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Patch substructuring methods are non-overlapping domain decomposition methods like classical substructuring methods,
but they use information from geometric patches reaching into neighboring subdomains, condensated on the interfaces, to
enhance the performance of the method, while keeping it non-overlapping. These methods are very convenient to use in
practice, but their convergence properties have not been studied yet. We analyze geometric patch substructuring methods
for the special case of one patch per interface. We show that this method is equivalent to an overlapping Schwarz method
using Neumann transmission conditions. This equivalence is obtained by first studying a new, algebraic patch method,
which is equivalent to the classical Schwarz method with Dirichlet transmission conditions and an overlap corresponding
to the size of the patches. Our results motivate a new method, the Robin patch method, which is a linear combination
of the algebraic and the geometric one, and can be interpreted as an optimized Schwarz method with Robin transmission
conditions. This new method has a significantly faster convergence rate than both the algebraic and the geometric one. We
complement our results by numerical experiments.

Keywords: Schwarz domain decomposition methods, Schur complement methods, patch substructuring methods, opti-
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1. Introduction

Substructuring methods are historically non-overlapping
domain decomposition methods (Le Tallec, 1994; Quar-
teroni and Valli, 1999; Smith et al., 1996; Toselli and Wid-
lund, 2004). Patch substructuring methods are also non-
overlapping domain decomposition methods, but they use
information from within neighboring subdomains through
geometric patches reaching into the neighboring subdo-
mains, before being condensated algebraically onto the
interfaces to obtain a non-overlapping method.

The idea of patch substructuring methods has its
roots in the theory of optimized Schwarz methods, which

were developed at the continuous level in (Japhet, 1998)
for advection diffusion problems, and in (Chevalier and
Nataf, 1998) for Helmholtz problems, based on the non-
overlapping method first introduced in (Lions, 1990).
These methods use as transmission conditions approxi-
mations of the Steklov-Poincaré operator at the interfaces
between subdomains, which greatly enhances their perfor-
mance. For a complete review of the historical develop-
ment of these methods, and results for symmetric positive
definite problems, see (Gander, 2006). Patch substructur-
ing methods are the discrete analog of optimized Schwarz
methods: they use approximations of the Schur comple-
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ment condensated on the interfaces between subdomains
to enhance the performance of the method. If the entire
Schur complement is used, optimal iteration numbers can
be achieved like at the continuous level with the Steklov-
Poincaré operator, see (Magoulès et al., 2004b). Ap-
proximations are, however, obtained differently, namely,
by computing approximate Schur complements based on
patches. We call this original patch method the geo-
metric patch method, since it uses the underlying finite
element mesh to define the patches. So far, conver-
gence properties of patch substructuring methods have not
been studied, but numerical experiments in (Magoulès et
al., 2005; Magoulès et al., 2006) showed that the addition
of these patches significantly enhances the performance of
the domain decomposition method, and is easily achieved
in practice, provided the geometry of the discretization is
known.

In this paper we show that a particular case of the
geometric patch method, namely, the case of one patch
per subdomain interface leads to an algorithm equivalent
to an overlapping Schwarz method with Neumann trans-
mission conditions at the new interface locations defined
by the end of the patches. This equivalence is obtained
by first studying a new patch method, which we call the
algebraic patch method, which is equivalent to the clas-
sical Schwarz method with Dirichlet transmission condi-
tions, see (Lions, 1988; Schwarz, 1870). Algebraic patch
methods can be constructed without geometric informa-
tion from the underlying mesh, directly based on the ma-
trix, and their convergence depends on the size of the
patches, which represents the overlap of the equivalent
classical Schwarz method, see, e.g., (Smith et al., 1996).
Hence algebraic patch substructuring methods converge
independently of the mesh parameter if the patch size is
constant in physical space. The same seems to be true
for the geometric patch method, as indicated by the nu-
merical results in this paper. While one can prove this for
simple model problems by Fourier analysis, to our knowl-
edge currently there is no convergence theory for Schwarz
methods with Neumann transmission conditions.

Our results motivate a new, third patch method,
namely, a linear combination of the algebraic and the geo-
metric one, which we call the Robin patch method. It
can be interpreted as an optimized Schwarz method with
Robin transmission conditions at the end of the patch,
which, following the developments of optimized Schwarz
methods, yields significantly faster convergence rates than
both the algebraic and geometric patch methods.

This paper is organized as follows: In Section 2, we
present the decomposition of a model problem into sub-
problems, and show the equivalence of the decomposed
problem and the original one. In Section 3, we present
an entire family of substructuring methods, and show that
an optimal algorithm would need to involve Schur com-
plements. In Section 4, we present the geometric and al-

gebraic patch methods, and analyze the particular case of
one patch per subdomain interface by showing its equiv-
alence to Schwarz domain decomposition methods. We
also introduce the new idea of Robin patch methods. We
show numerical experiments in Section 5 which confirm
our analysis, and also indicate the great potential of the
new Robin patch method. We conclude in Section 6 with
a summary and a discussion of open problems.

2. Domain Decomposition

To fix ideas, we consider the model problem

L(u) = f in Ω ⊂ R
2, (1)

where L is a second-order elliptic operator. We assume
that this problem is completed with suitable boundary
conditions which lead to a well-posed problem. Discretiz-
ing (1) by a finite element or finite difference method leads
to the discrete problem

Ku = f , (2)

where K is the stiffness matrix, u is the discrete approxi-
mation of the solution u, and f is the discrete approxima-
tion of the right-hand side f .

To keep the notation simple, and without loss of
generality, we decompose the domain Ω into two non-
overlapping subdomains Ω1 and Ω2 only, as shown in
Fig. 1. At the discrete level this decomposition leads to

Ω

Ω1
Ω2

Γ Γ1Γ2

P1P2

Fig. 1. Non-overlapping domain decomposition,
with patches P1 and P2.

the matrix partitioning
⎛
⎜⎝

K1 K1Γ

KΓ1 KΓ KΓ2

K2Γ K2

⎞
⎟⎠

⎛
⎜⎝

u1

uΓ

u2

⎞
⎟⎠ =

⎛
⎜⎝

f1

fΓ

f2

⎞
⎟⎠ , (3)

where uΓ corresponds to the unknowns on the interface
Γ, and uj , j = 1, 2 represent the unknowns in the interior
of the non-overlapping subdomains Ω1 and Ω2. In a finite
element discretization, it is natural to split the interface
matrix KΓ into two parts, KΓ = K1

Γ + K2
Γ, where K1

Γ

represents the contribution of the elements to the left of
the interface Γ, and K2

Γ the contribution of the elements to
the right of the interface Γ. Similarly, also the right-hand
side vector on the interface can naturally be split into two
parts, fΓ = f1

Γ + f2
Γ. For discretizations other than finite
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elements, such a splitting is less natural, but other split-
tings could be used, as we will see later. The following
theorem shows the equivalence of an entire class of de-
composed problems to the underlying original problem,
see (Magoulès et al., 2004b):

Theorem 1. For any splitting of the form KΓ = K1
Γ+K2

Γ

and fΓ = f1
Γ + f2

Γ, and for all matrices A1 and A2 of
size of the matrix KΓ, there is one and only one λ1, λ2

such that the decoupled problems
(

K1 K1Γ

KΓ1 K1
Γ + A1

)(
u1

uΓ1

)
=

(
f1

fΓ1 + λ1

)
, (4)

(
K2

Γ + A2 KΓ2

K2Γ K2

)(
uΓ2

u2

)
=

(
fΓ2 + λ2

f2

)
, (5)

together with the coupling conditions

uΓ1 − uΓ2 = 0,

λ1 + λ2 − A1uΓ1 − A2uΓ2 = 0,
(6)

are equivalent to the original problem (3) with uΓ =
uΓ1 = uΓ2.

Proof. If u1, u2 and uΓ constitute a solution of (3), then
with uΓ1 := uΓ, uΓ2 := uΓ and

λ1 := KΓ1u1 + (K1
Γ + A1)uΓ − fΓ1,

λ2 := KΓ2u2 + (K2
Γ + A2)uΓ − fΓ2.

Equations (4) and (5) are satisfied, together with the cou-
pling conditions (6).

Conversely, if u1, u2, uΓ1 and uΓ2 form a solution
of (4) and (5), where λ1 and λ2 satisfy the coupling con-
ditions (6), then with uΓ := uΓ1(= uΓ2), adding the
second equation of (4) and the first equation of (5) shows
that u1, u2 and uΓ is solution of (3). �

3. Family of Substructuring Methods and
an Optimal One

The decoupled problems (4) and (5) together with the cou-
pling conditions (6) lead naturally to an iterative substruc-
turing algorithm: starting with approximations λ0

1 and λ0
2,

it computes for k = 0, 1, 2, . . . iteratively the updates
(

K1 K1Γ

KΓ1 K1
Γ + A1

)(
uk

1

uk
Γ1

)
=

(
f1

fΓ1 + λk
1

)
, (7)

(
K2

Γ + A2 KΓ2

K2Γ K2

)(
uk

Γ2

uk
2

)
=

(
fΓ2 + λk

2

f2

)
, (8)

λk+1
1 = −λk

2 + (A1 + A2)uk
Γ2, (9)

λk+1
2 = −λk

1 + (A1 + A2)uk
Γ1. (10)

In order for the transmission conditions (9) and (10)
to imply the coupling conditions (6) at convergence, we
need to impose that the sum A1 +A2 is invertible. To gain
more insight into the algorithm (7)–(10), we eliminate λk

j

from the right-hand side of the updates for λk+1
j by using

the subdomain equations containing λk
j . This gives at step

k the new updates

λk
1 = fΓ2 − KΓ2u

k−1
2 + (A1 − K2

Γ)uk−1
Γ2 , (11)

λk
2 = fΓ1 − KΓ1u

k−1
1 + (A2 − K1

Γ)uk−1
Γ1 . (12)

Inserting these values into the subdomain equations
in (7) and (8), we obtain an equivalent algorithm, which is
now independent of λk

1 and λk
2 , namely,

(
K1 K1Γ

KΓ1 K1
Γ+A1

)(
uk

1

uk
Γ1

)

=

(
f1

fΓ−KΓ2u
k−1
2 +(A1−K2

Γ)uk−1
Γ2

)
, (13)

(
K2

Γ+A2 KΓ2

K2Γ K2

)(
uk

Γ2

uk
2

)

=

(
fΓ−KΓ1u

k−1
1 +(A2−K1

Γ)uk−1
Γ1

f2

)
. (14)

The performance of the substructuring algo-
rithm (7)–(10) (or, equivalently, the algorithm (13), (14))
is strongly influenced by the choice of the matrices A1

and A2. A simple choice is A1 = K2
Γ and A2 = K1

Γ,
which, when inserted into (13) and (14), shows that this
is equivalent to the classical Schwarz method with two
mesh sizes overlap. The optimal choice for our case is
given by the following theorem:

Theorem 2. If A1 = K2
Γ−KΓ2K

−1
2 K2Γ, and A2 = K1

Γ−
KΓ1K

−1
1 K1Γ, then the algorithm (13)–(14) converges in

two iterations for any initial guess u0
1, u0

Γ1, u0
2, u0

Γ2.

Proof. We show the result for the first subproblem since
the argument for the second is similar. At iteration k = 1,
by multiplying the second equation in (14) by KΓ2K

−1
2

we obtain the relation

KΓ2u
1
2 + KΓ2K

−1
2 K2Γu1

Γ2 = KΓ2K
−1
2 f2,

which leads at iteration k = 2 together with the definition
of A1 to the first subdomain problem(

K1 K1Γ

KΓ1 KΓ−KΓ2K
−1
2 K2Γ

)(
u2

1

u2
Γ1

)

=

(
f1

fΓ−KΓ2K
−1
2 f2

)
.
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This is, however, nothing else than a system equivalent to
the original undecomposed problem (3), where the vari-
ables u2 have been eliminated using the Schur comple-
ment. Therefore u2

1 = u1 and u2
Γ1 = uΓ. �

4. Patch Substructuring Methods

In (Magoulès et al., 2004b; Magoulès et al., 2005;
Magoulès et al., 2006), it was proposed to approximate
the optimal choice of A1 and A2, which is based on the
Schur complement of the entire neighboring subdomain,
by a Schur complement on patches reaching from the in-
terface Γ into the neighboring subdomain. We use here
one patch per subdomain interface, denoted by P1 and P2,
with external boundaries Γ1 and Γ2, see Fig. 1. To reflect
these patches in the discretized problem, we rewrite the
global system (2) in the more detailed form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1 K1Γ2

KΓ21 KΓ2 KΓ2P2

KP2Γ2 KP2 KP2Γ

KΓP2 KΓ KΓP1

KP1Γ KP1 KP1Γ1

KΓ1P1 KΓ1 KΓ12

K2Γ1 K2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

uΓ2

uP2

uΓ

uP1

uΓ1

u2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

fΓ2

fP2

fΓ

fP1

fΓ1

f2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Note that we reused the symbols Kj , which represent now
the discretization matrix for the partial subdomains Ωi −
Pj , i �= j, and similarly for the vectors uj and f j , j =
1, 2.

In a simple patch method, the optimal choice of A1

and A2 in Theorem 2 is approximated by

A1 = K2
Γ − (KΓP1 0)

(
KP1 KP1Γ1

KΓ1P1 K1
Γ1

)−1(
KP1Γ

0

)
,

(16)

A2 = K1
Γ − (0 KΓP2)

(
K2

Γ2
KΓ2P2

KP2Γ2 KP2

)−1(
0

KP2Γ

)
.

(17)

In the geometric patch approach, the natural split-
tings KΓ1 = K1

Γ1
+ K2

Γ1
and KΓ2 = K1

Γ2
+ K2

Γ2
, induced

by the finite element contribution to the left and right of
the patch boundaries Γ1 and Γ2, respectively, are used to

define K1
Γ1

and K2
Γ2

, and thus knowledge of the geometry
of the problem is required. In the algebraic approach, we
propose to set K1

Γ1
:= KΓ1 and K2

Γ2
:= KΓ2 , which can

be performed directly at the matrix level.
We now show that the algebraic patch method corre-

sponds to a classical Schwarz method with an overlap of
the size of the patches. A classical Schwarz method with
Dirichlet transmission conditions and subdomains Ωj en-
larged by the patches Pj , j = 1, 2, is given by the iteration

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K1 K1Γ2

KΓ21 KΓ2 KΓ2P2

KP2Γ2 KP2 KP2Γ

KΓP2 KΓ KΓP1

KP1Γ KP1 KP1Γ1

KΓ1P1 KΓ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vk
1

vk
Γ2

vk
P2

vk
Γ

vk
P1

vk
Γ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

fΓ2

fP2

fΓ

fP1

fΓ1
−KΓ12w

k−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

KΓ2 KΓ2P2

KP2Γ2 KP2 KP2Γ

KΓP2 KΓ KΓP1

KP1Γ KP1 KP1Γ1

KΓ1P1 KΓ1 KΓ12

K2Γ1 K2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

wk
Γ2

wk
P2

wk
Γ

wk
P1

wk
Γ1

wk
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

fΓ2
−KΓ21v

k−1
1

fP2

fΓ

fP1

fΓ1

f2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where we used v and w to distinguish the Schwarz iterates
from the iterates of the patch method.

Theorem 3. The classical Schwarz method (18)–(19)
and the substructuring method (7)–(10) with the algebraic
patches (16)–(17) produce for k = 2, 3, . . . the same se-
quence of iterates

⎛
⎜⎜⎜⎝

vk
1

vk
Γ2

vk
P2

vk
Γ

⎞
⎟⎟⎟⎠ =

(
uk

1

uk
Γ1

)
,

⎛
⎜⎜⎜⎝

wk
Γ

wk
P1

wk
Γ1

wk
2

⎞
⎟⎟⎟⎠ =

(
uk

Γ2

uk
2

)
,
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provided that

⎛
⎜⎜⎜⎝

v1
1

v1
Γ2

v1
P2

v1
Γ

⎞
⎟⎟⎟⎠ =

(
u1

1

u1
Γ1

)
,

⎛
⎜⎜⎜⎝

w1
Γ

w1
P1

w1
Γ1

w1
2

⎞
⎟⎟⎟⎠ =

(
u1

Γ2

u1
2

)
.

Proof. The proof is by induction. For k = 1, the result
holds by assumption. To show the result for k > 1, it
suffices to show that the subdomain problems in each iter-
ation coincide. To this end, we eliminate in Subdomain 1
of the classical Schwarz method (18)–(19) (and, similarly,
in Subdomain 2) the unknowns vk

P1
and vk

Γ1
. From the

subdomain equations, we obtain

(
vk

P1

vk
Γ1

)
=

(
KP1 KP1Γ1

KΓ1P1 K1
Γ1

)−1(
fP1

− KP1Γvk
Γ

fΓ1
− KΓ12w

k−1
2

)
,

which implies

KΓP1v
k
P1

= −(KΓP1 0)

(
KP1 KP1Γ1

KΓ1P1 K1
Γ1

)−1(
KP1Γ

0

)
vk

Γ

+ (KΓP1 0)

(
KP1 KP1Γ1

KΓ1P1 K1
Γ1

)−1(
fP1

fΓ1
−KΓ12w

k−1
2

)
,

where we recognize in the first term on the right of the
equals sign the second part of the patch operator A1 given
in (16) and (17). The first subdomain equation can there-
fore be written in the equivalent form

⎛
⎜⎜⎜⎝

K1 K1Γ2

KΓ21 KΓ2 KΓ2P2

KP2Γ2 KP2 KP2Γ

KΓP2 KΓ + A1 − K2
Γ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

vk
1

vk
Γ2

vk
P2

vk
Γ

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f1

fΓ2

fP2

fΓ−(KΓP1 0)

(
KP1 KP1Γ1

KΓ1P1 K1
Γ1

)−1(
fP1

fΓ1
−KΓ12w

k−1
2

)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(20)

Now, using the equations of the second subdomain at
step k − 1, we find from(

KP1Γ

0

)
wk−1

Γ +

(
KP1 KP1Γ1

KΓ1P1 K1
Γ1

)(
wk−1

P1

wk−1
Γ1

)

=

(
fP1

fΓ1
−KΓ12w

k−1
2

)

that the transmitted term on the right-hand side in (20)
satisfies

(KΓP1 0)

(
KP1 KP1Γ1

KΓ1P1 K1
Γ1

)−1(
fP1

fΓ1
− KΓ12w

k−1
2

)

= (K2
Γ − A1)wk−1

Γ + KΓP1w
k−1
P1

.

Inserting this into (20), the subdomain problem coincides
with the subdomain problem of (13), which is equivalent
to the patch method (7). A similar argument on the second
subdomain concludes the proof. �

Note that the same argument also holds in the case of
the geometric patch, except that the subdomain problems
now have Neumann (natural) conditions at the artificial
boundaries between subdomains.

Instead of computing the Schur complement of the
entire patch, one can also compute Schur complements
of smaller parts of the patch and then add them to ap-
proximate the Schur complement of the entire patch, see
(Magoulès et al., 2004b; Magoulès et al., 2005; Magoulès
et al., 2006). The present analysis does not apply to this
case, and this additional approximation requires further
studies.

The relation between patch substructuring methods
and Schwarz methods allows us to determine a more ef-
fective patch, which is obtained by taking a linear com-
bination of the algebraic and the geometric patch. While
the interior of the patch remains unchanged, at the exterior
boundary of the patch now a linear combination of Dirich-
let and Neumann conditions is imposed, which results in a
Robin condition, like in optimized Schwarz methods, see
(Gander, 2006). Using a well-chosen linear combination
will greatly enhance the convergence of the method, as we
will see in the numerical experiments.

5. Numerical Experiments

In order to accelerate the convergence of the iterative
method (7)–(10), one usually applies a Krylov method
(Saad, 1996) to solve directly the interface system for-
mulated in the variables λ1 and λ2, see (Magoulès et
al., 2004a). This interface system is obtained by consider-
ing (7)–(10) without iteration index k, eliminating u1 and
u2 from (7) and (8), and then inserting the resulting values
for uΓ1 and uΓ2 into (9) and (10), which results in a sys-
tem in the interface unknowns λ1 and λ2 only. The matrix
of this interface system is a dense matrix and is not known
explicitly, since it depends on subdomain quantities that
have been used to eliminate u1 and u2. Using a Krylov
method on this interface system involves a matrix vector
product by this matrix at each iteration, and hence subdo-
main solves. This is then the main part of the computation,
but the local subproblems can be solved at each iteration
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in parallel, one on each processor. The remainder of the
computation consists of scalar products and linear combi-
nations of vectors. From an implementation point of view,
the product of a vector and the interface matrix needs only
data that are local to each processor. This product is per-
formed by first using the matrices of subproblems which
are local to each processor and then assembling the result
over all of the processors. The subdomain problems can
be solved either by matrix factorization, or again by an it-
erative method, which then leads to inner-outer iteration
methods.

We first present two numerical experiments to illus-
trate the convergence properties of the geometric patch
method. We use directly a Krylov method on the corre-
sponding interface system in this subsection, and the stop-
ping criterion is set to 10−6 on the global residual.

The first problem consists of a two-dimensional
beam of length L = 10 and height l = 1 submitted
to flexion, as shown in Fig. 2. The Poisson ratio and

L

H

Fig. 2. Geometry (top) and displacement (bottom)
of the cantilever beam.

the Young modulus are respectively ν = 0.3 and E =
2.0 · 105 Nm−2. Homogeneous Dirichlet boundary condi-
tions are imposed on the left, and homogeneous Neumann
boundary conditions are imposed on the top and at the
bottom. Loading, modeled as nonhomogeneous Dirich-
let boundary conditions, is imposed on the right of the
structure. The beam is meshed with triangular elements
and discretized with Lagrange finite elements involving
two degrees of freedom per node. The mesh is then split
into ten subdomains and the displacement is evaluated, see
Fig. 2. The performance of the geometric patch algorithm
is shown in Table 1, for both the case with a constant patch
size in physical space and that with a patch size propor-
tional to the mesh parameter. These results show that the
number of iterations is constant for a fixed patch size in
physical space, and grows if the patch size is proportional
to the mesh size, as expected from the equivalence with
Schwarz methods with Neumann transmission conditions.

In Table 2, we show iteration counts for the geomet-
ric patch method used with a constant mesh size h for dif-
ferent sizes of the patch. We see that increasing the patch
size reduces the number of iterations, as expected from the
equivalence with the Schwarz method.

Table 1. Number of iterations for different mesh sizes h, a patch
proportional to h and a constant patch size for the can-
tilever beam problem (case of ten subdomains).

Mesh size h Patch size Number of
iterations

Patch size Number of
iterations

1/10 4h 29 2h 40

1/20 4h 44 4h 44

1/40 4h 61 8h 46

1/80 4h 83 16h 47

Table 2. Number of iterations for a constant mesh size h,
and different patch sizes for the cantilever beam
problem (case of ten subdomains).

Mesh size h Patch size Number of
iterations

1/40 2h 77

1/40 4h 61

1/40 8h 46

1/40 16h 33

1/40 32h 29

The second problem is the Scordelis-Lo roof prob-
lem. Here a cylindric roof is loaded by its own weight,
as shown in Fig. 3. The geometric characteristics are
R = 300, L = 1200, and H = 0.4. The Poisson ratio
ν and the Young modulus E are respectively ν = 0.3 and
E = 2 · 105 Nm−2. Due to the symmetry of the geom-
etry only one fourth of the roof is meshed. A finite ele-
ment discretization with DKT (Discrete Kirchhoff Trian-
gle) shell elements involving three nodes per element and
six degrees of freedom per node is performed. The dis-
placement of the roof is shown in Fig. 4. To compute this
result, the mesh is split into four subdomains, and the geo-
metric patch substructuring method is applied. The num-
ber of iterations required is shown in Table 3, where the
size of the overlap is proportional to the mesh parameter.

diaphragm

free

40°

H

R

L

Fig. 3. Geometry of the Scordelis-Lo roof.
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Fig. 4. Displacement of the Scordelis-Lo roof.

Table 3. Number of iterations for different mesh sizes h, for a
patch proportional to h and a constant patch size for the
Scordelis-Lo roof problem (case of four subdomains).

Mesh size h Patch size Number of
iterations

Patch size Number of
iterations

1/100 4h 17 2h 36

1/200 4h 36 4h 36

1/400 4h 56 8h 36

1/800 4h 87 16h 38

We compare now the algebraic, geometric and Robin
patch methods, of which the latter is a linear combination
of the former two, on the model problem

(η − Δ)u = f in Ω = (0, 1) × (0, 1), (21)

with homogeneous boundary conditions. We partition Ω
into two subdomains Ω1 = (0, 1

2 ) × (0, 1) and Ω1 =
(1
2 , 1) × (0, 1). We discretize the problem with the stan-

dard five point finite difference stencil on a uniform mesh
with mesh parameter h = 1/(n + 1), where n is the num-
ber of discretization points in both the x and y directions.
Figure 5 shows the results we obtain by using the three dif-
ferent patch methods as iterative solvers and with Krylov
acceleration for η = 1 and a patch size of 2h = 1/25 with
h = 1/50. We can see that the algebraic patch method
converges a bit faster than the geometric patch method for
this example, but these methods are comparable. Both
are also greatly accelerated when used together with a
Krylov method. Much faster, however, is the new Robin
patch method, even without Krylov acceleration. In the
Robin patch method, we used a linear combination based
on the Robin parameter of optimized Schwarz methods,
see (Gander, 2006).

In Table 4 we show the number of iterations needed
to reduce the initial residual by a factor of 10−6, when
patch methods are used as iterative solvers, and the mesh
is refined, both in the case of a fixed patch size, and a patch
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Fig. 5. Comparison of the algebraic, geometric and Robin
patch methods for a model problem.

Table 4. Number of iterations for different mesh sizes h,
for a patch proportional to h and a constant patch
size for the model problem, when the method is
used without Krylov acceleration.

Mesh size h Patch size Geometric Algebraic Robin

1/50 2h 39 57 5

1/100 2h 77 111 7

1/200 2h 154 224 8

1/400 2h 306 444 10

1/50 2h 39 57 5

1/100 4h 43 56 5

1/200 8h 46 56 5

1/400 16h 47 56 5

size proportional to h. If the patch size is proportional to
h, the number of iterations increases when the mesh is re-
fined, for all patch methods, but the increase is very mod-
erate for the optimized patch method. For a fixed patch
size, all patch methods are robust with respect to mesh re-
finement, but again by far the fastest is the Robin patch
method.

In Table 5 we show the same sequence of experi-
ments, but now using Krylov acceleration. All iteration
numbers are now lower, in particular the ones for the al-
gebraic and geometric patch methods.

We finally show for the case of a patch with the size
dependent on h the iteration counts in a graph in Fig. 6.
Here one can clearly see that the Robin patch method has
a significant asymptotic advantage over the algebraic and
geometric patch methods.

6. Conclusions

In this paper, we proved that the algebraic patch method is
equivalent to an overlapping Schwarz method with subdo-
mains enlarged by the patch regions. As a consequence,
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Table 5. Same as in Table 4, but now with
Krylov acceleration.

Mesh size h Patch size Geometric Algebraic Robin

1/50 2h 9 10 4

1/100 2h 12 14 5

1/200 2h 16 18 5

1/400 2h 24 27 6

1/50 2h 9 10 4

1/100 4h 9 10 4

1/200 8h 9 10 4

1/400 16h 9 10 4

10
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# 
ite

ra
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Algebraic patch iterative
Geometric patch iterative
Optimized patch iterative
Algebraic patch Krylov
Geometric patch Krylov
Optimized patch Krylov

Fig. 6. Asymptotic comparison of the algebraic, geometric and
optimized patch for a patch with the size proportional to
the discretization parameter for a model problem.

the method converges independently of the mesh parame-
ter, provided the patch size in physical space is kept con-
stant. A similar result holds for the geometric patch sub-
structuring method, which is also equivalent to an over-
lapping Schwarz method, albeit one that uses Neumann
transmission conditions. A linear combination of the geo-
metric and algebraic patch methods leads then to a new
Robin patch substructuring method, and the parameter in
the linear combination can be used to optimize the perfor-
mance of the new method. We illustrated with numerical
experiments that the Robin patch substructuring method
is a very promising approach. We used the relation to op-
timized Schwarz methods to determine the optimal para-
meter in the Robin patch method, but it would be very
desirable to have an algebraic way to determine this para-
meter. Also partial patches are not covered by the present
analysis, and need a future study.
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