
Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 4, 463–470
DOI: 10.2478/v10006-007-0038-8

ON THE COMPUTATION OF THE GCD OF 2-D POLYNOMIALS

PANAGIOTIS TZEKIS ∗ , NICHOLAS P. KARAMPETAKIS ∗∗ , HARALAMBOS K. TERZIDIS ∗

∗ Department of Mathematics, School of Sciences
Technological Educational Institution of Thessaloniki

P.O. Box 14561, GR-541 01 Thessaloniki, Greece
e-mail: tzekis@tellas.gr

∗∗ Department of Mathematics, Aristotle University of Thessaloniki
Thessaloniki 54006, Greece

e-mail: karampet@math.auth.gr

The main contribution of this work is to provide an algorithm for the computation of the GCD of 2-D polynomials, based
on DFT techniques. The whole theory is implemented via illustrative examples.

Keywords: greatest common divisor, discrete Fourier transform, two-variable polynomial.

1. Introduction

An interesting problem of algebraic computation is the
computation of the greatest common divisor (GCD) of
a set of polynomials. The GCD is usually linked with
the characterisation of zeros of a polynomial matrix de-
scription of a system. The problem of finding the GCD
of a set of n polynomials on R[x] of a maximal degree
q is a classical problem that has been considered before
(Karcanias et al., 2004). Numerical methods for the GCD
(Karcanias et al., 1994; Mitrouli el al., 1993) were also
developed. Due to the difficulty in finding the exact GCD
of a set of polynomials, approximate algorithms were also
developed (Noda et al., 1991). A comparison of algori-
thms for the calculation of the GCD of polynomials is gi-
ven in (Pace et al., 1973).

The main disadvantage of many algorithms is their
complexity. In order to overcome these difficulties, we
may use other techniques such as interpolation methods.
For example, Schuster et al. (1992) used interpolation
techniques in order to find the inverse of a polynomial ma-
trix. The speed of interpolation algorithms can be incre-
ased by using Discrete Fourier Transform (DFT) techni-
ques or, better, Fast Fourier Transform (FFT) techniques.
Some of the advantages of DFT based algorithms are that
there are very efficient algorithms available in both so-
ftware and hardware and that they are well suited for pa-
rallel environments (through symmetric multiprocessing

or other techniques). Karampetakis et al. (2005) used
DFT techniques to compute the minimal polynomial of
a polynomial matrix, and Paccagnella et al. (1976) used
FFT methods for the computation of the determinant of a
polynomial matrix.

Here we provide an algorithm for the computation of
GCD of 2-D polynomials based on DFT techniques. The
proposed algorithm is illustrated via examples.

2. Computation of the GCD of Bivariate
Polynomials via Interpolation

Suppose that we have n polynomials pi(x, y) ∈ R[x, y],
i = 0, 1, . . . , n − 1. These polynomials can be rewritten
as

pi (x, y)

=

p′
i,x(x)︷ ︸︸ ︷

pi,x(x)gx(x)

p′
i,x,y(x,y)︷ ︸︸ ︷

pi,x,y(x, y)gx,y(x, y)

p′
i,y(y)︷ ︸︸ ︷

pi,y(y)gy(y)

=
M1∑

m=0

M2∑
j=0

pi,m,jx
myj ∈ R[x, y],

i = 0, 1, . . . , n− 1, (1)

where M1 (resp. M2) is the greatest power of x (resp.
y) in pi (x, y), pi,x(x) ∈ R[x] are relatively coprime,
pi,y(y) ∈ R[y] are relatively coprime, pi,x,y(x, y) ∈
R[x, y] are relatively factor coprime with no factors only



464 P. Tzekis et al.

of x or y, i.e., there are no common factors of pi,x,y(x, y),
gx(x) is the GCD of p′i,x(x), gy(y) is the GCD of p′i,y(y)
and gx,y(x, y) is the GCD of p′i,x,y(x, y). The greatest po-
wers of the variables x, y in the CGD of p(x, y) are

degx (p(x, y)) = b1

:=
(
≤ min

i=0,1,...,n−1
{degx (pi(x, y))}

)
,

degy (p(x, y)) = b2

:=
(
≤ min

i=0,1,...,n−1

{
degy (pi(x, y))

})
(2)

for the GCD. Thus,

p(x, y) =
b1∑

k1=0

b2∑
k2=0

(pk1,k2)
(
xk1yk2

)
.

The computation of the GCD is essentially a univariate
problem, since we can compute the multivariate GCD
by interpolation. The number of the interpolation points
(xi, yi) that we need in order to evaluate p (x, y) or, equ-
ivalently, its coefficients pk1,k2 is equal to

R1 = (b1 + 1)(b2 + 1).

A naive approach to evaluate the GCD using interpolation
techniques is to make the following steps:

(a) Evaluate the GCDs p̃k (x, yk) of the univariate po-
lynomials pi (x, yk) using known techniques (Karca-
nias et al., 2004; Karcanias et al., 1994; Mitrouli et
al., 1993; Noda et al., 1991; Pace et al., 1973), where
yk, k = 0, 1, . . . , b2 are b2 + 1 distinct interpolation
points.

(b) Apply the values of b1 + 1 distinct interpolation
points xj , j = 0, 1, . . . , b1 to the polynomials
p̃k (x, yk) in order to get the values of the approxi-
mated GCD p̃ (x, y) at (xj , yk) , i.e.,

p̃ (xj , yk) = p̃k (xj , yk) , j = 0, 1, . . . , b1.

(c) Find the 2-D polynomial p̃ (x, y) that passes from
R1 interpolation points (xj , yk, p̃k (xj , yk)). Here
p̃ (x, y) will be the evaluation of p (x, y) with inter-
polation.

The main drawbacks of the above approach that we
have to overcome are twofold:

(a) There is a case where the polynomials pi,x,y(x, y)
might not be zero coprime, i.e., there exist points
(xk, yk) such that pi,x,y(xk, yk) = 0 for all i. The-
refore, for those values of yk, the GCDs p̃k (x, yk)
of the univariate polynomials pi (x, yk) will have an

extra factor of (x− xk), since all the polynomials
pi (x, yk) will vanish for x = xk. Thus, the resulting
univariate GCD polynomials p̃k (x, yk) will have
extra factors of x, except those of gx(x)gx,y(x, yk)
that will come from the factors of pi,x,y(x, y), see
Example 1.

(b) Since the evaluated univariate polynomials p̃k (x, yk)
are monic, we lose information from the factors
p′i,y(y), and thus the evaluated GCD of p (x, y) will
have the form p (x, y) = gx(x)gx,y(x, y) instead of
p (x, y) = gx(x)gx,y(x, y)gy(y), i.e., the part gy(y)
will be missing, see Example 2.

A combination of the above two problems may also
exist. In the sequel we give two examples in order to show
how the above drawbacks may guide us to unexpected re-
sults.

Example 1. Consider the polynomials

p1 (x, y) = (x + y) (x + 1) ,

p2 (x, y) = (xy + 1) (x + 1) .

Suppose that we are interested in evaluating the GCD of
p1 (x, y) and p2 (x, y) which is clearly p (x, y) = x + 1.

Step 1. Set

b1 = min
{

degx [(x + y) (x + 1)] ,

degx [(xy + 1) (x + 1)]
}

= 2,

b2 = min
{

degy [(x + y) (x + 1)] ,

degy [(xy + 1) (x + 1)]
}

= 1.

Step 2. Take

R1 =
2∏

i=1

(bi + 1) = (2 + 1) (1 + 1) = 6

interpolations points: (−1, 1) , (−1,−1) , (0, 1) ,
(0,−1) , (1, 1) , (1,−1) .

Step 3. Determine the GCDs p̃k (x, yk) of the polyno-
mials p1 (x, yk) , p2 (x, yk) , k = 0, 1, where y0 =
−1, y1 = 1:

p̃0 (x,−1) = (x + 1) (x− 1) ,

p̃1 (x, 1) = (x + 1) (x + 1) .

However, we know that the GCD of the polynomials
p1 (x, y), p2 (x, y) is x + 1. This happens since the extra
factors (x + y) and (xy + 1) of p1 (x, y) and p2 (x, y) ,
respectively, are not zero coprime. Note that both (x + y)



On the computation of the GCD of 2-D polynomials 465

and (xy + 1) vanish at the points (−1, 1) and (1,−1) ,
and thus at y0 = 1 (resp. y1 = −1) we have the
extra factor x−x0 = x + 1 (resp. x − x1 = x − 1).
Thus, if we continue the algorithm by taking the values
of p̃0 (x,−1) , p̃1 (x, 1) at xj = −1, 0, 1, i.e.,

p̃0 (−1,−1) = 0, p̃1 (−1, 1) = 0,

p̃0 (0,−1) = −1, p̃1 (0, 1) = 1,

p̃0 (1,−1) = 0, p̃1 (1, 1) = 4,

then the polynomial

p̃ (x, y) = p̃0,0 + p̃0,1x + p̃1,0y + p̃1,1xy

+p̃2,0x
2 + p̃2,1x

2y

that will pass from the above interpolation points will sa-
tisfy the following equations:

p̃ (−1,−1) = p̃0,0 − p̃0,1 − p̃1,0 + p̃1,1 + p̃2,0 − p̃2,1

= 0,

p̃ (0,−1) = p̃0,0 − p̃1,0 =−1,

p̃ (1,−1) = p̃0,0 + p̃0,1 − p̃1,0 − p̃1,1 + p̃2,0 − p̃2,1

= 0,

p̃ (−1, 1) = p̃0,0 − p̃0,1 + p̃1,0 − p̃1,1 + p̃2,0 + p̃2,1

= 0,

p̃ (0, 1) = p̃0,0 + p̃1,0 =1,

p̃ (1, 1) = p̃0,0 + p̃0,1 + p̃1,0 + p̃1,1 + p̃2,0 + p̃2,1

= 4,

and thus

p̃0,0 = 0, p̃1,0 = p̃0,1 = p̃1,1 = p̃2,0 = 1, p̃2,1 = 0,

or otherwise

p̃ (x, y) = x + y + xy + x2 = (x + 1) (x + y) ,

which is different from the real GCD p (x, y) = x + 1.
�

Example 2. Consider two polynomials:

p1 (x, y) = (x + 1) (y + 2) ,

p2 (x, y) = (x + 2y) (y + 2) .

Suppose that we are interested in evaluating the GCD of
p1 (x, y) and p2 (x, y).

Step 1. Let

b1 = min
{

degx [(x + 1) (y + 2)] ,

degx [(x + 2y) (y + 2)]
}

= 1,

b2 = min
{

degy [(x + 1) (y + 2)] ,

degy [(x + 2y) (y + 2)]
}

= 1.

Step 2 Take

R1 =
2∏

i=1

(bi + 1) = (1 + 1) (1 + 1) = 4

interpolations points: (1, 1) , (1, 0) , (−1, 1) ,
(−1, 0).

Step 3. Determine the GCDs p̃k (x, yk) of the polyno-
mials p1 (x, yk), p2 (x, yk) , k = 0, 1, where y0 =
0, y1 = 1:

p̃0 (x, 0) = 1, p̃1 (x, 1) = 1.

Since the polynomials p̃1 (x, yk), p̃2 (x, yk) are mo-
nic, they do not include information about the factor y + 1
that is included in the polynomials p1 (x, y) and p2 (x, y).
Thus, if we continue the algorithm by taking the values of
p̃0 (x, 0) and p̃1 (x, 1) at xj = 0, 1, i.e.,

p̃0 (0, 0) = 1, p̃1 (0, 1) = 1,

p̃0 (1, 0) = 1, p̃1 (1, 1) = 1,

then the polynomial

p̃ (x, y) = p̃0,0 + p̃0,1x + p̃1,0y + p̃1,1xy

obtained from the above interpolation points will satisfy
the following equations:

p̃ (0, 0) = p̃0,0 = 1,

p̃ (1, 0) = p̃0,0 + p̃0,1 = 1,

p̃ (0, 1) = p̃0,0 + p̃1,0 = 1,

p̃ (1, 1) = p̃0,0 + p̃0,1 + p̃1,0 + p̃1,1 = 1,

and thus

p̃0,0 = 1, p̃1,0 = 0, p̃0,1 = 0, p̃1,1 = 0,

or otherwise
p̃ (x, y) = 1,

which is different from the actual GCD p (x, y) = y + 1.
�

In order to overcome the above two drawbacks, we
do the following:

(a) We select the interpolation points yi (resp. xi) to be
as random as possible. To this end, we select the po-
ints yi (resp. xi) to lie on the vertices of a regular b2-
gone (resp. b1-gone) that is encircled on a circle of
a complex plane with the center at the origin and the
radius being a random real number c2 (resp. c1). If
we consider the variety V (p1,x,y, p2,x,y, . . . , pn,x,y)
defined by the polynomials pi,x,y (x, y) , or other-
wise the set of all the solutions (xk, yk) of equations



466 P. Tzekis et al.

pi,x,y (xk, yk) = 0, then the possibility for these po-
ints xk (resp. yk) to have magnitudes equal to a ran-
dom real number c1 (resp. c2), as the proposed inter-
polation points, is zero. An additional reason for the
proposed selection of interpolation points is that we
need to use a discrete Fourier transform algorithm for
the computation of the GCD.

(b) When we calculate the univariate GCD polynomials
p̃k (x, yk) , we also take into account the product
of the highest order coefficients of the polynomials
pi (x, yk) in order to retain all the information con-
cerning the polynomial fy(y), i.e., fy(y) is the pro-
duct of all the factors of the polynomials pi (x, y) that
depend only on y.

In the next section, we present an algorithm based
on DFT techniques that use the above two hints in order
to overcome the problems presented in the previous two
examples.

3. DFT Computation of the GCD
of Bivariate Polynomials

Consider the finite sequence X(k1, k2) and X̃(r1, r2),
i = 1, 2 and ki, ri = 0, 1, . . . ,Mi. In order for the se-
quence X(k1, k2) and X̃(r1, r2) to constitute a DFT pair,
the following relations should hold:

X̃(r1, r2) =
M1∑

k1=0

M2∑
k2=0

X(k1, k2)W−k1r1
1 W−k2r2

2 , (3)

X(k1, k2) =
1
R

M1∑
r1=0

M2∑
r2=0

X̃(r1, r2)W k1r1
1 W k2r2

2 , (4)

where

Wi = e
2πI
Mi+1 , ∀i = 1, 2 (5)

R = (M1 + 1) (M2 + 1) (6)

and I represents the imaginary unit. The relation (3) is
the forward Fourier transform of X(k1, k2) while (4) the
inverse Fourier transform of X̃(r1, r2).

Determine two random real numbers c1, c2 and mul-
tiply the points

W k
i = e

2πkI
bi+1 , i = 1, 2 and k = 0, 1, . . . , bi

by c1 and c2, respectively.

Lemma 1. Let W̃ k
i = ciW

k
i , i = 1, 2 and k =

0, 1, . . . ,Mi where the points W k
i are defined by (5). Then

the relations

X̃ ′(r1, r2) =
M1∑

k1=0

M2∑
k2=0

X(k1, k2)W̃−k1r1
1 W̃−k2r2

2 , (7)

X(k1, k2) =
1
R

M1∑
r1=0

M2∑
r2=0

X̃ ′(r1, r2)W̃ r1k1
1 W̃ r2k2

2 (8)

constitute a forward and an inverse Fourier transform, re-
spectively.

Proof. First note that

X̃ ′(r1, r2)

=
M1∑

k1=0

M2∑
k2=0

X(k1, k2)W̃−k1r1
1 W̃−k2r2

2

=
M1∑

k1=0

M2∑
k2=0

X(k1, k2)
(
c1W

k1
1

)−r1
(
c2W

k2
2

)−r2

= c−r1
1 c−r2

2

M1∑
k1=0

M2∑
k2=0

X(k1, k2)W−k1r1
1 W−k2r2

2

= c−r1
1 c−r2

2 X̃(r1, r2), (9)

where X̃(r1, r2) is defined in (3). Then, by using (9) and
(4), it is easily seen that the relation (8) holds. Indeed,

1
R

M1∑
r1=0

M2∑
r2=0

X̃ ′(r1, r2)W̃ r1k1
1 W̃ r2k2

2

=
1
R

M1∑
r1=0

M2∑
r2=0

[
c−r1
1 c−r2

2 X̃(r1, r2)
]
W̃ r1k1

1 W̃ r2k2
2

=
1
R

M1∑
r1=0

M2∑
r2=0

c−r1
1 c−r2

2 X̃(r1, r2)
(
c1W

k1
1

)r1
(
c2W

k2
2

)r2

=
M1∑

r1=0

M2∑
r2=0

c−r1
1 c−r2

2 X̃(r1, r2)cr1
1 cr2

2 W k1r1
1 W k2r2

2

=
M1∑

r1=0

M2∑
r2=0

X̃(r1, r2)W k1r1
1 W k2r2

2

(4)
= X(k1, k2)

�

Therefore, according to Lemma 1, we can always
change the interpolation points yk = W k

2 (resp. xk =
W k

1 ) belonging to the unit circle with the center at the
origin with the points ỹk = c2W

k
2 (resp. x̃k = c1W

k
1 )

belonging to a circle with the random radius ‖c1‖ (resp.
‖c2‖) and the same center. Due to the randomness of the
new interpolation points ỹk (resp. x̃k), the probability of
the polynomials pi,x,y(x, ỹk) to have GCDs other than the
unity, or otherwise the probability that the interpolation
points (x̃k, ỹk) vanish all the polynomials pi,x,y(x, y) is
zero. In that way, we can solve the first problem presented
in the previous section.

Consider n polynomials pi(x, y) ∈ R[x, y], i =
0, 1, . . . , n − 1 of the form (1) and define b̃i, i = 1, 2 as



On the computation of the GCD of 2-D polynomials 467

Fig. 1. The values W k
i = e

2πkI
bi+1 lie on the unit circle, while the

values 2W k
i = 2e

2πkI
bi+1 lie on a circle with radius 2.

follows:

degx (p̄(x, y)) ≤ b̃1

:=
(

min
i=0,1,...,n−1

{degx (pi(x, y))}
)

degy (p̄(x, y)) ≤ b̃2

:=

(
n−1∑
i=0

{
degy (pi(x, y))

})
(10)

for the GCD. In the following, we shall propose an algo-
rithm for the computation of the polynomial

p̄(x, y) = gx(x)gx,y(x, y)
n−1∏
i=0

p′i,y(y)

=
b̃1∑

k1=0

b̃2∑
k2=0

(p̄k1,k2)
(
xk1yk2

)
(11)

for the GCD that comes from the polynomials pi (x, y) ,
i = 0, 1, . . . , n − 1 using the discrete Fourier transform.

Here p̄(x, y) can be numerically computed via interpola-
tion using the following R1 = (b̃1 + 1)(b̃2 + 1) points:

ui(rj) = ciW
rj
i , i = 1, 2 and rj = 0, 1, . . . , b̃i,

Wi = cie
2πI
bi+1 ,

(12)
where ci, i = 1, 2 are random real numbers. In order to
evaluate the coefficients p̄k1,k2 ,

(a) we determine the GCD p̃r2 (x, u2(r2)) , r2 =
0, 1, . . . , b̃2 of the polynomials pi (x, u2(r2)) , i =
0, 1, . . . , n− 1 by using known algorithms for univa-
riate polynomials, and

(b) we multiply each polynomial p̃r2 (x, u2(r2)) by the
product of the highest order coefficients of the poly-
nomials pi (x, u2(r2)) and thus get the polynomials
p̄r2 (x, u2(r2)). In this way, we succeed to take the
product

∏n−1
i=0 p′i,y(y) in the final result.

Then, applying u1(r1), r1 = 0, 1, . . . , b̃1 in the above
polynomials, we take

p̃r1,r2 = p̄ (u1(r1), u2(r2)) . (13)

From (11) and (13) we get

p̃r1,r2 =
b̃1∑

l1=0

b̃2∑
l2=0

(p̄l1,l2)
(
W−r1l1

1 W−r2l2
2

)
.

Note that [p̄l1,l2 ] and [p̃r1,r2 ] form a DFT pair, and thus
using (4) we derive the coefficients of (11), i.e.,

p̄l1,l2 =
1

R1

b̃1∑
r1=0

b̃2∑
r2=0

p̃r1,r2W
r1l1
1 W r2l2

2 , (14)

where li = 0, . . . , b̃i and i = 1, 2.
We can now present the following algorithm:

Algorithm 1. Computation of

p̄(x, y) = gx(x)gx,y(x, y)
n−1∏
i=0

p′i,y(y).

Step 1. Calculate the number R1 = (b̃1 + 1)(b̃2 + 1) of
interpolation points.

Step 2. Compute R1 points (u1(r1), u2(r2)) for ri =
0, 1, . . . , b̃i and i = 1, 2 as defined by (12).

Step 3. Determine the polynomials p̄r2 (x, u2(r2)) , r2 =
0, 1, . . . , b̃2.

Step 4. Determine the values

p̃r1,r2 = p̄ (u1(r1), u2(r2)) = p̄r2 (u1(r1), u2(r2))

for ri = 0, 1, . . . , b̃i and i = 1, 2.



468 P. Tzekis et al.

Step 5. Use the inverse DFT (14) for the points p̃r1,r2 in
order to construct the values p̄l1,l2 .

Step 6. Return the polynomial

p̄(x, y) = gx(x)gx,y(x, y)
n−1∏
i=0

p′i,y(y)

=
b̃1∑

k1=0

b̃2∑
k2=0

(p̄k1,k2)
(
xk1yk2

)
.

Similarly to the previous algorithm, we can deter-
mine the polynomial

q̄(x, y) =

(
n−1∏
i=0

p′i,x(x)

)
gx,y(x, y)gy(x)

=
b̃1∑

k1=0

b̃2∑
k2=0

(q̄k1,k2)
(
xk1yk2

)
.

To this end, in Step 3 of the previous algorithm we
first determine the polynomials q̃r1 (u1(r1), y) , r1 =
0, 1, . . . , b̃1 that come from the GCD of the univariate po-
lynomials pi (u1(r1), y). Then we multiply each polyno-
mial q̃r1 (u1(r1), y) by the product of the highest order
coefficients of the polynomials pi (u1(r1), y) in order to
determine the polynomials q̄r1 (u1(r1), y). Then, by sub-
stituting the values of u2(r2) in place of y, we get the va-
lues q̃r1,r2 = q̄ (u1(r1), u2(r2)) = q̄r1 (u1(r1), u2(r2)).
Finally, using the inverse DFT, we construct the values
q̄k1,k2 .

If we know the polynomials p̄(x, y) and q̄(x, y) defi-
ned above, then we can easily determine the GCD of the
polynomials pi (x, y) , as shown in the next result.

Proposition 1. Consider n 2-D polynomials:

pi(x, y)

=

p′
i,x(x)︷ ︸︸ ︷

pi,x(x)gx(x)

p′
i,x,y(x,y)︷ ︸︸ ︷

pi,x,y(x, y)gx,y(x, y)

p′
i,y(y)︷ ︸︸ ︷

pi,y(y)gy(y) ,

i = 0, 1, . . . , n− 1.

If we define

p̄(x, y) = gx(x)gx,y(x, y)
n−1∏
i=0

p′i,y(y),

q̄(x, y) = gy(y)gx,y(x, y)
n−1∏
i=0

p′i,x(x),

then the GCD is

p(x, y) = q̄(x, y)
p̄(x, c)
q̄(x, c)

= p̄(x, y)
q̄(c, y)
p̄(c, y)

,

where c is an arbitrary number.

Proof. Note that

q̄(x, c)
p̄(x, c)

=
C2gx,y(x, c)

n−1∏
i=0

p′i,x(x)

gx(x)gx,y(x, c)C1
=

C2

C1

n−1∏
i=0

p′i,x(x)

gx(x)

=
C2

C1

p′0,x(x)
n−1∏
i=1

p′i,x(x)

gx(x)

=
C2

C1

p0,x(x)gx(x)
n−1∏
i=1

p′i,x(x)

gx(x)

=
C2

C1
p0,x(x)

n−1∏
i=1

p′i,x(x),

where p̄(x, c) and q̄(x, c) are polynomials of only the va-
riable x. Thus, the GCD will be

p(x, y)

= q̄(x, y)
p̄(x, c)
q̄(x, c)

=

[
gy(y)gx,y(x, y)

n−1∏
i=0

p′i,x(x)

]

C1

C2

1

p0,x(x)
n−1∏
i=1

p′i,x(x)


=

C1

C2
gy(y)gx,y(x, y)gx(x)p0,x(x)

n−1∏
i=1

p′i,x(x)
1

p0,x(x)
n−1∏
i=1

p′i,x(x)

=
C1

C2
gy(y)gx,y(x, y)gx(x).

The division that takes place in the above equations is the
usual 1-D division over the variable x. �

Algorithm 2. DFT computation of the GCD of two-
variable polynomials.

Step 1. Compute p̄(x, y) by (4):

p̄(x, y) = gx(x)gx,y(x, y)
n−1∏
i=0

p′i,y(y).

Step 2. Compute q̄(x, y) by a modification of (4):

q̄(x, y) = gy(y)gx,y(x, y)
n−1∏
i=0

p′i,x(x).



On the computation of the GCD of 2-D polynomials 469

Step 3. The CGD is

p (x, y) = q̄(x, y)
p̄(x, c)
q̄(x, c)

= p̄(x, y)
q̄(c, y)
p̄(c, y)

,

where c is an arbitrary real number.

Example 3. Consider the polynomials

p1 (x, y)
= 1︸︷︷︸

p′
1,x(x)≡p1,x(x)

× (x + y)︸ ︷︷ ︸
gx,y(x,y)

× y︸︷︷︸
gy(y)

× (y + 1)︸ ︷︷ ︸
p1,y(y)︸ ︷︷ ︸

p′
1,y(y)

,

p2 (x, y)
= (x + 1)︸ ︷︷ ︸

p′
2,x(x)≡p2,x(x)

× (x + y)︸ ︷︷ ︸
gx,y(x,y)

× y︸︷︷︸
gy(y)

× y︸︷︷︸
p2,y(y)︸ ︷︷ ︸

p′
2,y(y)

.

Applying Algorithm 3, we have

Step 1. Compute p̄(x, y) by (4):

p̄(x, y) = gx(x)gx,y(x, y)
n−1∏
i=0

p′i,y

= 1× (x + y)×
[
y(y + 1)× y2

]
.

Step 2. Compute q̄(x, y) by (4):

q̄(x, y) = gy(y)gx,y(x, y)
n−1∏
i=0

p′i,x(x)

= y × (x + y)× [1× (x + 1)] .

Step 3. Compute the values of the polynomials p̄(x, c)
and q̄(x, c), where c is an arbitrary number, i.e.,
c = 1.27,

p̄(x, 1.27) = 4.64983(1.27 + x),
q̄(x, 1.27) = 1.27(1 + x)(1.27 + x).

Step 4. The GCD we are looking for is

p (x, y)

= q̄(x, y)
p̄(x, 1.27)
q̄(x, 1.27)

= (x + 1) (x + y) y
4.64983(1.27 + x)

1.27(1 + x)(1.27 + x)

= (x + y) y
4.64983

1.27
= 3. 661 3 (x + y) y.

We present here only the steps for the computation
of q̄(x, y). The computation of p̄(x, y) is similar.

Step 2.1. Calculate the numbers of interpolation points
bi, i = 1, 2 by (10):

b1 = degx [(x + y)y(y + 1)]
+ degx

[
(x + 1) (x + y) y2

]
= 3,

b2 = min
{

degy [(x + y)y(y + 1)] ,

degy

[
(x + 1) (x + y) y2

] }
= 3.

Step 2.2. Compute the number of interpolation points,

R1 =
2∏

i=1

(bi + 1) = (3 + 1) (3 + 1) = 16

Let c1 = c2 = 5. Then we have the following inter-
polation points:

u1 (0) = u2 (0) = 5W 0
0 = 5,

u1 (1) = u2 (1) = 5W 1
0 = 5e

2πI
4 = 5I,

u1 (2) = u2 (2) = 5W 2
0 = 5e

4πI
4 = −5,

u1 (3) = u2 (3) = 5W 3
0 = 5e

6πI
4 = −5I.

Step 2.3. Determine the GCD of the polynomials
p1 (u1(r1), y) and p2 (u1(r1), y) multiplied by
the coefficients of the greatest powers of y of the
polynomials p1 (u1(r1), y) and p2 (u1(r1), y): Since

p1 (5, y) = y(1 + y)(5 + y),
p2 (5, y) = 6y2(5 + y),

we get

q̄0 (5, y) = (5 + y)y × 1× 6
= 6(5 + y)y.

Since

p1 (5I, y) = y(5I + y)(1 + y),
p2 (5I, y) = (1 + 5I)y2(5I + y),

we get

q̄1 (5I, y) = y(5I + y)× 1× (1 + 5I)
= (1 + 5I)y(5I + y).

Since

p1 (−5, y) = (−5 + y)y(1 + y),
p2 (−5, y) = −4(−5 + y)y2,

we get

q̄2 (−5, y) = (−5 + y)y × 1× (−4)
= −4(−5 + y)y.



470 P. Tzekis et al.

Since

p1 (−5I, y) = y(−5I + y)(1 + y),
p2 (−5I, y) = (1− 5I)y2(−5I + y),

we get

q̄3 (−5I,y) = y(−5I+y)× 1× (1− 5I)
= (1− 5I)y(−5I + y).

Then the values of each polynomial at u2(r2) are

q̃0,0 = 300, q̃1,0 = −100 + 150I,

q̃0,1 = −150 + 150I, q̃1,1 = −50− 250I,

q̃0,2 = 0, q̃1,2 = 150 + 100I,

q̃0,3 = −150− 150I, q̃1,3 = 0,

q̃2,0 = 0, q̃3,0 = −100− 150I,

q̃2,1 = 100 + 100I, q̃3,1 = 0,

q̃2,2 = −200, q̃3,2 = 150− 100j,

q̃2,3 = 100− 100I, q̃3,3 = −50 + 250I,

and thus the values q̃r1,r2 in (13) are constructed.

Step 2.4. Use the inverse DFT (14) for the points q̃r1,r2 in
order to construct the values

q̄l1,l2 =
1
16

3∑
r1=0

3∑
r2=0

q̃r1,r2W̃
r1l1
1 W̃ r2l2

1 .

We get

q̄0,0 = 0, q̄0,1 = 0, q̄0,2 = 1, q̄0,3 = 0,

q̄1,0 = 0, q̄1,1 = 1, q̄1,2 = 1, q̄1,3 = 0,

q̄2,0 = 0, q̄2,1 = 1, q̄2,2 = 0, q̄2,3 = 0,

q̄3,0 = 0, q̄3,1 = 0, q̄3,2 = 0, q̄3,3 = 0,

Thus,

q̄(x, y) =
3∑

k1=0

3∑
k2=0

pk1,k2x
k1yk2

= xy + y2 + xy2 + x2y

= (x + 1) (x + y) y.

4. Conclusions
An algorithm for the computation of the GCD of two-
variable polynomials have been developed based on DFT
techniques. It inherits its main advantages of speed and ro-
bustness from DFT techniques. The above algorithm can
be extended to the 2-D polynomial matrix case by using
existing methods of the computation of the GCD of 1-D
polynomial matrices. A similar algorithm can also be ap-
plied for the computation of the least common multiple of
2-D polynomials and polynomial matrices.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their valuable comments.

References
Karampetakis N. P., Tzekis P., (2005): On the computation of the

minimal polynomial of a polynomial matrix. International
Journal of Applied Mathematics and Computer Science,
Vol. 15, No. 3, pp. 339–349.

Karcanias N. and Mitrouli M., (2004): System theoretic ba-
sed characterisation and computation of the least common
multiple of a set of polynomials. Linear Algebra and Its
Applications, Vol. 381, pp. 1–23.

Karcanias N. and Mitrouli, M., (2000): Numerical computation
of the least common multiple of a set of polynomials, Re-
liable Computing, Vol. 6, No. 4, pp. 439–457.

Karcanias N. and Mitrouli M., (1994): A matrix pencil based nu-
merical method for the computation of the GCD of polyno-
mials. IEEE Transactions on Automatic Control, Vol. 39,
No. 5, pp. 977–981.

Mitrouli M. and Karcanias N., (1993): Computation of the
GCD of polynomials using Gaussian transformation and
shifting. International Journal of Control, Vol. 58, No. 1,
pp. 211–228.

Noda M. and Sasaki T., (1991): Approximate GCD and its ap-
plications to ill-conditioned algebraic equations. Journal
of Computer and Applied Mathematics Vol. 38, No. 1–3,
pp. 335–351.

Pace I. S. and Barnett S., (1973): Comparison of algorithms for
calculation of GCD of polynomials. International Journal
of Systems Science Vol. 4, No. 2, pp. 211–226.

Paccagnella, L. E. and Pierobon, G. L., (1976): FFT calcula-
tion of a determinantal polynomial. IEEE Transactions on
Automatic Control, Vol. 21, No. 3, pp. 401–402.

Schuster, A. and Hippe, P., (1992): Inversion of polynomial ma-
trices by interpolation. IEEE Transactions on Automatic
Control, Vol. 37, No. 3, pp. 363–365.

Received: 17 April 2007
Revised: 25 July 2007
Re-revised: 31 October 2007


	Introduction
	Computation of the GCD of Bivariate Polynomials via Interpolation
	DFT Computation of the GCD of Bivariate Polynomials
	Conclusions

