
Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 4, 539–547
DOI: 10.2478/v10006-007-0044-x

REAL–VALUED GCS CLASSIFIER SYSTEM

ŁUKASZ CIELECKI, OLGIERD UNOLD

Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

e-mail: {lukasz.cielecki,olgierd.unold}@pwr.wroc.pl

Learning Classifier Systems (LCSs) have gained increasing interest in the genetic and evolutionary computation literature.
Many real-world problems are not conveniently expressed using the ternary representation typically used by LCSs and
for such problems an interval-based representation is preferable. A new model of LCSs is introduced to classify real-
valued data. The approach applies the continous-valued context-free grammar-based system GCS. In order to handle data
effectively, the terminal rules were replaced by the so-called environment probing rules. The rGCS model was tested on the
checkerboard problem.

Keywords: learning classifier systems, GCS, GAs, grammatical inference, context-free grammar.

1. Introduction

A Learning Classifier System (LCS) is an evolutionary al-
gorithm that operates on a population comprised of rules
referred to as the rule set, and these rules are used to at-
tempt to classify a situation. The first learning classifier
system was created by Holland (1976) shortly after he cre-
ated Genetic Algorithms (GAs) (Holland, 1975). Many
real-world problems are not conveniently expressed using
the ternary representation typically used by LCSs (true,
false, and the “don’t care” symbol). To overcome this
limitation, Wilson (2000) introduced a real-valued XCS
classifier system for problems which can be defined by a
vector of bounded continuous real-coded variables.

We propose a new model of LCS (the so-called
rGCS) that makes it possible to represent continuous-
valued inputs. The rGCS is an extension of the Grammar-
based Classifier System (GCS) introduced by Unold
(2005a) in which the knowledge about the solved pro-
blem is represented by a Context-Free Grammar (CFG) in
Chomsky normal form productions. An integer-valued re-
presentation (in fact, the set of letters a-z) is used with the
GCS. The GCS is described in detail in (Unold, 2005b;
Unold and Cielecki, 2005a). This article extends (Cie-
lecki and Unold, 2007) by examining the influence of the
training set size on the grammar competence and behavior
of the rGCS with initial knowledge.

The remainder of this paper is organized as follows:
Section 2 describes the generic LCS. The next section

contains the framework of the GCS. Section 4 introdu-
ces the new rGCS—an extended system prepared to work
with real-valued inputs. Section 5 illustrates our experi-
ments with the checkerboard problem, and the last one
summarizes the paper and makes plans for the future.

2. Learning Classifier Systems
A learning classifier system, introduced by Holland
(1976), learns by interacting with an environment from
which it receives feedback in the form of a numerical re-
ward. Learning is achieved by trying to maximize the
amount of reward received. There are many models of
LCSs and many ways of defining what a learning classi-
fier system is. All LCS models, more or less, comprise
four main components (Fig. 1):

– a finite population of condition-action rules (classi-
fiers), which represent the current knowledge about
the system,

– the performance component, which governs the inte-
raction with the environment,

– the reinforcement component, called the credit assi-
gnment component, which distributes the reward re-
ceived from the environment to the classifiers respon-
sible for the rewards obtained,

– the discovery component, responsible for discove-

540 Ł. Cielecki and O. Unold

reward r taction atstate st

Environment

Match set

Population

Evaluation

of action utility

Action

selection

Performance component R
ei

n
fo

rc
em

en
t

co
m

p
o

n
n

et

D
is

co
v

er
y

 c
o

m
p

o
n

en
t

Learning classifier system

Fig. 1. Architecture of the learning classifier system (Holmes et
al., 2002).

ring of better rules and improving existing ones thro-
ugh a genetic algorithm.

Classifiers have two associated measures: prediction
and fitness. Prediction estimates the classifier utility in
terms of the amount of reward that the system will receive
if the classifier is used. Fitness estimates the quality of the
information about the problem that the classifier conveys,
and it is exploited by the discovery component to guided
evolution. A high fitness means that the classifier conveys
good information about the problem and therefore it sho-
uld be reproduced more through the genetic algorithm. A
low fitness means that the classifier conveys little or no
good information about the problem and therefore should
reproduce less.

At each discrete time step t the LCS receives as the
input the current state of the environment st and builds
a match set containing the classifiers in the population
whose condition matches the current state. Then, the sys-
tem evaluates the utility of the actions appearing in the
match set; an action at is selected from those in the match
set according to some criterion, and sent to the environ-
ment to be performed. Depending on the current state st

and on the consequences of the action at, the system even-
tually receives a reward rt. The reinforcement component
distributes the reward rt among the classifiers accounting
for the incoming rewards. This can be implemented either
with an algorithm specifically designed for the learning
classifier systems (e.g. a bucket brigade algorithm (Hol-
land, 1986)) or with an algorithm inspired by traditional
reinforcement learning methods (e.g. the modification of
Q-learning (Wilson, 1995)). On a regular basis the disco-
very component (a genetic algorithm) randomly selects,
with the probability proportional to their fitness, two clas-
sifiers from the population. It applies crossover and muta-
tion generating two new classifiers.

The environment defines the target task. For in-
stance, in autonomous robotics the environment corre-

sponds roughly to the robot’s physical surroundings and
the goal of learning is to learn a certain behavior (Ka-
tagami and Yamada, 2000). In classification problems,
the environment provides a set of preclassified examples.
Each example is described by a vector of attributes and
a class label. The goal of learning is to evolve rules that
can be used to classify previously unseen examples with
high accuracy (Holmes et al., 2002; Unold and Dabrow-
ski, 2003). In computational economics, the environment
represents a market and the goal of learning is to make
profits (Judd and Tesfation, 2005).

For many years the research on LCSs was done on
Holland’s classifier system. All implementations shared
more or less the same features which can be summarized
as follows: (i) some form of a bucket brigade algorithm
was used to distribute the rewards, (ii) evolution was trig-
gered by the strength parameters of classifiers, (iii) the in-
ternal message list was used to keep track of the past input
(Lanzi and Riolo, 2000).

In recent years new models of Holland’s system have
been developed. Among others, two models appear par-
ticularly worth mentioning. The XCS classifier system
(Wilson, 1995) uses Q-learning to distribute the reward
to classifiers, instead of the bucket brigade algorithm.
The genetic algorithm acts in environmental niches ra-
ther than on the whole population. The most important
thing is that the fitness of classifiers is based on the accu-
racy of classifier predictions, instead of the prediction it-
self. Stolzmann’s ACS (Stolzmann, 2000) differs greatly
from other LCS models in that the ACS learns not only
how to perform a certain task, but also an internal model
of the task dynamics. In ACSs, classifiers are not simple
condition-action rules, but they are extended by an effect
part, which is used to anticipate the environmental state.

3. GCS
The GCS operates similarly to the classic LCS but it dif-
fers from it in (i) the representation of the classifier popu-
lation, (ii) the scheme of classifiers’ matching to the envi-
ronmental state, (iii) methods of exploring new classifiers.

The population of classifiers has the form of a
context-free grammar rule set in a Chomsky Normal Form
(CNF). This is actually not a limitation because every
context-free grammar can be transformed into an equiva-
lent CNF. The Chomsky normal form allows only for pro-
duction rules in the form of A → a or A → BC, where A,
B, C are non-terminal symbols and a is a terminal sym-
bol. The first rule is an instance of the terminal rewriting
rule. These are not affected by the GA, and are generated
automatically as the system meets an unknown (new) ter-
minal symbol. The left-hand side of a rule plays the role
of the classifier’s action while the right-hand side is the
classifier’s condition. The system evolves only one gram-
mar according to the so-called Michigan approach. In this

Real–valued GCS classifier system 541

approach each individual classifier (or a grammar rule in
the GCS) is subjected to GA operations. All classifiers
(rules) form a population of evolving individuals. In each
cycle a fitness calculating algorithm evaluates the value
(an adaptation) of each classifier and a discovery compo-
nent operates only on a single classifier.

An automatic learning context-free grammar is re-
alized with the so-called grammatical inference from text
(Gold, 1967). According to this technique, the system le-
arns using a training set that in this case consists of senten-
ces both syntactically correct and incorrect. A grammar
which accepts correct sentences and rejects incorrect ones
is able to classify unseen sentences from a test set. The
Cocke-Younger-Kasami (CYK) parser, which operates in
Θ(n3) time (Younger, 1967), is used to parse sentences
from the sets.

The environment of a classifier system is substituted
by an array of CYK parsers. The classifier system matches
the rules according to the current environmental state (the
state of parsing) and generates an action (or a set of ac-
tions in a GCS) pushing the parsing process toward the
complete derivation of the sentence analyzed.

The discovery component in a GCS is extended in
comparison with a standard LCS. In some cases a “cove-
ring” procedure may occur, adding some useful rules to
the system. It adds productions that make it possible to
continue parsing in the current system state. This feature
utilizes, i.e., the fact that accepting 2-length sentences re-
quires a separate, designated rule in the grammar in the
CNF.

Apart from “covering”, a GA also explores the space
by looking for new, better rules. The first GCS imple-
mentation used a simple rule fitness calculation algorithm
which appreciated the ones commonly used in correct re-
cognitions. Later implementations introduced the “ferti-
lity” technique, which made the rule fitness dependent on
the amount of the descendant rules (in the sentence deri-
vation tree) (Unold, 2005b; Unold and Cielecki, 2005a).
This approach is particularly useful since in a GCS popu-
lation individuals must cooperate to parse sentences suc-
cessfully. Appreciating linked rules, we help to preserve
the structure of the evolved grammar. In both techniques
the classifiers used in parsing positive examples gain the
highest fitness values, unused classifiers are placed in the
middle, while the classifiers that parse negative examples
gain the lowest possible fitness values.

4. rGCS
4.1. Overview of the rGCS. Despite the fact that the
GCS is able to solve grammar induction problems effecti-
vely, the area of its usage is strongly limited. Due to the
nature of the tagged input data, most tasks it is employed
for are connected with formal or natural languages. To
overcome that limitation, we created an extension of the

?
+ 0,1

- 0,1 0

- 0,5 1

+ 0,2 0

rGCS ? classifiers ?

AB : C A : 0,1

BB : D B : 0,5

... ...

- Negative examples

+ Positive examples

T
ra

in
in

g
se

t

?
A =>

B => 0,5

C => AB

D => BB

E
v

o
lv

ed
g

ram
m

ar

Adjust env.

probing rules

Modif.

rules

GA

New

rules

Fig. 2. rGCS block diagram.

GCS that accepts any input data stored as a vector of real
values.

The rGCS exploits the main idea of the classic GCS.
The CYK table is the environment and the area where the
rGCS operates. The learning process is divided into the
cycles. During each cycle the evolved grammar is tested
against each example of the train set, and then new ru-
les are evolved or existing ones are modified and another
cycle begins (Fig. 2). The rGCS employs two different
kinds of rules—environment probing and regular ones—
which are used in different phases of the learning process
(Fig. 3).

4.2. Environment Probing Rules. The structure of the
rules that are used in the very first row of the CYK table
during parsing is the main difference between the classic
GCS and the rGCS. Since their role is to sense the input
data and then to launch the CYK process, we called them
environment probing rules. In a classic GCS the environ-
ment situation consisted of input string terminals so these
rules were called approppriately the terminal rewriting ru-
les. Now in the rGCS the input data (an environmental si-
tuation) is formed by the vector of real numbers that may
describe various kinds of data (Fig. 4). Each rule has the
form

A → f, (1)

where A is a non-terminal symbol and f is a real number.
Here f is used during the matching process and the

non-terminal A is to be put into the first row of the CYK
table. Additionally, a special environment probing rule
may be used—the most general one that accepts every sin-
gle input value. This one is called the wildcard (the “don’t
care” symbol) and has the form

F → ∗, (2)

where F is the non-terminal symbol chosen to play the
role of a wildcard (every time it appears in the CYK table,
this means: put any value here) and the asterisk means that
any real number is accepted here.

542 Ł. Cielecki and O. Unold

Environment

probing

CYK

parsing

Genetic

symbol

Classification

Regular

rules

Env. probing

rules

Evolution

Correction

Input vector component

Non-terminal

algorithm

Fig. 3. rGCS, environment probing and regular rules usage.

4.3. Regular Grammar Rules. These rules are identi-
cal with the ones used in the classic GCS. They are used
in the CYK parsing process and the GA phase. They are
in the form of

A → BC, (3)

where A, B and C are non-terminal symbols.

4.4. Generating the Rules. Every time a new expe-
riment is started, a set of random rules is generated. It
contains a specified number of environment probing rules
and regular grammar rules. All non-terminals in the set
are from the range limited by a system parameter. In envi-
ronment probing rules the system keeps equal numbers of

0 10,5 0 10,5 0 10,5 0 10,5

C A D B

C A D B

i j

1

12

3

34

4

2

S

FE

Sentence
tag

CYK Table

Input vector’s
component

Component’s factor

Environment probing rules

Correct
example

Environment probing rules:

A => 0.059
B => 0.347
C => 0.647
D => 0.947

Regular grammar rules:

S => FE
F => BD
E => AC

Fig. 4. Main idea of the rGCS. Environment probing rules and
their cooperation with the CYK parsing procedure. A
symbol in a CYK table’s cell means that the particular
non-terminal derives the substring of length j starting
from position i, where i and j are cell indices.

various non-terminal symbols in the rules. Real values
may be from the range determined by the minimum and
maximum values of the input data to speed up the lear-
ning process, but this is not necessary.

4.5. Matching Phase.
Environment Probing Rules.

Scheme 1. First, a list of distances between the elements
of the input vector (real numbers) and each rule’s real
number is created. Then all values from the list are scaled
using the equation

dfi = 1−
(

disti
maxdist

)
, (4)

where dfi is the factor calculated for rule i (the distance
factor), disti is the distance of rule i and ‘maxdist’ is the
maximum distance value (the distance value of the most
distant rule).

The most distant rule receives factor 0 and the rule
that is located exactly at the input vector’s value receives
1. In the next step the rules are sorted from the nearest one
to the most distant one. Finally, the equation

pi =
dfi

posi
, (5)

where dfi is the distance factor and posi is the rule’s po-
sition in the sorted distance list, describes the probability
of each rule to be chosen. This means that zero or more
rules may be selected for each cell of the first row of the
CYK table.

Scheme 2. In this scheme, just after creating the list of
distances, simply the nearest rule is selected. As a result,
always one rule is put into the CYK cell.

Both schemes use only a single real value from the
rule—a point with no accepting range around it explici-
tly labeled. That approach differs from the one adopted
in Wilson’s XCSR (Wilson, 2000), where several interval
predicates are defined to “catch” input values located in-
side its bounds. The main resulting difference is that in the
rGCS a single value method always chooses at least one
rule—no matter where the input value is located. This
means that even with a limited number of environment
probing rules there are no input values that are left unre-
cognized.

Wildcard rules. If a wildcard rule exists in the system, it
is always used during the environment probing because it
fits to every element of the input vector. The non-terminal
desired to be the wildcard one appears then in the CYK
table’s cell.

During the matching phase, a bundle of non-
terminals are defined to be put into the first row of the
CYK table, achieving the goal of translating real input va-
lues into the string of symbols capable of parsing.

Real–valued GCS classifier system 543

Regular grammar rules. These rules play the same
role as in the classic GCS. They are used in the CYK par-
sing process and the matching follows the CYK algorithm
procedure.

4.6. Adjusting Environment Probing Rules. As the
environment probing rules match the input vector, some
data about the environment is collected. Every single rule
of this kind keeps a copy of its real number factor. At the
beginning of each learning cycle, it is set to the same va-
lue as the factor itself. Just after the matching phase, if
the rule was used, this copy is modified according to the
equation

vni = vci + wsp · g · ch, (6)

where vni is the copy of the factor value of the i-th clas-
sifier in the population, vci is the current factor’s value
of the i-th classifier in the population, wsp is the learning
factor that depends on the learning cycle (see below), g is
the neighborhood function dependent on the rule’s posi-
tion in the list sorted by the rule’s distance from the envi-
ronmental situation (see below), ch is the distance from
the rule’s factor to the environmental situation value, cal-
culated according to the situation:

ch = ve− vci, (7)

where ve is the input vector element’s value.
The learning factor is calculated according to the rule

wsp = pMaxLearningRate

·
(

pMinLearningRate

pMaxLearningRate

)(cycle
pCycles)

(8)

where pMinLearningRate is the minimal learning fac-
tor value (parameter), pMaxLearningRate is the maxi-
mal learning factor value (parameter), cycle is the current
learning cycle and pCycles is the desired learning cycles
value (parameter).

The neighborhood function is calculated according to
the equation

g = e
−posi

ps , (9)

where posi is the rule’s position in the list sorted by the
rule’s distance from the environmental situation, ps is the
neighborhood radius calculated according to the equation

ps = pMaxNeigbourhoodRadius

·
(

pMinNeigbourhoodRadius

pMaxNeigbourhoodRadius

)(cycle
pCycles)

(10)

where pMinNeigbourhoodRadius is the minimal ra-
dius value (parameter) and pMaxNeigbourhoodRadius
is the maximal radius value (parameter).

It is important to work on the copy of the real number
factor since we want the system to classify each example

in the learning set using the same rules. This enables us
to estimate a correct competence of the current grammar
evolved by the rGCS. As soon as the cycle terminates, the
copy of the factor replaces the old one moving the factor
towards the values the rules accept frequently. The change
is more significant during the initial cycles of the learning
process. As the induction goes on, only small adjustments
of the factors take place.

4.7 Evolving Regular Grammar Rules. Regular gram-
mar rules are evolved just like in the classic GCS during
the evolutionary process. A genetic algorithm is then laun-
ched at the end of the learning cycle. Fitness evaluation
uses the fertility measurement technique (see (Unold and
Cielecki, 2005b) for a discussion) for the rules that were
present in any complete parsing tree generated during the
cycle:

fi = FTrim + tfi · FertSig, (11)

where fi is a fitness measure of the i-th classifier in the
population, FTrim is a fitness trim parameter—a base
value given to the unused classifier, tfi is a pure fertility
measure (see below) of the i-th classifier in the population,
and FertSig is a fertility significance parameter.

The pure fertility parameter is calculated according
to the equation

tfi =
FertPosi − FertNegi

FertPosi + FertNegi
, (12)

where FertPosi is the number of positive fertility points
of the i-th classifier in the population and FertNegi is the
number of negative fertility points of the i-th classifier in
the population.

Rules that were unused in the complete parsing trees
but still appeared in the CYK table take the following fit-
ness measure:

fi = FTrim + tni · FSig, (13)

where fi is a fitness measure of the i-th classifier in the
population, FTrim is a fitness trim parameter—a base
value given to unused classifier, tni is a pure fitness me-
asure (see below) of the i-th classifier in the population
and FSig is a fitness significance parameter.

The pure fitness parameter is calculated according to
the equation

tni =
PosPointsi −NegPointsi

PosPointsi + NegPointsi
, (14)

where PosPointsi is the number of positive usage points
of the i-th classifier in the population and NegPointsi is
the number of negative usage points of the i-th classifier
in the population.

It is important to note that the fitness of these rules is
downgraded by the fitness significance parameter. Com-
plete tree parsing rules are more valuable for the system

544 Ł. Cielecki and O. Unold

as they cooperate with the others. Finally, unused rules
take a constant fitness trim value (the parameter is usually
0.5).

The GA in the rGCS chooses parents using the ro-
ulette wheel or random selection. Then crossover and
mutation operators are applied to the offspring with the
probability given by the system parameters. The crow-
ding technique replaces rules in the population with the
offspring.

5. Checkerboard Problem
The checkerboard problem was proposed as a benchmark
in (Stone and Bull, 2003). It divides the n-dimensional
space into hypercubes of two colors (i.e. black and white).
Each hypercube has the same size and is surrounded by
the others with alternate colors. This means that for the
two-dimensional space it looks like a chess or checkers
board. There are two parameters describing the problem
complexity. The first is the space dimension (n). The se-
cond is the number of divisions of each dimension of the
space (nd). In the following, we use sets of checkerboard
problem examples with n = 3 and nd = 3. We evo-
lve grammars telling us whether the point in the solution
space of given coordinates is inside a black or a white hy-
percube. A single CNF grammar can only tell us if the
given example is positive (belongs to the grammar langu-
age) or not. We have to decide if we evolve the gram-
mar related to white or black hypercubes. There are only
two classes of hypercubes so the example rejected by one
class grammar is assumed to come from the other. Every
example in the set consist of three real numbers which
are coordinates and the example’s tag telling us whether
the example is positive or negative, depending on the co-
lor of hypercubes we want the grammar to be evolved for.
Example sets consisted of 100 examples (50 positive and
50 negative ones).

Parameter seeking experiments (some of these are
presented below) helped us to choose optimal parameters
for the checkerboard problem. For N = 3 and Nd = 3
these include:

– Number of non-terminals = 6,

– Number of environment probing rules = 3,

– Number of regular grammar rules = 60,

– Crowding factor = 35,

– Crowding subpopulation = 5,

– Desired learning cycles = 50000.

When supplied with no initial knowledge, the rGCS
was able to evolve a perfect grammar when accepting all
positive and rejecting all negative sentences, at every sin-
gle run after on the average 24506 learning cycles (the

Fig. 5. Minimum, mean and maximum highest grammar com-
petence achieved during the learning cycles without (a)
and with (b) initial knowledge.

mean of 10 runs, min. 19898 cycles, max. 31893 cycles,
see Fig. 5(a)). For results with some initial knowledge
(Fig. 5(b)), see Section 5.3. Every run ended with a 100%
grammar competence factor.

5.1. Parameter Seeking Experiments. The rGCS
tends to inherit a GCS property—it is quite sensitive to
the system parameter settings. It looks like a kind of disa-
dvantage: however, correct settings may result in a rapid
grammar evolution. Our previous work discussed many
of these settings (see (Unold, 2005b; Unold and Cielecki,
2005b) for details). In this article we explain only rGCS-
specific ones. In what follows, we investigate the best pa-
rameter settings for the checkerboard problem, N = 3,
Nd = 3. A single experiment tests a range of settings for
the examined parameter while the other (constant) para-
meters are set to random values.

Real–valued GCS classifier system 545

Number of environment probing rules. Some prelimi-
nary experiments confirmed our first guess that we should
generate at least as many rules as the number of classes the
input vector elements are divided into. This means that the
checkerboard problem requires at least Nd environment
probing rules. Figure 6(a) shows the mean (averaged over
10 runs), minimum and maximum grammar competences
of the grammar evolved as a function of environment pro-
bing rules. Setting the number of environment probing
rules to a value less than Nd (3 in this case) does not al-
low the system to evolve an efficient grammar. However,
higher values (> Nd) do not have any significant effect
on the grammar evolution. Moreover, it slightly decreases
the maximum competence of the grammar developed by
the system.

Fig. 6. Minimum, mean and maximum grammar competence as
functions of the number of environment probing rules (a)
and regular grammar rules (b).

Number of regular grammar rules. The number of re-
gular grammar rules defines the size of the grammar evo-
lved by the system. This parameter is used at the begin-
ning of the learning process when random rules are ge-

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

0 100 200 300 400 500 600 700 800 900 1000

G
ra

M
m

a
r

c
o

m
p

e
te

n
c

e

Training set size

Fig. 7. Minimum, mean and maximum grammar competence as
a function of the training set size.

nerated. Since the rules evolved by the GA replace the
old ones, the number of regular grammar rules remains
constant. Figure 6(b) shows the mean (averaged over 10
runs), minimum and maximum grammar competences of
the grammar evolved as a function of the number of regu-
lar rule parameters. More regular rules enable the system
to evolve highly efficient grammars. However, complex
grammars are difficult to analyze and consume more sys-
tem resources during processing.

5.2. Training Set Size. The training set size is not
an actual system parameter, but it still strongly influen-
ces the system competence. This is strictly linked with
the types of individuals that the rGCS evolves. Some pre-
liminary experiments proved that the main problem du-
ring the grammar evolution is connected with the value
of the factor in the environment probing rules. The rele-
vant point is located during the adjustment phase of the
learning process. Since the position is estimated using the
random examples of training sets, it may be misleading
when they do not cover regularly the whole area of possi-
ble values. The smaller the set, the bigger the chance of a
misleading factor value. Figure 5.2 shows the minimum,
mean and maximum competences of the grammar evolved
using random train sets of different sizes. For each size,
ten different grammars were evolved and then tested aga-
inst one another (the ‘test set’) containing 1000 previo-
usly unseen, random examples. It is worth emphasizing
that grammars evolved on the smaller train set sizes were
still able to correctly classify every single sentence from
its own training set, but they failed to pass generalization
tests using a huge test set with unseen examples.

5.3. Initial Knowledge. As has been discussed above,
the training set size proves that it is better to use bigger
training sets with a large variety of examples. Howe-

546 Ł. Cielecki and O. Unold

ver, even when evolved with pretty extensive train sets,
the main problem with grammars remains the same. The
environment probing rule vectors seem to be the factors
that keep grammars from passing the generalization test
(using unseen examples) with the perfect competence. To
prove this, we performed some tests with apopulation of
individuals initialized with “perfect” environment probing
rules. In this case “perfect” means: with a rule factor pla-
ced directly in the center of the area the rule should be
launched for. For the checkerboard problem Nd = 3 and
these points are

– 1/6 = 0.166 . . .

– 3/6 = 1/2 = 0.5

– 5/6 = 0.833 . . .

As a result, the following initial rules were created at the
beginning of every experimental run:

– A → 0, 166 . . .

– B → 0, 5

– C → 0, 833 . . .

This resulted in both an extremely fast grammar evo-
lution during learning and a perfect grammar competence
during testing. Introducing some initial knowledge to the
system saves a lot of time at the beginning of the evolu-
tion process when normally it is necessary to evolve envi-
ronment probing rules that are able to “read” input values
from the training set correctly. That is why the system
“stops” during the cycles 500–7500 in Fig. 5(a) and con-
tinues the evolution during the same period in Fig. 5(b).
The perfect grammar competence during testing (using
the same testing sets as in the previous paragraph) shows
that when probing the environment’s real values the in-
put vector remains the main source of classification pro-
blems. In fact, only the input vectors with values loca-
ted very close to the class borders tend to be misclassified
and decrease the overall grammar competence when using
“non-perfect” environment probing rules.

6. Conclusions
The rGCS, being a mutation of the grammar-based clas-
sifier system, constitutes a new tool that is able to solve
problems represented by vectors of real numbers. That al-
lows us to introduce grammar classification to a new set
of problems. When tested with the common checkerboard
benchmark, the rGCS evolves a perfect grammar using a
similar number of learning cycles as the XCSR develops
the perfect set of classifiers (approximately 20,000 (Stone
and Bull, 2003)). However, rGCS knowledge representa-
tion, using grammar rules, is far easier to interpret by a
human and may be processed easily.

It seems to be still possible to improve the environ-
ment probing technique to work with smaller data sets.
That could be achieved by utilizing different probing sche-
mes. We plan to introduce a rule radius that will limit the
area of the input space affected. We also consider modi-
fying the way the rule’s factor behaves when used in the
successful parsing. That will be especially useful when
we apply the rGCS to some noisy data sets (as we plan to
do).

References
Gold E. (1967): Language identification in the limit. Information

Control, Vol. 10, No. 5, pp. 447–474.

Cielecki L. and Unold O. (2007): GCS with real-valued input.
Lecture Notes in Computer Science, Vol. 4527. Berlin:
Springer Verlag, pp. 488–497.

Holland J.H. (1975): Adaptation in Natural and Artificial Sys-
tems. Ann Arbor, University of Michigan Press.

Holland J.H. (1976): Adaptation. In: Progress in Theoreti-
cal Biology, (R.F. Rosen, Ed.) New York: Plenum Press,
pp. 263–293.

Holland J.H. (1986): Escaping brittleness: The possibilities of
general-purpose learning algorithms applied to parallel
rule-based systems. In: Machine Learning, an Artificial In-
telligence Approach, Vol. II, (R.S. Michalski, J.G. Carbo-
nell, T.M. Mitchell, Eds.), San Mateo, Morgan Kaufmann,
pp. 593–623.

Holmes J.H. and Lanzi P.L., and Stolzmann W., and Wilson S.W
(2002): Learning classifier systems: New models, success-
ful applications. Information Processing Letters, Vol. 82,
No. 1, pp. 23–30.

Judd K.L. and Tesfatsion L. (2005): Agent-based computational
economics. In: Handbook of Computational Economics,
Vol. 2, Agent-Based Computational Economics Elsevier
Science B.V.

Katagami D. and Yamada S. (2000): Interactive classifier system
for real robot learning. Proceedings of the IEEE Interna-
tional Workshop on Robot–Human Interaction ROMAN–
2000, Osaka, Japan, pp. 258–263.

Lanzi P.L. and Riolo R.L. (2000): A roadmap to the last de-
cade of learning classifier system research, Lecture No-
tes in Artificial Intelligence, Vol. 1813, Berlin: Springer-
Verlag, pp. 33–62.

Stolzmann W. (2000): An introduction to anticipatory classifier
systems. Lecture Notes in Artificial Intelligence, Vol. 1813,
Berlin: Springer–Verlag, pp. 175–194.

Stone C. and Bull L. (2003): For real! XCS with continuous-
valued inputs. Evolutionary Computation,Vol. 11, No. 3,
pp. 299–336.

Unold O. (2005a): Context-free grammar induction with
grammar-based classifier system. Archives of Control
Science, Vol. 15 (LI), No. 4, pp. 681–690.

Unold O. (2005b): Playing a toy-grammar with GCS. Lecture
Notes in Computer Science, Vol. 3562, Springer-Verlag,
pp. 300–309.

Real–valued GCS classifier system 547

Unold O. and Cielecki L. (2005a): Grammar-based classi-
fier system. In: Issues in Intelligent Systems: Paradigms
(O.Hryniewicz, J. Kacprzyk, J.Koronacki, S.T. Wierzchoń,
Eds.), EXIT, Warsaw, pp. 273–286.

Unold O. and Cielecki L. (2005b): How to use crowding selec-
tion in grammar-based classifier system. In: Proceedings
of the 5th International Conference on Intelligent Systems
Design and Applications (H. Kwasnicka and M. Paprzycki
M., Eds.), Los Alamitos, IEEE Computer Society Press,
pp. 126–129.

Unold O. and Dabrowski G. (2003): Use of learning classi-
fier system for inferring natural language grammar. In:
Design and Application of Hybrid Intelligent Systems
(A.Abraham, M.Köppen, K.Franke, Eds.), Amsterdam,
IOS Press, pp. 272–278.

Wilson S.W. (1995): Classifier fitness based on accuracy. Evo-
lutionary Computation, Vol. 3, No. 2, pp. 147–175.

Wilson, S.W (2000): Get real! XCS with continuous-valued in-
puts. In: Learning Classifier Systems. From Foundations
to Applications (P.L. Lanzi and W. Stolzmann, and S.W.
Wilson, Eds.), Lecture Notes in Artificial Intelligence,
Vol. 813, Berlin: Springer-Verlag, pp. 209–222.

Younger D. (1967): Recognition and parsing of context-free lan-
guages in time n3. Technical report, University of Hawaii,
Department of Computer Science.

Received: 11 April 2007
Revised: 5 June 2007

