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A movement analysis of objects contained in visual scenes can be performed by means of linear multidimensional filters,

which have already been analyzed in the past. While the soundness of the results was convincing, interest in those systems

declined due to the limited computational power of contemporary computers. Recent advances in design and implementa-

tion of integrated circuits and hardware architectures allow realizing velocity filters if the n-D system is carefully adapted

to the analyzed problem. In this paper, the fundamental principles of visual scene analysis by linear multidimensional filters

are examined with respect to possible sources of degradation. The extraction of movement information and its practical use

are demonstrated using a wave digital filter (WDF) implementation.

Keywords: Multidimensional signal processing, velocity filters, motion filters, object detection, wave digital filters.

1. Introduction
In the field of visual scene analysis, object detection and

segmentation are among the most challenging research to-

pics. As the range of possible applications is wide (from

robotics to operational safety to automotive applications),

numerous application-specific challenges occur, such as

• cluttered background textures,

• abrupt illumination changes,

• high intra-class variability of the target object class,

• unknown object size and shape.

They complicate the design of algorithms capable of ac-

curate detection and classification. Especially, this is the

case if target objects are complex, like pedestrians or ve-

hicles.

A popular and effective way to overcome these dif-

ficulties is using various different kinds of active sen-

sors. (Gandhi and Trivedi (2006) give an overview on the

state of the art in pedestrian collision warning systems.)

Although many systems presented in the past using ac-

tive sensors produce promising results, they often reveal

drawbacks including low data acquisition speed, low re-

solution, and high costs. Therefore, optimized exploita-

tion of the extensive environmental information offered by

vision-based systems will be a long term goal in research

on collision warning systems.

A typical vision-based object detection and tracking

system consists of three major steps: region of interest

(ROI) detection, object detection and object tracking. In

the first step, the location and size of object candidates

are estimated. Afterwards, features are extracted and a

classifier is used to determine if a candidate is a member of

the target object class. The final step tracks the recognized

objects and refines the recognition results.

The aim of the work presented in this paper is not

to fully replace the existing approaches. In fact, we pro-

pose a method to improve the available methods and/or

make them more efficient. Instead of using commonly

applied image processing tools and features, we inter-

pret the image sequence recorded by a camera as a three-

dimensional signal and use methods known from signal

processing applications to detect moving objects in a

scene. The advanced theoretical knowledge on system de-

scription and handling (using state-space methods like the

Givone-Roesser model (Lu and Antoniou, 1992)) availa-

ble for these filters is a big advantage compared with the

most recently presented approaches.

In detail, the image is filtered by 3D linear shift inva-

riant (LSI, the multidimensional extension of linear time

invariant (LTI) filters known from the one-dimensional
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case) filters targeting the separation of signals due to dif-

ferent velocity or directional components (Runze, 2005).

These velocity filters are successfully applied and well

known in the domain of geology, where they are used to

understand and forecast seismic wave migration, cf. (Dud-

geon and Mersereau, 1984). Linear n-D filters of low or-

der have also been successfully used to extract velocity in-

formation from visual scenes (Bruton and Bartley, 1985),

and a framework for the treatment and development of

fan filters for image sequence analysis by means of a 3-

D Radon transform was presented in (Marzetta, 1994).

Until that time, a crucial point for the realization of these

filters had been the missing available hardware capacity

(Marzetta, 1994): computing and analyzing visual scenes

of reasonable resolutions in temporal and spatial direc-

tions require high-end hardware to process n-D filters in

real time. Advances in the design and implementation of

integrated circuits and hardware architectures will allow

realizing of n-D linear filters of higher order in the near

future.

The remainder of this paper is structured as follows:

In the following section, theoretical deliberations on mo-

tion in image sequences as well as an introduction to ve-

locity filters are presented. Section 3 is focused on sys-

tem design, i.e. the design of transfer functions and the

relevant implementation. Afterwards, we provide expe-

rimental results followed by a summary of the proposed

approach and related research directions in the future.

2. Theoretical background
This section introduces theoretical background on the re-

presentation of moving objects in the spatio-temporal and

spectral domains as well as the basics on the discrimina-

tion of moving objects by speed and/or direction.

2.1. Two-dimensional objects moving in a three-
dimensional space. Choosing an adequate signal re-

presentation is strongly connected to the developed ap-

plication: while in the case of geophysical, SONAR or

RADAR applications, for example, measured signals are

often interpreted as planar waves, moving objects in an

image sequence can be represented by signals constant on

straight lines in the spatio-temporal domain. Bartley and

Bruton (1986; 1987) refer to the latter class as “linear tra-

jectory signals” ( for a more detailed comparison of the

two representations, see (Bolle, 1992)).

A descriptive introduction to the Fourier description

of multidimensional visual scene representations is subse-

quently given by the investigation of a temporally moving

1-D object. Let f(x) be a spatially limited 1-D signal de-

scribing the object, i.e. f(x) �= 0 for a < x < b, with

a, b, x ∈ R, and let F (jkx) be its respective Fourier trans-

form. A linear movement of this object in the positive

direction of x with constant speed v is characterized by

the 2-D signal

sc(t, x) = f(x − vt). (1)

The Fourier transform of sc(x, t) with respect to the spa-

tial variable x can be evaluated by the Fourier shift the-

orem as

Fx{sc(t, x)} = F (jkx) · e−jvtkx , (2)

where Fx denotes the Fourier transform with respect to

the variable x.

The Fourier transform with respect to the temporal

variable t is evaluated by using the modulation theorem,

which leads to the 2-D Fourier transform of sc(t, x) :

Sc(jωt, jkx) = Ft{F (jkx) · e−jvkxt}
= F (jkx) · 2π · δ(ωt + vkx). (3)

The defined movement can thus be decomposed into com-

plex exponential waves for which the relation between kx

and ωt is fixed, namely, kx = −ωt/v, i.e. the respective

Fourier components are located on a plane including the

origin. The latter is clarified by Fig. 1. On the left-hand

side it displays the locus of f(rrr) and on the right-hand

side the respective non-zero points of Sc(jωt, jkx).
This description is easily generalized to the n-D case

by replacing scalars by vectors. The object is now an n-

D object f(r), r ∈ R
n with its n - D Fourier transform

F (jk), where jk = (jkx, jky, jkz)′ in the 3-D case. Here

v = (vx, vy, vz)′ contains the velocity information corre-

sponding to each component of r. The Fourier transform

of the (n + 1)-D signal

sc(t, rrr) = f(r − vt) (4)

is given by

F{f(r − vt)} = F (jk) · 2π · δ(ωt + v′k). (5)

If the object defined by (1) is transferred into a higher di-

mensional space, e.g.

sc(t, r) = f(x − vt), (6)

the resulting wave is a combination of planar waves with

propagation speed v and an identical propagation direc-

tion. The shape of the wave in this direction is defined

by Fourier components along the respective plane, i.e. the

respective composition of plane waves. While in (6) this

wave propagates in the direction of the first space coor-

dinate, combinations of plane waves propagating in the

direction of the normed vector r0 can be described by

sc(t, r) = f(r′0r − vt), (7)

where v = r0 · |v| = r0 · v. In the (n + 1)-D Fourier

description, such waves are thus defined by spectral com-

ponents that are located on a plane including the origin.
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The angle between the ωt-axis and the normal vector of

this plane determines the propagation speed of the wave.

Plane waves that move at constant speed |v| into any

direction in the n-D space can be detected by an analysis

of its (n + 1)-D spatio-temporal Fourier spectrum. For

each temporal frequency ωt, Fourier components of this

type of waves are located on the surface of an n-D hyper-

sphere with radius ωt/|v|. For the 3-D case of image se-

quence processing (two spatial and one time coordinate),

the 3-D Fourier components of such waves are located on

the surface of a right circular double cone, centred at the

origin. Directional movements of constant speed are defi-

ned by their speed vector configuration, i.e. the particular

value for each component.

Example 1. The following example shows a typical

application for a motion-based object detection system.
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Fig. 1. Locus of f(rrr) on the left- and right-hand sides of the

respective non-zero points of Sc(jωt, jkx).
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Fig. 2. Example of an object linearly moving from the left to

right with constant y = y0. The position of the pede-

strian’s head point in 2(b) over time describes a straight

line in the xt-plane. Fig. 2(b) depicts the “top view” of

the corresponding motion path.

Figure 2(a) shows a pedestrian crossing the street in front

of a camera at four different points in time. As there is no

vertical movement (i.e. y = y0), the pedestrian, represen-

ted by his//her head point, moves on a straight line in the

x − t - plane. Figure 2(b) shows a top-view of this path.

Note that the targeted object moves on a straight line, i.e.

there is no acceleration with respect to the image coordi-

nate system. Note that in the given example the third di-

mension of the world coordinate system (i.e. the distance

between the camera host and the pedestrian) is also con-

stant (z = z0).

According to (3), under these constraints the respec-

tive Fourier components are located on a plane perpendi-

cular to the direction of the motion path.

2.2. Speed information. Commonly, a visual scene is

described by an (n + 1)-D spatio-temporal signal (3-D or

4-D), and an object in this scene is described by an n-D

spatial signal (2-D or 3-D, respectively). If the scene con-

tains only one object that moves at constant speed into a

fixed direction, then non-zero Fourier components of the

spatio-temporal (n + 1)-D signal are generally located on

an n-D hyperplane in the (n + 1)-D space that includes

the origin (see (5)). This hyperplane in the Fourier do-

main, can be decomposed into lines that also include the

origin, where each of these lines represents a combination

of planar waves of identical propagation speed and direc-

tion. The latter underlines the fact that (n + 1)-D spatio-

temporal signals can be decomposed into planar waves.

An n-D object that moves according to (7) has pla-

nar wave components, for which the propagation speed is

bounded by |v| = |r0v| = v. This maximal propaga-

tion speed exists for planar waves that propagate into the

movement direction r0 of the object. For all other planar

waves composing this movement, the propagation speed
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is lower than this maximum. Figure 3 shows a plane and

a right double cone in the 3-D Fourier domain as men-

tioned in Section 2.1. The plane denotes non-zero points

Fig. 3. Plane and a right double cone in the 3-D Fourier domain.

The plane denotes non-zero points of a linear movement

at constant speed of a 2-D object. The double cone de-

notes all planar waves with the same propagation speed

as the moving object, but in an undefined direction.

of a linear movement of constant speed of a 2-D object.

The double cone denotes all planar waves with the same

propagation speed as the moving object, but in an undefi-

ned direction. Their intersection denotes the planar waves

that propagate into the same direction as the moving ob-

ject. Fourier components on this intersection line describe

Fourier components of the object with respect to the pro-

pagation direction (a slice through the object spectrum).

Perpendicularly to this direction, the object is described

by all other planar waves contained in the plane.

This shows that a proper discrimination by speed, in-

dependently of its movement direction, is not possible for

the case of general objects (i.e. objects with an infinitely

extended Fourier spectrum). Only if the object represen-

tation has a narrow spectrum perpendicular to the propa-

gation direction r0, the discrimination of objects by speed

is possible. In the latter case, all bands of the Fourier re-

presentation that may contain object information can be

selected. Components of objects of higher speed may also

be contained. For the spatio-temporal 3-D case mentioned

in Section 2.1, the surface of the right circular double cone

would have to be enlarged by a certain surrounding, where

the width of the surrounding depends on the bandwidth of

the moving object. This area in the Fourier domain con-

tains all objects of maximum bandwidth Δω moving at

speed v, but also components of objects of higher speed.

2.3. Directional information. Directional filters that

allow discriminating movement directions independently

of speed need passbands that include all frequency com-

ponents between the hyperplanes for the lowest and hi-

ghest possible object speeds. Unfortunately, two objects

moving at constant speeds only have Fourier descriptions

by nearly disjoint sets of coefficients if the objects move

into opposed directions. The latter is clarified in the follo-

wing. Figure 4 shows a 3-D plane that denotes non-zero

points of the Fourier description of an object that moves

at constant speed into the positive x-direction.

Fig. 4. 3-D plane that denotes non-zero points of the Fourier

description of an object that moves at constant speed in

the positive x-direction.

Fig. 5. Ideal 3-D transfer function for retaining all movement

information in the positive y-direction. All points of

H(jωt, jkx, jky) = 1 are marked.

Figure 5 shows an ideal transfer function for reta-

ining all object movement information into the positive

y-direction. Planar waves propagating in the y-direction

can pass a filter with this transfer function completely and

independently of propagation speed. Figure 6 shows the

resulting non-zero points after filtering. It shows that only
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Fig. 6. Resulting non-zero points after filtering. Observe that

only the planar waves of the negative y-direction com-

ponents are filtered out.

the planar waves of the negative y-direction components

are filtered out. Movements of similar directions have si-

milar regions of support of Fourier components, i.e. the

discrimination of objects of similar movement directions

is a challenging task due to overlapping bands. The over-

lapping effect is stronger for lower speeds. If directional

information of a movement has to be extracted, it may be

beneficial to give a lower bound for the speed considered.

2.4. Data sampling. Another source of degradation

is data sampling, which is necessary for digital signal

processing. Similarly to common temporal 1-D signal

processing problems, where sampling frequency usually

complies with Shannon’s theorem, spatio-temporal sam-

pling of visual scenes ought to be compliant with Shan-

non’s theorem generalized to the multidimensional case.

However, this restriction is typically violated, i.e. scenes

recorded by a camera are not constrained to a motion com-

pliant with Shannon’s theorem. The latter will be illustra-

ted subsequently.

The temporal variation of the value for one point in

a grey scale 3-D space representation can be defined by a

temporal 1-D function. A moving object that passes this

point causes a transition of this function from the value

that represents the background to the one that represents

the object. The duration of this transition may be very

short, even for slowly moving objects, since objects ap-

pear instantaneously and not gradually. This instantane-

ous transition from one value to another yields high frequ-

ency components in the respective Fourier representation

and thus requires a very high sampling frequency for an

alias-free description in discrete time and space.

The effect is visualized for a spatio-temporal 2-D si-

gnal in Figs. 7 to 9 for different speeds. Figures 7 and

8 show a 2-D representation of a rectangular object that

is moved by one sample per time step and its frequency

spectrum, respectively. The 2-D signal is shown as an

image, where the signal value is expressed in pixel bri-

ghtness. The black colour represents the value one and

white represents zero. In Figs. 9 and 10 the same is given

for an object speed of two pixels per time step. Figure 8

Fig. 7. Spatio-temporal discrete 2-D signal representing a mo-

ving rectangular (1-D) object. The speed is one sample

per time step.

Fig. 8. Absolute value of the resulting discrete Fourier trans-

form. It shows the expected si-function spread over one

diagonal line.

shows the expected result, which seems to coincide with

the continuous result. The Fourier transform of the rectan-

gular object function, the si-function in the kx-direction, is

spread along the ωt direction by the δ-function according

to (3).
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Accompanying problems are disclosed by Figs. 9

and 10, which differ only in the underlying object speed.

Fig. 9. Object moving at the speed of two samples per time step.

Fig. 10. Absolute value of the resulting discrete Fourier trans-

form of the image shown in Fig. 9. It shows additional

alias components caused by the infinitely extended si-

function.

The Fourier transform now shows additional spectral

values at lines parallel to the original one. These additio-

nal parts are aliasing components stemming from the pe-

riodical replication of the infinitely extended si-function.

These components also exist and disturb the signal repre-

sented in Fig. 7, but in the given configuration they only

appear on the original line and can thus not be recognized

in the given plot of Fig. 8.

In the case of images of a real world scenery that are

provided by a video camera, this instantaneous transition

is partly compensated for by the finite aperture of the vi-

deo camera sensor. Nevertheless, usual camera configura-

tions (768 × 576 pixels, 50 Hz) cannot produce alias-free

scene descriptions. It is thus necessary to take these una-

voidable components into account during filter design and

analysis.

3. System design
In this section, we discuss issues related to the implemen-

tation of velocity filters. We propose two kinds of exem-

plary transfer functions differing in computational com-

plexity and filter accuracy.

3.1. Short introduction to wave digital filters. The

filters presented in the following subsections have been

implemented on the basis of two-dimensional wave digital

filters (WDF). In this subsection, we briefly introduce the

WDF concept.

WDFs were introduced by Fettweis (1986) in the

1970s. As they are directly derived from classic analog

circuits (reference circuits), every delay element in a WDF

can be interpreted physically as holding the current state

of an inductor or a capacitor, which distinguishes them

from most other digital filter types.

Instead of the voltages and currents of the reference

circuit, the so-called wave variables are used as signals.

The introduction of these wave variables enables us to

meet one major realizability constraint for a digital filter

signal-flow diagram: it must not contain delay-free direc-

ted loops. In this way a class of digital filters is obtained

whose passivity and therefore stability constraints can be

easily assured—even using a finite arithmetic (Fettweis

and Meerkoetter, 1975).

Multidimensional wave digital filters (m-D WDF)

result from the generalization of the one-dimensional

concept based on multiple independent variables. M -D

WDFs are derived from m-D reference circuits depending

on m complex frequency variables ψ1, . . . , ψm. The cor-

respondence between the frequency domain of the WDF

and the reference filter is defined by the bilinear transform

ψi =
zi − 1
zi + 1

, i = 1, . . . , m. (8)

A detailed treatment of WDFs can be found in (Fettweis,

1986).

3.2. Detection of a vertically moving 2D-object.
Consider a simple object such as a two-dimensional Gaus-

sian pulse given by the equation

sc(x, y) =
1
2π

exp
(
−1

2

((x

σ

)2

+
( y

σ

)2))
(9)
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(a)

(b)

Fig. 11. Transfer functions of WDFs used in cascade: (a) and

(b) show a plane in the ωxωy and ωtωy directions, re-

spectively.

(see Fig. 12(a)) moving from the left to right at a velo-

city of one spatial unit per temporal unit (in the case of a

digital video sequence: pixel per frame). A plot of the cor-

responding 3D frequency spectrum is given in Fig. 12(a),

verifying the deliberations given in Section 2.1: the non-

zero points of the spectrum are located on a plane with

a normal vector pointing into the direction of the object

movement in the spatio-temporal domain.

Thus, this plane has to be included in the passband of

the transfer function of a filter applied for the detection of

objects moving at the mentioned velocity and direction.

In the following, we present two examples of diffe-

rent ways to implement such a filter with both implemen-

tations offering different advantages in terms of accuracy

and computational complexity.

(a)

(b)

Fig. 12. Two-dimensional Gaussian pulse (a) and the magnitude

function of the resulting Fourier spectrum in the case of

a moving Gaussian pulse.

3.3. Transfer function design. Bruton and Bartley

(1985) present simple filter structures exactly matching

the given requirements described in Section 3.2, as they

possess passbands located on planes in the 3D Fourier

space. However, in practice these filter structures do not

offer much flexibility as the passbands are very narrow

and therefore the filter used has to exactly match the ve-

locity of the target object. In order to overcome this pro-

blem, we design wedge filters possessing transfer func-

tions which do not only comprise the demanded but also a

certain range of “neighbouring” planes (see Fig. 13). The

transfer function depicted in Fig. 13(b) shows a WDF im-

plementation of the ideal wedge filter shown in Fig. 13(a),

created using the second reactance transformation descri-

bed in (Bolle, 1992) on a quadrantal filter in the (k,ωt)-
plane. The resulting WDF includes 32 multipliers and 44

delay elements. A less complex (but less accurate) solu-

tion of the given filter problem will be presented in Sec-

tion 3.4.
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(a)

(b)

Fig. 13. Ideal transfer function of a 3D wedge filter (ideal (a)

and realized using a wave digital filter (b)).

3.4. Design of computationally effective transfer
functions. Obviously, the more complicated the trans-

fer function, the more complex the filter structure and the

more arithmetic operations are necessary. That is why the

complexity of transfer functions has to be as high as ne-

cessary but, at the same time, as low as possible.

Figure 14 shows transfer functions capable of filte-

ring objects moving in a certain x-direction (right to left

or left to right) without velocity restrictions. However,

in the case of Figs. 14(a) and 14(b), where stop and pass

regions take up four full octants (resulting in simple and

easy to implement filter structures using 2D fan filters

(Bolle, 1992)), objects moving in diagonal and even al-

most vertical directions are not suppressed by the filter.

Depending on the scene, this can be a strong drawback,

as noise and unwanted detections can be a consequence.

Thus, the pass regions are trimmed to match a V-shape

in order to limit the filter result to primarily horizontal

motion. Figures 14(c) and (d) show these optimized pass

regions with a “V-angle” of 90 degrees, which is suffi-

cient for the application examples covered in this work

(see Section 4).

We define the transfer functions in Figs. 14(a) and (b)

as H1(jωωω) and H2(jωωω), those shown in Figs. 14(c) and (d)

as H3(jωωω) and H4(jωωω), with

ωωω =

(
ωt

kkk

)
. (10)

Then each of these transfer functions can be descri-

bed using the unit step function (Heaviside function):

u(ω) =

⎧⎪⎨⎪⎩
1 if ω > 0,
1
2 if ω = 0,

0 otherwise,

(11)

H1(jωωω) = u(ωx)u(ωt) + u(−ωx)u(−ωt), (12)

H2(jωωω) = u(−ωx)u(ωt) + u(ωx)u(−ωt), (13)

H3(jωωω) = u(ωx − |ωy|)u(ωt)
+ u(−ωx − |ωy|)u(−ωt), (14)

H4(jωωω) = u(ωx − |ωy|)u(−ωt)
+ u(−ωx − |ωy|)u(ωt). (15)

t

x

y

(a)

t

x

y

(b)

t

x

y

(c)

t

x

y

(d)

Fig. 14. Here (a) and (b) show transfer functions for filtering

all objects moving from the right to left (H1(jωωω)) and

left to right (H2(jωωω)), respectively, including diagonal

(and almost vertical) directions that only incorporate

small parts of the particular horizontal direction. Fur-

thermore, (c) and (d) (H3(jωωω) and H4(jωωω)) are opti-

mized for the detection of the horizontal movement.

Filter design: For the design of a filter possessing a trans-

fer function like, for example, H4(jωωω) (see Eqn. (15) and

Fig. 14(d)), we use a cascade of filters (H4a(jωωω) and
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H4b(jωωω)), one operating in the xy-plane and one in the

xt-plane:

H4a(jωωω) = H̃4a(jωx, jωy), (16)

H4b(jωωω) = H̃4b(jωx, jωt). (17)

In other words, we combine two two-dimensional filters

(see Fig. 11) to obtain one three-dimensional filter:

Y (jωωω) = H4a(jωωω)H4b(jωωω)X(jωωω). (18)

Figure 15 shows a signal flow diagram of the resulting

filter cascade.

H4a(j  ) H4b(j  ) Y(j )X(j  )

Fig. 15. Cascade of two two-dimensional filters.

4. Experimental verification
4.1. Filtering of moving 2D Gaussian pulses. For a

verification of the results presented in Section 3, an image

sequence showing two Gaussian pulses moving from the

left to right at different velocities (one and three pixels per

frame, respectively) was created (Figs. 16(a) and (b) show

two frames of this test sequence). It can be easily observed

that in the output sequence shown in Figs. 16(c) and (d)

(which correspond to the test sequence frames mentioned

above) the faster pulse is almost fully eliminated. The

results were obtained using a WDF filter with a transfer

function of Fig. 13(b).

4.2. Pedestrian detection. The second experiment fo-

cuses on a more complex object: a test image sequence

showing a pedestrian crossing a street in front of a camera

host (Fig. 17) is filtered using the filters presented in Sec-

tion 3. In detail, we distinguish between two different test

scenarios: while the first one is processed using the fil-

ter presented in Section 3.3, the second test case uses the

optimized version proposed in Section 3.4. Note that the

WDF implementation of the respective filter allows us to

process the video sequentially in the spatio-temporal do-

main, i.e. no transformations to the spectral domain are

necessary.

Figures 17(a) and (b) show two frames of a video se-

quence containing a pedestrian crossing the street in front

of the camera. Note that in this example the host vehicle

does not move—the correction of ego motion using the

methods presented in this paper is one important objec-

tive for future work but it has not been evaluated yet. The

second row (Figs. 17(c) and (d)) shows the two frames

after filtering using the filter with the transfer function

presented in Section 3.3. Obviously, everything but the

(a) (b)

(c) (d)

(e) (f)

Fig. 16. Panels (a) and (b): two frames of a test sequence sho-

wing two Gaussian pulses, the upper one moving at a

speed of one pixel per frame, the other at three pixels

per frame. Panels (c) and (d): filter results using the

transfer function depicted in Fig. 13(b). Panels (e) and

(f): filter results using the ideal transfer function depic-

ted in Fig. 13(a).

pedestrian is successfully suppressed and the result co-

uld be easily used as an input for further object detection

modules.

Figures 17(e) and (f) represent results obtained using

the less complex filter structures presented in Section 3.4.

It can be observed that even if the result is not as good as

the one presented in Figs. 17(c) and (d), the pedestrian ob-

ject is still visible and a thresholded version of the image

(as depicted in Figs. 17(g) and (h)) shows only the target

object, and not the environment.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 17. Two frames of a test sequence showing a pedestrian

crossing from right to left at different points in time.

The top row shows the original image, the second row

the filtered image using the filter presented in Sec-

tion 3.3 and the third one the filtered image using the

filter presented in Section 3.4. Panels (g) and (h) di-

splay the filter results from (e) and (f) after threshol-

ding.

5. Conclusions and future work

Velocity filtering by means of linear n-D filters is an ade-

quate approach for the extraction of movement informa-

tion from visual scenes. Unfortunately, the Fourier repre-

sentation of these signals is corrupted by several effects.

One of these effects is the indispensable violation of Shan-

non’s sampling theorem, by movements of high velocity

and disadvantageous object forms. Nevertheless, the fe-

ature of movement direction that can be extracted by li-

near n-D filters can be used to successfully solve object

recognition tasks, e.g. pedestrian detection, as presented

in Section 4.2.

Experimental results from tests on real world video

sequences showing crossing pedestrians demonstrate that

our approach is a promising and powerful extension of the

existing object detection systems. This work forms a ba-

sis for further research on the applicability and potential

of linear multidimensional filters in real-time driver assi-

stance applications. Our objective is to benefit from the

advantages multidimensional systems theory offers with

respect to system description, design, stability, etc. The-

refore, extended research on WDF improvability with re-

spect to the addressed applications will be an objective of

high priority in the future.

Another focus will be set on the development of more

specialized transfer functions capable of filtering objects

in more complex scenes and their hardware-effective im-

plementation. Yet another challenge is the solution of

one of the most demanding problems in the field of au-

tomotive applications using single camera vision: distin-

guishing between an object movement and a movement

solely caused by ego motion (i.e. host vehicle motion)

without additional sensors.

By and large, the velocity filters presented in this pa-

per show good performance for motion-based object de-

tection with the potential of leading to new and effec-

tive methods in driver assistance system development and

other object recognition applications.
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