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This paper proposes a novel approach to reliability evaluation for active Fault Tolerant Control Systems (FTCSs). By intro-
ducing a reliability index based on the control performance and hard deadline, a semi-Markov process model is proposed
to describe system operation for reliability evaluation. The degraded performance of FTCSs in the presence of imperfect
Fault Detection and Isolation (FDI) is reflected by semi-Markov states. The semi-Markov kernel, the key parameter of
the process, is determined by four probabilistic parameters based on the Markovian model of FTCSs. Computed from the
transition probabilities of the semi-Markov process, the reliability index incorporates control objectives, hard deadline, and
the effects of imperfect FDI, a suitable quantitative measure of the overall performance.
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1. Introduction

In order to meet high reliability requirements of safety-
critical processes, major progress has been made in Fault
Tolerant Control Systems (FTCSs) (Blanke et al., 2001;
Wu and Patton, 2003). FTCSs usually employ Fault De-
tection and Isolation (FDI) schemes and reconfigurable
controllers to accommodate fault effects, also known as
active FTCSs (Patton, 1997). As controllers are recon-
figured based on FDI results, imperfect detection results
caused by modeling uncertainties and disturbances may
corrupt stability, performance, and therefore reliability
(Mariton, 1989). Some works exist to restore the con-
trol performance when considering this FDI imperfect-
ness. For example, Zhang and Jiang (2001) developed an
integrated FDI and reconfigurable control approach based
on Iteracting Multiple-Model (IMM) Kalman filters and
eigenvalue assignments. This approach was then further
improved to account for performance degradation under
fault occurrences (Jiang and Zhang, 2006). However, it is
unknown if the designed system satisfies critical reliabil-
ity requirements. This is the main motivation behind the
current paper.

A quantitative reliability analysis is required for
FTCSs in order to verify safety requirements (Blanke,

1996). Moreover, this analysis is a prerequisite to
reliability-based controller design. For example, in the
reliability-based design of structural control, the key prob-
lem is to evaluate the failure probability, a complementary
reliability index (Spencer et al., 1994). For Fault Tolerant
Control (FTC), improving the system reliability is consid-
ered to be the ultimate goal. Thus, the main objective of
this paper is to develop a reliability index and its modeling
method for active FTCSs.

The reliability of FTCSs has been investigated by
using various methods. An ongoing research contribu-
tion is made by Wu (Wu, 2001; 2004; Wu and Patton,
2003). In her latest results, reliability was evaluated from
a Markov process model built from serial-parallel block
diagrams which describe functional relations among sub-
systems and components. Coverage was used as a link
between reliability and control actions. A similar sys-
tem configuration was deployed by Guenab et al. (2005),
where reliability was evaluated from serial-parallel struc-
tures and optimization was conducted to find the best
structure based on the reliability and cost. However, this
framework is restricted to those FTCSs that can be de-
scribed by serial-parallel block diagrams.

Other methods are based on Markov or semi-Markov
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reliability modeling. For example, Walker (1997) pro-
posed a semi-Markov model by defining semi-Markov
states as the combinations of the status of faults and
FDI schemes without considering dynamical relations and
control objectives. Walker (1989) and Schrick and Müller
(2000) used reliability evaluations from the Markov mod-
eling of FDI to determine the residue threshold of FDI
and to compare several sensor fault detection schemes,
respectively. Harrison et al. (1981) established a simi-
lar discrete-time Markov model for a redundant navigator.
However, in these Markov or semi-Markov models, the
states are all simply defined as the combinations of fault
modes and FDI results, in which the role of control in im-
proving the system performance is not considered. Hence,
a link between the reliability and the overall control per-
formance of FTCSs is missing.

The latest progresses were reported in an invited ses-
sion at the SAFEPROCESS conference in 2006, which
presented various methods of improving FTCS analysis
and design through an integrated reliability index. For ex-
ample, Guenab et al. (2006) developed a reliability-based
reconfiguration strategy according to an enumeration of fi-
nite system structures. Bonivento et al. (2006) proposed a
reliability index for a hierarchic diagnostic system from its
functional description. Patton et al. (2006) used a Monte
Carlo simulation technique to design an FDI scheme with
high reliability. Wu and Thavamani (2006) presented a
simulation study to quantify the performance of a wireless
network on the effects of the loop closure frequency and
node storage capacity; Figueras et al. (2006) discussed
a fault diagnosis system design using reliability analysis
techniques with application to a practical problem. How-
ever, most of these methods are focused on either FDI or
reconfigurable control only, while this paper takes into ac-
count the interaction effects between these two parts.

This paper proposes a new reliability index and its
modeling method. The index incorporates the dynamical
characteristics of FTCSs: control objectives, hard dead-
line, and the effects of imperfect FDI results. Based on
the dynamical model of FTCSs, degrading control objec-
tives are set for various fault scenarios, and the reliability
is defined as the probability of satisfying degraded objec-
tives, while a temporal violation within a hard deadline is
allowed. To evaluate this index, a semi-Markov process is
constructed to describe and to predict the control perfor-
mance evolution due to fault occurrences and imperfect
FDI results. The semi-Markov transition probabilities are
computed to determine the reliability.

It is worthwhile to point out that this paper presents
a part of the authors’ work on the analysis and design of
FTCSs based on a reliability criterion. The developed reli-
ability index is essentially an off-line criterion and can be
used for controller analysis and design. A controller de-
sign method was reported in (Li and Zhao, 2007), where a
stabilizing controller parameterization and a randomized

algorithm are integrated to design a state-feedback con-
troller using the reliability index as an optimization ob-
jective. Another related work is an extended reliability
analysis framework for a generalized semi-Markov FDI
description reported in (Li and Zhao, 2006).

The remainder of this paper is organized as follows:
A reliability index is defined in Section 2. The system
model and assumptions are given in Section 3. A semi-
Markov reliability model is presented in Section 4, and an
example is given in Section 5, followed by conclusions in
Section 6.

2. Reliability Index

Definition 1. The reliability function R(t) of FTCSs
is defined as the probability that, during the time interval
[0, t], FTCSs either satisfy presumed control objectives or
violate them only temporarily for a short time no longer
than the presumed hard deadline Thd.

A reliability index is introduced in Definition 1 to
reflect the following dynamical characteristics of FTCSs:

• Control objectives. FTCSs are said to be functional
if they satisfy given control objectives. A scalar function
J(t) is assumed to represent the control performance at
time t, and a small value indicates a good performance.
Assume that fault modes are finite, and the performance
upper bound for the i-th fault mode is denoted as ρi. The
control objective is to maintain J(t) ≤ ρi for each fault
mode. More discussions are given in Section 3.2.

• Hard deadline. J(t) may exceed ρi only temporar-
ily for a short time because of imperfect FDI results and
controller reconfigurations, which should be distinguished
from a failure. The hard deadline concept proposed in a
real-time system analysis is therefore used in Definition 1
(Shin and Kim, 1992). It is assumed that if the viola-
tion time is greater than a particular limit Thd, the system
is generally unable to return to functional states. In this
sense, Thd is called the hard deadline of FTCSs.

Let ζ(t) represent the system fault mode at t. Ac-
cording to Definition 1, R(t) is calculated as

R(t) = 1 − Pr
{
∃t1, t2 ∈ [0, t], t2 − t1 > Thd,

∀τ ∈ [t1, t2], J(τ) > ρi, i = ζ(τ)
}

. (1)

The reliability evaluation problem is then reduced to de-
veloping an approach to calculate R(t). The main idea
is to describe the evolution of J(t) using a semi-Markov
process and then to calculate R(t) by solving the transi-
tion probabilities of the process.

Remark 1. As an overall performance criterion of
FTCSs, the reliability function R(t) gives the system sur-
vival probability for any operation period up to time t.
The plot of calculated R(t) can be deemed as a relia-
bility prediction curve, which can be used to examine a
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long-term system reliability behavior during an off-line
analysis.

As a function criterion, R(t) is not often used as
an objective or a constraint in the design phase. An al-
ternative scalar reliability index, Mean Time To Failure
(MTTF), is usually preferable for a controller or a system
design purpose, as shown in (Li and Zhao, 2007). It is de-
fined as the expected lifetime of the satisfactory operation:

MTTF =
∫ ∞

0

R(t) dt.

Both R(t) and MTTF can be calculated from a semi-
Markov process X(t) constructed in the following sec-
tions. These criteria and the evaluation method lay the
foundation for the system analysis and design from a reli-
ability perspective.

3. System Modeling

3.1. Markovian Model. To address the effects of im-
perfect FDI results, Markovian models are used to study
the reliability evaluation problem for given FTCSs. Al-
though the Markovian modeling of FDI may be restrictive,
the influence of FDI imperfectness is directly tackled in
this model (Mariton, 1989; Srichander and Walker, 1993;
Mahmoud et al., 2003).

Consider the following nominal linear Markovian
model of FTCSs:

M :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = A(ζ(t))x(t) + B1(ζ(t))w(t)
+B2(ζ(t))u(η(t), t),

z(t) = C1(ζ(t))x(t) + D11(ζ(t))w(t)
+D12(ζ(t))u(η(t), t),

y(t) = C2(ζ(t))x(t) + D21(ζ(t))w(t)
+D22(ζ(t))u(η(t), t),

(2)

where x(t) ∈ R
n, u(η(t), t) ∈ R

m, w(t) ∈
R

h, z(t) ∈ R
p, and y(t) ∈ R

l denote the sys-
tem state, control input, exogenous input, controlled
output, and measured output, respectively, and R

n de-
notes the n-dimensional real vector space. Here ζ(t)
and η(t) are assumed to be two separate continuous-
time Markov processes. A(ζ(t)), B1(ζ(t)), B2(ζ(t)),
C1(ζ(t)), C2(ζ(t)), D11(ζ(t)), D12(ζ(t)), D21(ζ(t)),
and D22(ζ(t)) are system matrices with compatible di-
mensions.

According to a probabilistic robustness analysis
(Tempo et al., 1997), the modeled uncertainties in (2)
are assumed to have known probability distributions in
bounded sets without specific structures. For example,
they can be uncertain matrices additive to system matrices
or uncertain transfer functions multiplicative to the nomi-
nal model.

The system in (2) can be viewed as a hybrid dynam-
ical system including both continuous states and discrete
modes (Mariton, 1989). The discrete modes, also referred
to as system regimes, are represented by ζ(t) and η(t)
subjected to the stochastic evolution, and the dynamics of
continuous-state x(t) are described by linear state space
equations, denoted by M(ζ(t), η(t)), for the correspond-
ing system regimes.

Here ζ(t) is assumed to be a homogeneous Markov
process with a finite state space S1 = {0, 1, . . . , N1} to
describe system fault modes, N1 ∈ N. N denotes the set
of nonnegative integers. The transition probability from
mode i to j, i, j ∈ S1, in the infinitesimal time interval of
�t is given by

ζ(t) : pij(�t) =

{
αij�t + o(�t), i �= j,

1 − αii�t + o(�t), i = j,

where αij , αii ≥ 0 are the transition rates of ζ(t), and
o(�t) denotes high order infinitesimal terms.

Moreover, η(t) is assumed to be a condition-
ally Markov process with a finite state space S2 =
{0, 1, . . . , N2} to describe FDI results, N2 ∈ N. When
ζ(t) = k, k ∈ S1, the transition probability from mode i
to j, i, j ∈ S2, in �t is given by

η(t) : pk
ij(�t) =

{
βk

ij�t + o(�t), i �= j,

1 − βk
ii�t + o(�t), i = j,

where βk
ij , βk

ii ≥ 0 represent the transition rates of
η(t) given ζ(t) = k. These transition rates compose
the generator matrices of ζ(t) and η(t), denoted by,
G = [±αij ]N1×N1 and Hk = [±βk

ij ]N2×N2 , respectively,
where the negative sign is taken when i = j.

In this Markovian model, the stochastic behaviors of
FDI and fault modes are described by two Markov pro-
cesses, and incorrect fault detection results are represented
by mismatched modes between ζ(t) and η(t). Therefore,
the fault diagnosis quality can be obtained by examining
the transition parameters of these two Markov processes,
as demonstrated by the probabilistic parameters in Sec-
tion 4.2.

3.2. Assumptions. The assumptions made in this pa-
per are as follows:
Assumption 1. For fixed system regimes ζ(t) and η(t),
(2) is reduced to a linear system model M(ζ(t), η(t)). It
is assumed that the control performance of M(ζ(t), η(t))
can be represented by a model-based static performance
measure μ(·).

“Static” means that μ(·) depends on the system
model only, but not on the system state trajectory x(t),
nor the output response y(t). Essentially, this model-
based static performance represents an average measure
of how the system behaves in a particular regime. This
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assumption is made mainly because of the fact that a re-
liability index mainly concerns a long-term behavior. An
average performance measure is therefore more suitable
for reliability analysis. For example, μ(·) can be defined
as ‖Gzw(ζ(t), η(t), s)‖, the system norm of the transfer
function from w to z of the regime model, such as H∞
and H2 norms. With the development of robust and opti-
mal control, system norms represent a widely-used static
model-based index and have become a standard perfor-
mance criterion. They can be used to describe general
control objectives including trajectory tracking, distur-
bance attenuation, model matching, output variance when
considering Gaussian disturbances, etc. As a practical ex-
ample, Balas et al. (1998) used the H∞ norm to describe
a handling quality control problem in an aircraft. What is
more, μ(·) can also be defined as a stability criterion and
other model-based control objectives.

In the design of active FTCSs, the performance in-
dex is often defined on system states or trajectories. For
example, the performance measure is defined as a moving
average of the norm of filter residual vectors in (Zhang
and Jiang, 2001), and an average tracking error is used
in (Jiang and Zhang, 2006). These criteria provide infor-
mation for a reliable fault diagnosis and transient perfor-
mance of the controller reconfiguration, which are suit-
able for the integrated design of FTCSs using IMM meth-
ods. In general, these time-varying control objectives de-
pending on the system state or trajectory are not appli-
cable to μ(·), except for those that can be directly cal-
culated based on a system model, such as the guaran-
teed cost control (Polyak and Tempo, 2001). If the time-
varying control objectives are to maintain the system tra-
jectory within a safety region under a Gaussian noise dis-
turbance, the methods presented in Spencer et al. (1994)
can be used instead to estimate the probabilistic perfor-
mance for reliability evaluation. The performance value
J(t) is calculated as μ(M(ζ(t), η(t))). Based on As-
sumption 1, μ(M(ζ(t), η(t))) is a constant for fixed ζ(t)
and η(t). Abusing the notation, we use J(ζ(t), η(t)) �
μ(M(ζ(t), η(t))) to denote the dependence of this per-
formance value on system regimes.

Assumption 2. The probability distribution of η(t) can be
approximated by its stationary distribution.

This assumption is a result of the limiting probability
theory of Markov processes (Çinlar, 1975). Considering
the meanings of ζ(t) and η(t), the transition rates of η(t)
represent how fast FDI modes change for a particular fault
mode while those of ζ(t) describe how frequently faults
occur. As fault occurrences are often rare in practice, the
transition rates of ζ(t) are usually in a smaller order than
those of η(t). Accordingly, the time for FDI to approach
its stationary distribution is much shorter than the mean
time of fault occurrences, and this assumption is therefore
made.

4. Semi–Markov Process Model
for Reliability Evaluation

A semi-Markov process, denoted by X(t), is used as an
intermediate model between FTCSs and the reliability in-
dex. It is constructed based on probabilistic parameters
obtained from the dynamical model (2), and its transition
probabilities are used to compute the reliability index R(t)
in (1).

4.1. State Definitions. Two state transition diagrams
are shown in Fig. 1, where Fig. 1(a) is for the case of
two fault modes {0, 1}, and Fig. 1(b) four fault modes
{0, 1, 2, 3} (in which the self-transitions of each state
are not shown for the sake of brevity). X(t) has five states
in Fig. 1(a), denoted by Sr = {0N, 0F, 1N, 1F, F}, and
nine states in Fig. 1(b): ‘F’ represents the unique absorb-
ing failure state, and functional states are represented by
a pair with a number and a letter in the subscript. The
number represents a fault mode, the letter ‘N’ indicates
a satisfactory performance, and ‘F’ an unsatisfactory per-
formance but within the hard deadline. For i ∈ S1, iN and
iF are defined as

iN : {ζ(t) = i, J(i, η(t)) ≤ ρi},
iF : {ζ(t) = i, J(i, η(t)) > ρi, τ ≤ Thd)}, (3)

where τ denotes the sojourn time at iF. Each state of X(t)
indicates a fault mode and whether or not the control ob-
jective is satisfied. By studying the state transitions of
X(t), the performance evolution and reliability can be an-
alyzed.

4.2. Probabilistic Parameters. Considering model-
ing uncertainties, the control performance can be given in
terms of a classical worst-case measure for robustness but
it may lead to a conservative result. In contrast, the prob-
abilistic robustness analysis assumes a probability distri-
bution of parametric uncertainties and evaluates the prob-
ability of satisfying a specific performance using random-
ized algorithms (Tempo et al., 1997). This alternative cri-
terion has a clear meaning in practice where the required
performance objectives are always associated with certain
minimum probability levels (Yaesh et al., 2003). Based
this idea, the following parameter is defined:

Definition 2. For a particular fault mode and FDI mode,
the probability that the system is functional is defined as

γij � Pr{J(ζ(t), η(t)) ≤ ρi|ζ(t) = i, η(t) = j}
= Pr{J(i, j) ≤ ρi} = Pr{μ(M(i, j)) ≤ ρi},

i ∈ S1, j ∈ S2.

Here γij is the probabilistic performance when the
fault mode is i and the FDI mode is j. Based on Assump-
tion 1, γij can be estimated using a randomized algorithm
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Fig. 1. State transition diagram of X(t): (a) two fault modes; (b) four fault modes.

given by Tempo et al. (1997). This algorithm is essen-
tially a Monte Carlo simulation, and γij is estimated by
an empirical probability. The estimation accuracy can be
quantified based on the number of generated uncertainty
samples.

Remark 2. Note that γij is a key parameter relating
the control performance of a particular system regime and
the reliability of FTCSs. It demonstrates the influence of
system dynamics and controllers on the reliability index
R(t).

Definition 3. For a particular fault mode, the stationary
distribution of the FDI mode is defined as

πi
j � lim

t→∞ Pr{η(t) = j|ζ(t) = i}, i ∈ S1, j ∈ S2.

Here πi
j can be calculated based on the generator ma-

trix of η(t) when ζ(t) = i (Çinlar, 1975, p. 265). Based
on Assumption 2, πi

j is used to approximate the following
probability:

Pr{η(t) = j|ζ(t) = i} ≈ πi
j , i ∈ S1, j ∈ S2. (4)

Remark 3. πi
j reflects the detection precision of FDI

and gives a probabilistic measure of its imperfectness. In
the ideal case of a perfect FDI detection, πi

j = 0 when
i �= j and πi

i = 1. Since πi
j is the stationary distribution

of the Markov process η(t), it can be calculated by using
a standard method in Markov theory, which involves only
simple matrix operations on the generator of η(t) (Çinlar,
1975, p. 265).

Definition 4. Given X(t) = iN, i ∈ S1, the stationary
probability that the FDI process equals a specific mode is
defined as

wi
j � lim

t→∞ Pr{η(t) = j|X(t) = iN}, i ∈ S1, j ∈ S2.

Here wi
j can be computed based on Bayes’ formula

as shown below in the example of w0
0 in the case of S2 =

{0, 1}. If γ00 and γ01 are not simultaneously zero, then
w0

0 is given by Eqn. (5).
Since all cases of η(t) = k form a partition of the

event space, k ∈ S2, Bayes’ formula is used in the second
line of (5), where the conditional probability is converted
to known mariginal and other conditional probabilities. If
γ00 = γ01 = 0, w0

0 is defined as π0
0 . The calculation

procedures are similar for other values of i and j.

Definition 5. Given X(t) = iF, i ∈ S1, the stationary
probability that the FDI process equals a specific mode is
defined as

vi
j � lim

t→∞ Pr{η(t) = j|X(t) = iF}, i ∈ S1, j ∈ S2.

Note that vi
j can be calculated in a much the same

way as wi
j .

Based on Assumption 2 and (4), wi
j and vi

j are used
to approximate the following probabilities:

Pr{η(t) = j|X(t) = iN} ≈ wi
j ,

Pr{η(t) = j|X(t) = iF} ≈ vi
j , i ∈ S1, j ∈ S2. (6)

Remark 4. Note that wi
j and vi

j are probabilistic esti-
mates of FDI modes given the states of X(t), and deter-
mined by the control performance of each system regime
and FDI imperfectness parameters, represented by γij and
πi

j , respectively.

4.3. Semi–Markov Kernel. The associated Markov-
renewal process of X(t) is denoted by (Yn, Tn, n ∈ N).
Yn denotes the so-called embedded Markov chain, which
gives the state sequence visited by X(t) consecutively,
and Tn the transition time. The semi-Markov kernel of
X(t) is denoted by a matrix function Q, and its ele-
ments give one-step transition probabilities. For example,
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w0
0 = lim

t→∞Pr{η(t) = 0|X(t) = 0N}
= lim

t→∞Pr{η(t) = 0|ζ(t) = 0, J(0, η(t)) ≤ ρ0}

= lim
t→∞

Pr{J(t) ≤ ρ0|η(t) = 0, ζ(t) = 0}Pr{η(t) = 0, ζ(t) = 0}∑
k∈S2

Pr{J(t) ≤ ρ0|η(t) = k, ζ(t) = 0}Pr{η(t) = k, ζ(t) = 0}

= lim
t→∞

Pr{J(0, η(t)) ≤ ρ0|η(t) = 0}Pr{η(t) = 0|ζ(t) = 0}Pr{ζ(t) = 0}∑
k∈S2

Pr{J(0, η(t)) ≤ ρ0|η(t) = k}Pr{η(t) = k|ζ(t) = 0}Pr{ζ(t) = 0}

= lim
t→∞

Pr{J(t) ≤ ρ0|η(t) = 0, ζ(t) = 0}Pr{η(t) = 0|ζ(t) = 0}∑
k∈S2

Pr{J(t) ≤ ρ0|η(t) = k, ζ(t) = 0}Pr{η(t) = k|ζ(t) = 0}

=
Pr{J(0, 0) ≤ ρ0} limt→∞ Pr{η(t) = 0|ζ(t) = 0}∑

k∈S2
Pr{J(0, k) ≤ ρ0} limt→∞ Pr{η(t) = k|ζ(t) = 0}

=
γ00π

0
0

γ00π0
0 + γ01π0

1

.

(5)

Q(iN, jN, t) is defined by the following equation, where
iN, jN ∈ Sr, t ∈ R, t ≥ 0:

Q(iN, jN, t)

� Pr
{

Yn+1 = jN, Tn+1 − Tn ≤ t|Yn = iN

}
,

which represents the probability of transiting from iN to
jN in one step with sojourn time Tn+1 − Tn no greater
than t (Çinlar, 1975).

According to Assumption 1, the state transitions of
X(t) are triggered by the mode changes of ζ(t) or η(t),
implying that faults, FDI decisions, and controller recon-
figurations have major effects on the system performance
and reliability. Hence the semi-Markov kernel Q is essen-
tial for reliability evaluation. By taking the transition of
X(t) from 0N in Fig. 1(a) as an example, the main steps of
calculating Q are listed as follows and illustrated in Fig. 2:

1) The FDI mode η(t) before a transition is estimated
using wi

j or vi
j based on the state of X(t).

2) Competition between ζ(t) and η(t). The process that
jumps first determines possible transitional destina-
tion states. For example, if ζ(t) jumps before η(t),
the destination state is 1N or 1F; otherwise, 0N or 0F.
This competition probability can be calculated using
a property of exponential distributions.

3) The probability of satisfying control objectives at
destination states is calculated by using γij .

4) By combining previous steps, the transition probabil-
ity is calculated using the total probability formula.

The property of exponential distributions mentioned
in Step 2 is given as follows (Ross 2002, Chapter 5):

Let X1, . . . , Xn be independent random variables,
with Xi following an exponential distribution with the
parameter λi, i = 1 ∼ n. Then the distribution of
min(X1, . . . , Xn) is still exponentially distributed with

the parameter (λ1 + · · · + λn), and the probability of Xi

being the minimum is λi/(λ1 + · · · + λn), i = 1 ∼ n.

For example, suppose that ζ(t) = 0 and η(t) = 0 be-
fore the transition. Let τζ denote the sojourn time of ζ(t),
and τη the sojourn time of η(t). Because of Markov pro-
cess theory, τζ and τη are exponentially distributed with
parameters given in the generator matrix:

Pr{τζ ≤ t} = 1 − e−α00t,

Pr{τη ≤ t} = 1 − e−β0
00t.

Based on the above property,

Pr{min(τζ , τη) ≤ t} = 1 − e−(α00+β0
00)t,

Pr{τζ < τη} =
α00

α00 + β0
00

,

Pr{τη < τζ} =
β0

00

α00 + β0
00

.

The event τζ < τη corresponds to ζ(t) transits before
η(t), and τη < τζ means η(t) transits first. This event
appears to be a competition between two processes, and
therefore the term competition probability is used. The
above three probabilities determine the competition result
and are used in calculating transition probabilities to dif-
ferent destination states, as shown in (15) in the proof of
Theorem 1.

Following a similar idea shown in Fig. 2, the general
results on calculating the semi-Markov kernel are given as
follows:
Theorem 1. The semi-Markov kernel of X(t) can be

calculated by the following equations:
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Current state 
X(t) = N0

(t) = 0 known 

 Estimate (t)
based on 0

0w , 0
1w

Competition: 
(t) vs. (t)

(t) jumps first: 
N1  or F1

(t) jumps first:
N0  or F0

Transitional 
destination states 

Pr{J(0, )(t ) J 1
max }

based on 10, 11.
N1

Pr{ J(0, )(t ) >J 1
max }

based on  1- 10, 1- 11.

Pr{ J(0, )(t ) J 0
max }

based on 00, 01.

Pr{ J(0, )(t ) >J 0
max }

based on  1- 00, 1- 01.

F1

F0

N0

Fig. 2. Calculation procedure of the semi-Markov kernel.

Q(iN, jN, t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k∈S2

wi
k

∑
l∈S2\k

βi
kl

αii + βi
kk

(1 − e−(αii+βi
kk)t)γil,

j = i,
∑
k∈S2

wi
k

αij

αii + βi
kk

(1 − e−(αii+βi
kk)t)γjk,

j ∈ S1\i,

(7)

Q(iN, jF, t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k∈S2

wi
k

∑
l∈S2\k

βi
kl

αii + βi
kk

(1 − e−(αii+βi
kk)t)

×(1 − γil), j = i,
∑
k∈S2

wi
k

αij

αii + βi
kk

(1 − e−(αii+βi
kk)t)

×(1 − γjk), j ∈ S1\i,

(8)

Q(iF, jN, t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k∈S2

vi
k

∑
l∈S2\k

βi
kl

αii + βi
kk

×(1 − e−(αii+βi
kk)min(t,Thd))γil, j = i,

∑
k∈S2

vi
k

αij

αii + βi
kk

×(1 − e−(αii+βi
kk)min(t,Thd))γjk, j ∈ S1\i,

(9)

Q(iF, jF, t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k∈S2

vi
k

∑
l∈S2\k

βi
kl

αii + βi
kk

×(1 − e−(αii+βi
kk)min(t,Thd))(1 − γil),

j = i,

∑
k∈S2

vi
k

αij

αii + βi
kk

× (1 − e−(αii+βi
kk)min(t,Thd))(1 − γjk),

j ∈ S1\i,
(10)

Q(iF, F, t) = 1{t>Thd}
(
1 −

∑
j∈S1

(Q(iF, jN, Thd)

+ Q(iF, jF, Thd))
)
, (11)

Q(F, F, t) = 1, Q(F, jN, t) = Q(F, jF, t) = 0,
j ∈ S1, (12)

where t > 0, i, j ∈ S1, S2\k � {a|a ∈ S2, a �= k}, and
S1\i � {b|b ∈ S1, b �= i}. S1, S2, and Sr denote the state
spaces of ζ(t), η(t), and X(t), respectively. The indicator
function 1{t>Thd} = 1 if t > Thd; otherwise, 1{t>Thd} = 0.

Proof. By applying the total probability formula and con-
ditioning the probability on FDI modes, the first case of
(7) can be decomposed into three parts as shown in the
following equation, where (Yn, Tn) denotes the associated
Markov renewal process of X(t):

Q(iN, iN, t)
� Pr{Yn+1 = iN, Tn+1 − Tn ≤ t|Yn = iN}
=

∑
k∈S2

Pr{η(Tn) = k|Yn = iN}

× Pr{Yn+1 = iN, Tn+1−Tn ≤ t|Yn = iN, η(Tn) = k}
=

∑
k∈S2

Pr{η(Tn) = k|Yn = iN}

× Pr{J(i, η(Tn+1)) ≤ ρi, ζ(Tn+1) = i,

Tn+1 − Tn ≤ t|Yn = iN, η(Tn) = k}
=

∑
k∈S2

Pr{η(Tn) = k|Yn = iN}
∑

l∈S2\k

Pr{ζ(Tn+1) = i,

η(Tn+1) = l, Tn+1 − Tn ≤ t|Yn = iN η(Tn) = k},
×Pr{J(i, η(Tn+1)) ≤ ρi|ζ(Tn+1) = i, η(Tn+1) = l,

Tn+1 − Tn ≤ t, Yn = iN, η(Tn) = k}
=

∑
k∈S2

Pr{η(Tn) = k|Yn = iN}
∑

l∈S2\k

Pr{ζ(Tn+1) = i, η(Tn+1) = l,
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Tn+1 − Tn ≤ t|ζ(Tn) = i, η(Tn) = k}
×Pr{J(i, l) ≤ ρi}. (13)

The first and last terms in (13) can be approximated by the
corresponding stationary probabilities:

Pr{η(Tn) = k|Yn = iN} ≈ wi
k,

Pr{J(i, l) ≤ ρi} ≈ γil. (14)

The second term in (13) is equal to the competition prob-
ability:

Pr
{

ζ(Tn+1) = i, η(Tn+1) = l,

Tn+1 − Tn ≤ t|ζ(Tn) = i, η(Tn) = k
}

=
βi

kl

αii + βi
kk

(1 − e−(αii+βi
kk)t). (15)

Substitute (14) and (15) into (13), and the first case of
(7) follows. The second case of (7) can be proved in a sim-
ilar procedure considering that the mode of ζ(t) changes
instead and the derivation is given as follows:

Q(iN, jN, t)
� Pr{Yn+1 = jN, Tn+1 − Tn ≤ t|Yn = iN}
=

∑
k∈S2

Pr{η(Tn) = k|Yn = iN}

× Pr{J(j, η(Tn+1)) ≤ ρj , ζ(Tn+1) = j,

Tn+1 − Tn ≤ t|Yn = iN, η(Tn) = k}
=

∑
k∈S2

Pr{η(Tn) = k|Yn = iN}Pr{ζ(Tn+1) = j,

η(Tn+1) = k, Tn+1 − Tn ≤ t|Yn = iN, η(Tn) = k}
× Pr{J(j, η(Tn+1)) ≤ ρj |ζ(Tn+1) = j,

η(Tn+1) = k, Tn+1 − Tn ≤ t, Yn = iN, η(Tn) = k}
=

∑
k∈S2

Pr{η(Tn) = k|Yn = iN}Pr{ζ(Tn+1) = j,

η(Tn+1) = k, Tn+1 − Tn ≤ t|ζ(Tn) = iN,

η(Tn) = k}Pr{J(j, k) ≤ ρj}
=

∑
k∈S2

wi
k

αij

αii + βi
kk

(1 − e−(αii+βi
kk)t)γjk,

j ∈ S1\i. (16)

The proof of (8) is similar and the details are omitted.
For (9) and (11), X(t) transits from iF, and these

probabilities depend on Thd. If t ≤ Thd, they can be cal-
culated in a similar way as in the case of iN. If t > Thd,
Q(iF, jN, t) and Q(iF, jF, t) maintain the constant values
of Q(iF, jN, Thd) and Q(iF, jF, Thd), respectively, while
X(t) transits to F. Therefore, (9) and (10) have similar
expressions to (7) and (8) with t replaced by min(t, Thd)
(Ciardo et al., 1990). Q(iF, F, t) becomes nonzero only
if t > Thd, and it is complementary to the transition prob-
ability from iF to other states within Thd. The indicator

function 1{t>Thd} describes this behavior, and (11) fol-
lows. (12) is obvious considering that F is absorbing.

In the above derivation, each element of the semi-
Markov kernel is decomposed into three parts: FDI mode
estimation, competition probability, and probabilistic per-
formance estimation, and each part can be approximated
or calculated using the probabilistic parameters. The ef-
fects of the hard deadline are described by min(t, Thd) and
1{t>Thd}.

Once the semi-Markov kernel is established, R(t)
and other reliability criteria, such as MTTF, are read-
ily computed (Limnios and Oprisan, 2001). Since the
state F is absorbing, if the initial state is 0N, the reliabil-
ity function R(t) = 1 − P (0N, F, t), where the tran-
sition probability function from 0N to F is denoted by
P (0N, F, t) � Pr{X(t) = F|X(0) = 0N}. Compared
with Q(0N, F, t), P (0N, F, t) may involve multiple tran-
sitions but Q(0N, F, t) is for one transition only.

The main procedure of evaluating the reliability for
FTCSs is summarized as follows:

1) Given the Markovian model (2) of FTCSs, the states
of X(t) are defined as in Section 4.1.

2) Continuous-state dynamics analysis. For fixed
ζ(t) and η(t), the system in (2) is reduced to
M(ζ(t), η(t)), and the robust control performance
of this regime model under probabilistic uncertain-
ties is represented by a probabilistic parameter γij in
Definition 2.

3) Discrete-mode dynamics analysis. FDI imperfect-
ness and its relations with the states of X(t) are de-
scribed by the probabilistic parameters in Definitions
3–5.

4) The continuous-state and discrete-mode dynamics
are combined to construct the semi-Markov kernel
of X(t) using Theorem 1, and R(t) is calculated by
solving the transition probabilities of X(t).

5. Illustrative Example

A control problem of an F-14 aircraft was presented by
Balas et al. (1998), and also used as a demonstration ex-
ample in the MATLAB� Robust Control Toolbox1. This
problem concerns the design of a lateral-directional axis
controller during a powered approach to a carrier landing
with two command inputs from the pilot: a lateral stick
and a rudder pedal. At an angle-of-attack of 10.5 degrees
and an airspeed of 140 knots, the nominal linearized F-
14 model has four states: lateral velocity, yaw rate, roll

1MATLAB and Robust Control Toolbox are the trademarks of The
MathWorks, Inc.
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rate, and roll angle, denoted by v, r, p, and φ, respec-
tively; two control inputs: differential stabilizer deflection
and rudder deflection, denoted by δdstab and δrud, respec-
tively; and four outputs: roll rate, yaw rate, lateral accel-
eration, and side-slip angle, denoted by p, r, yac, and β,
respectively. These variables are related by the following
state-space equations:

ẋF14 = AF14xF14 + BF14uF14,

yF14 = CF14xF14 + DF14uF14,

where xF14 = [v r p φ]T , uF14 = [δdstab δrud]T , yF14 =
[β p r yac]T , and numerical values are given by (17).

The control objectives are to have handling quality
(HQ) responses from the lateral stick to the roll rate p and
from the rudder pedal to the side-slip angle θ match the
first- and second-order responses

5
2

s + 2
, −2.5

1.252

s + 2.5s + 1.252
,

respectively.
The system block diagram is shown in Fig. 3, where

F-14nom represents the nominal linearized F-14 model,
and AS and AR actuator models. Here ep and eβ rep-
resent the weighted model matching errors. The actuator
energy is described by eact, and noise is added to the mea-
sured output after anti-aliasing filters. ΔG and Win repre-
sent the multiplicative uncertainty and its weighting func-
tion, respectively. The transfer function ΔG is assumed
to be stable and unknown, except for being uniformly dis-
tributed within the norm-bounded set of ‖ΔG‖∞ ≤ 1.

By incorporating performance weighting functions,
Wact, Wn, Wp, and Wβ , a generalized plant with the 26th
order can be constructed from Fig. 3, corresponding to the
nominal fault-free regime model M(ζ(t), η(t)) in (2) for
ζ(t) = η(t) = 0. The control objectives are converted to
the closed-loop H∞ norm, ‖Gzw(ζ(t), η(t), s)‖∞, where
w is the vector of the lateral stick and the rudder pedal, and
z = [eT

p eT
β eT

act]
T . An H∞ controller K0(s) is designed

for the nominal fault-free model, which achieves the H∞
norm of 0.6671. For brevity, the parameters of the gener-
alized plant and controller are not given here, see (Balas
et al., 1998) for details of the design procedure.

Consider two fault scenarios where the effectiveness
of two actuators is reduced by half, denoted by

Bf1
F14 = BF14

[
0.5 0
0 1

]
, Bf2

F14 = BF14

[
1 0
0 0.5

]
,

respectively, where Bf1
F14 and Bf2

F14 denote the values of
BF14 under faults.

Following a similar procedure as the fault-free mode,
the generalized plants under faults can be derived, corre-
sponding to the faulty regime models in (2). The other two
controllers, K1(s) and K2(s), are designed accordingly

for the plant under two actuator faults which achieve the
H∞ norms of 1.0558 and 0.7021, respectively.

The performance evaluation function is defined as

J(ζ(t), η(t)) = μ(M(ζ(t), η(t))

=

⎧
⎪⎪⎨
⎪⎪⎩

1, if internally unstable at t,
‖Gzw(ζ(t), η(t), s)‖∞

1 + ‖Gzw(ζ(t), η(t), s)‖∞ ,

if internally stable at t,

and ρ0 = 0.5455, ρ1 = ρ2 = 0.6000. Note that the per-
formance degradation has been considered since ρ1 and
ρ2 are greater than ρ0. The hard deadline Thd is arbitrarily
assumed to be 1 minute in this example. Detailed discus-
sions on determining the hard deadline can be found in
(Shin and Kim, 1992).

Here ζ(t) and η(t) take values from S1 = S2 =
{0, 1, 2} in which the three modes denote the fault-free
mode and the loss of effectiveness in the first and second
actuator, respectively. The generator matrices of these
Markov processes to describe fault occurrences and FDI
results are given as follows:

G =

⎡
⎢⎣
−0.003 0.001 0.002

0 0 0
0 0 0

⎤
⎥⎦ ,

H0 =

⎡
⎢⎣
−0.02 0.01 0.01

2 −2.01 0.01
2 0.01 −2.01

⎤
⎥⎦ ,

H1 =

⎡
⎢⎣
−2.01 2 0.01
0.01 −0.02 0.01
0.01 2 −2.01

⎤
⎥⎦ ,

H2 =

⎡
⎢⎣
−2.01 0.01 2
0.01 −2.01 2
0.01 0.01 −0.02

⎤
⎥⎦ .

The time unit of transition rates is selected as 1
minute. According to G, the mean occurrence time is
1000 minutes for the first fault mode and 500 minutes for
the second fault, and both fault modes are absorbing. For
FDI modes, according to the first row of H0, when the air-
craft is in fault-free mode, the mean time of false alarms
is 100 minutes. According to its second row, the mean
time to return to correct detection after a false alarm is 0.5
minutes. H1 and H2 can be interpreted similarly.

Following the definitions given in Section 4.2, four
probabilistic parameters are calculated as follows:

γ �

⎡
⎢⎣

γ00 γ01 γ02

γ10 γ11 γ12

γ20 γ21 γ22

⎤
⎥⎦ =

⎡
⎢⎣

0.8600 0 0
0 0.7000 0
0 0 0.9600

⎤
⎥⎦ ,
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[
AF14 BF14

CF14 DF14

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.1160 −227.2806 43.0223 31.6347
0.0027 −0.2590 −0.1445 0
−0.0211 0.6703 −1.3649 0

0 0.1853 1.0000 0

0.0622 0.1013
−0.0053 −0.0112
−0.0467 0.0036

0 0
0.2469 0 0 0

0 0 57.2958 0
0 57.2958 0 0

−0.0028 −0.0079 0.0511 0

0 0
0 0
0 0

0.0029 0.0023

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

K
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Fig. 3. Control design diagram for the F-14 lateral axis (courtesy of The MathWorks, Inc.).

π �

⎡
⎢⎣

π0
0 π0

1 π0
2

π1
0 π1

1 π1
2

π2
0 π2

1 π2
2

⎤
⎥⎦ =

⎡
⎢⎣

0.9901 0.0050 0.0050
0.0050 0.9901 0.0050
0.0050 0.0050 0.9901

⎤
⎥⎦ ,

w �

⎡
⎢⎣

w0
0 w0

1 w0
2

w1
0 w1

1 w1
2

w2
0 w2

1 w2
2

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦ ,

v �

⎡
⎢⎣

v0
0 v0

1 v0
2

v1
0 v1

1 v1
2

v2
0 v2

1 v2
2

⎤
⎥⎦ =

⎡
⎢⎣

0.9333 0.0333 0.0333
0.0161 0.9677 0.0161
0.1000 0.1000 0.8000

⎤
⎥⎦ .

γ is calculated based on the closed-loop plant regime mod-
els of this F-14 aircraft and the H∞ norm objective by us-
ing a randomized algorithm and taking random samples of
ΔG within its bounded set (Tempo et al., 1998). Accord-
ing to γ, the probability of satisfying the bounds of the
H∞ norm under each mode is 0.86, 0.7, and 0.9, respec-
tively, if FDI gives a correct detection. According to π,
the stationary probability of a correct detection is 0.9901.

According to w, when the bounds of the H∞ norm are
satisfied, the probability that the FDI gives a correct de-
tection are 1, but FDI may have given wrong estimates
of fault modes when the bounds of the H∞ norm are not
satisfied according to v.

The state space of X(t) contains seven states for this
system: Sr = {0N, 0F, 1N, 1F, 2N, 2F, F}. With the
above probabilistic parameters calculated from the F-14
aircraft model, the semi-Markov kernel of X(t) for reli-
ability evaluation is obtained by following the procedure
in Section 4.3. The transition probabilities and reliability
curve are then calculated as shown in Fig. 4.

Each transition probability curve in Fig. 4 gives the
probability that X(t) is in each state at t starting from
the initial state 0N. From the curves of reliability and the
transition probability to the state F, it is clear that system
failure probability remains at 0 within Thd, a finding con-
sistent with our reliability definition as temporal violation
of control objectives is not deemed as a failure. We also
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Fig. 4. Transition probability and reliability function.

find that P (0N, 2N, t) is much larger than P (0N, 1N, t), a
finding consistent with G(1, 3) > G(1, 2) and γ22 > γ11.

According to Fig. 4, the probability of transiting to
the state 0F is much higher than in the case of 1F and
2F. So X(t) transits to F mainly from 0F. This im-
plies that the false alarm of FDI at the fault-free mode
is more likely the reason for a system failure than fault
occurrences themselves, a finding useful for a system re-
liability improvement. To verify this finding, the false
alarm rate for ζ(t) = 0 is reduced by half by setting
H0(1, 2) = H0(1, 3) = 0.005 and H0(1, 1) = −0.01.
The transition probability and reliability curves for the
system after reducing false alarms are shown in Fig. 5.
As we expected, P (0N, 0F, t) is reduced, and R(t) is im-
proved. We may also calculate and compare the MTTF of
both cases: the MTTF of FTCSs before reducing FDI false
alarms is 47.3415 minutes while the MTTF after reducing
false alarms is 80.9144 minutes.

On the other hand, the sensitivity of the reliability in-
dex with respect to the control performance can also be
demonstrated. Let probabilistic parameters be improved
to γ00 = γ11 = γ22 = 0.99. Based on the definitions
of iN in (3) and γij in (4), we expect increases in tran-
sition probabilities to iN, i ∈ S1. The transition proba-
bility and reliability curves for FTCSs with the improved
control performance are shown in Fig. 6. Compared with

Fig. 4, P (0N, 0N, t), P (0N, 1N, t), and P (0N, 2N, t)
are clearly improved. As a result, the reliability curve is
also improved and the MTTF increases to 76.7722 min-
utes compared with the original MTTF of 47.3415 min-
utes. Consequently, the transition probability of X(t) not
only offers a reliability evaluation, but also help us to find
an effective solution to improve the reliability.

6. Conclusions

A semi-Markov reliability model for the reliability anal-
ysis of FTCSs has been presented. The index reflects the
characteristics of FTCSs, including a model-based con-
trol performance and a hard deadline concept. Based
on four probabilistic parameters, the semi-Markov model
was constructed, and the reliability could be thereby cal-
culated. The semi-Markov transition probabilities and the
reliability function provide valuable information on the
long-term safety behavior of FTCSs. Moreover, the ef-
fects of FDI and the control performance on the reliabil-
ity were demonstrated in an illustrative example. With
this reliability index and the modeling method available,
a reliability-based controller can be designed to optimize
the overall system reliability.
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Fig. 5. Transition probability and reliability function after reducing FDI false alarms.
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Fig. 6. Transition probability and reliability function after improving the control performance.
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