, up], we define

n __ ..n
Wy = Uiy
n o __ n n .
Ujpe = (Sjuj — 85,0u1")/Sjk ;
—if (sjul — sjrup)/sji € [u},u}], we define
Ujp = (SJuj 85,kUL)/ S5 15
n _ n
uj,k = Uy,
Lemma 1. The Courant-Friedrichs-Lewy (CFL) con-

dition on the time step is not degraded by the transverse
reconstruction.

Proof. The standard condition for the upwind scheme for
the cell 7} is

> lik(angk)
KeKT (5)

At <1

= 1

S5
i.e., in the studied case,

Lik(a,mgx) + (@, ni)
Sj

At

<L “)

The CFL condition for the sub-cells 77, and T} ; is

adir@nin) oy La(an)

Sj.k Sj,l

<L (5

Denote by [; the length of the segment separating
T and T} ;:

lj = mes; (mmﬁ) :
One has

_ L xe(ange) _ i xLa(anga)
Sjvk - 2 ) SjJ - 2 )

i x (Lik(aynik) +Li(a,n;
S5 = Sjk T S50 = i < Ujk(a, 1162) ii(a, J,l)).

The two inequalities of (5) and the inequality (4) can thus
be rewritten as
2At

— <1
lj =

as they are equivalent. M

Remark 1. Once the solution is reconstructed, its trans-
port is related to one-dimensional transport since T ; and
T} x have only one upwind and one downwind neighbour:
T,,, T; and T,,, T}, respectively. When T} has only
one downwind neighbour, we do not perform the trans-
verse reconstruction and can consider the problem as one-
dimensional, performing (virtually) the cutting but assign-
ing the value u to each sub-cell.

After this transverse reconstruction, the algorithm is
more classical, which builds on the fact that the transport
is one-dimensional, as noticed in Remark 1. We can thus
use the algorithm of our own choice. In the following, we
focus our attention on the limited downwind one. This can
also be understood as a second longitudinal reconstruc-
tion.

6. Numerical Results

We present a few results obtained with the algorithm de-
scribed above. Translation and rotation velocity fields
are used. For all the test-cases, the spatial domain is
[0,1]2. The triangular mesh was generated by the soft-
ware FreeFem++, see Fig. 7.

Fig. 7. Examplary Freefem++ mesh used for the
numerical tests (here, 3766 triangles).

For all the test-cases, the Courant number
At
max — liw(a,n;
R > | ik (2,75 k)
keEK*(j)

takes the value 0.1.

6.1. Translation Field

Translation of a square. Here we consider the velocity

1

a(t,z,y) =
1

This first test is the translation of the characteristic func-
tion of a square,

Uo(x, y) = X[0.3,0.7]2(~T73/)-

The boundary conditions are periodic in « and y. The
initial condition and results at time ¢ = 1 (after one revo-
lution) are reported in Fig. 8, and Fig. 9 reports the result
for the upwind scheme.

@amcs
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Fig. 10. Rotation of a square with 5874 cells.

where
Z=C\D

with
C={(z,y): (x—0.5)*+ (y — 0.75)* < 0.0225},
D ={(z,y): |z — 0.5 <1/40and y < 17/20}.
The initial condition and results computed with 5874 cells
at time ¢ = 1 are displayed in Fig. 11. Then, Fig. 12

represents the same for a mesh made of 23618 cells, and
Fig. 13 for a mesh composed of 94472 cells.

Fig. 9. Translation of a square with 5874 cells,
the upwind scheme.

6.2. Rotation Field

Rotation of a square. Here the velocity field is

2y
a(t,z,y) = ( . )

and the initial condition is the same as in the preceding
test. The final time is £ = 1. Figure 10 presents the result.

Zalesak’s test case. The velocity field is the same as in
the preceding test, i.e.,

Fig. 11. Zalesak’s test case with 5874 cells.

2y
alt.z.y)=|{
T Deformation of a rectangle. The velocity field is now

and the initial condition is taken from the original paper tme varying:

(Zalesak, 1979):

a=sgn(l—1) ( 3y = 0.5)" ) ;

u®(2,y) = xz(z,y), —3n(z — 0.5)
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Fig. 12. Zalesak’s test case with 23618 cells.

Fig. 15. Numerical solution with 5874 cells at time ¢ = 1.

Fig. 13. Zalesak’s test case with 94472 cells.

which means that at time ¢ = 1 the field is reversed. The
initial condition is the characteristic function of a rectan-
gle:

uo(ﬂf, y) = X[0.2,0.7] x[0.45,0.55] (z,9)-

The exact solution at time 2 coincides with the initial con-
dition.

‘We observe the initial condition (Fig. 14) and the re-
sults at time ¢ = 1 (Fig. 15) with 5874 cells and, finally,
the result at time ¢ = 2 with 5874 cells (Fig. 16), 23618
cells (Fig. 17) and 94472 cells (Fig. 18). The result pro-
duced by the upwind scheme with 94472 cells is reported
in Fig. 19.

Fig. 14. Initial condition with 5874 cells.

Fig. 18. Numerical solution with 94492 cells at time ¢t = 2.
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Fig. 19. Numerical solution with 94492 cells
at time ¢t = 2, the upwind scheme.

7. Final Comments

We developed a new method for numerical transport in
two dimensions. The approach is truly multidimensional
in the sense that is does not refer to a one-dimensional
reconstruction of interfaces. The numerical results show
the anti-dissipative behaviour of the algorithm. The re-
sults are nevertheless not perfect. Indeed, the disconti-
nuity lines may be degraded in a long time horizon (see
Figs. 11-13).

The next study will concern the extension to general
meshes (non-triangular) and three dimensions, as well as
to an application to gas dynamics equations.
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