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A class of nonparametric smoothing kernel methods for image processing and filtering that possess edge-preserving pro-
perties is examined. The proposed approach is a nonlinearly modified version of the classical nonparametric regression
estimates utilizing the concept of vertical weighting. The method unifies a number of known nonlinear image filtering
and denoising algorithms such as bilateral and steering kernel filters. It is shown that vertically weighted filters can be
realized by a structure of three interconnected radial basis function (RBF) networks. We also assess the performance of the
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1. Introduction

Image filtering and reconstruction algorithms have played
the most fundamental role in image processing and ana-
lysis. The problem of image filtering and reconstruction
is to obtain a better quality image θ̂ from a noisy image
y = {yi, 1 ≤ i ≤ N} recorded over N pixel points
{xi, 1 ≤ i ≤ N}. In image filtering we are only in-
terested in getting the image θ̂ at pixel points, whereas
in image reconstruction one wishes to compute θ̂ at any
point of an image plane. As such, the former task is
a digital-to-digital mapping, whereas the latter one is a
digital-to-analog mapping. There are numerous speciali-
zed algorithms in the image processing literature dealing
either with image filtering or image reconstruction. The
nature of these methods depends critically on the assumed
image and noise models. In image filtering techniques
utilizing deterministic noise models and variational fra-
mework, one finds a cleaner image θ̂ by minimizing the
image regularity term penalized by a difference between

the clean image and the observed noisy image, i.e., we
seek θ̂ as a solution to the following variational problem:

θ̂ = arg min
α∈Θ

(‖α‖Θ + λ‖y − α‖) ,

where Θ is the image space equipped with the norm ||·||Θ.
Here λ is the regularized parameter and the image space Θ
must be specified (Buades et al., 2005) by the user. In the
Rudin-Osher-Fatemi theory, Θ is the space of functions of
bounded variation and λ is specified by ad-hoc methods.
An image being a solution to the variational problem can-
not be given in an explicit way and must be obtained by
numerical algorithms, see (Buades et al., 2005) and the re-
ferences cited therein. Furthermore, in many applications
(e.g., images transmitted by a communication channel) the
noise present in an image has a stochastic nature and we
must develop statistical methods for image filtering and
reconstruction.

In this article we focus on statistical methods em-
ploying a modern nonparametric regression analysis.
Classical image processing methods (Jain, 1989) rely on
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a specific parametric model of an underlying image and,
additionally, it is commonly assumed that the noise pro-
cess is an additive white Gaussian random variable. On
the contrary, nonparametric statistical methods rely on
the observed data themselves and consequently they are
able to adapt to virtually any image shape and noise
distribution. Furthermore, the noise process need not
be additive and may have a complex dependence struc-
ture. Nonparametric inference such as density estima-
tion, nonparametric regression, wavelets, and bootstrap-
ping have been extensively examined in the statistical li-
terature, see (Efromovich, 1999; Wasserman, 2006) for
an extensive overview of various nonparametric techni-
ques. Surprisingly, the use of nonparametric methods
in image processing has been very limited, see (Hall
and Koch, 1992; Pawlak and Rafajłowicz, 2001; Pawlak
and Liao, 2002; Chiu et al., 1998; Polzehl and Spoko-
iny, 2000) for some preliminary studies. In the context
of image filtering and reconstruction it is natural to view
the underlying image model as a nonparametric regres-
sion function. Nevertheless, standard nonparametric re-
gression algorithms are linear in observed data. In fact,
most nonparametric regression estimates can be written
as a generalized kernel method of the following generic
form:

θ̂(x) =
N∑

i=1

wi(x,xi, h)yi,

where the weights {wi(x,xi, h)} define the local neigh-
borhood at the point x controlled by the smoothing para-
meter h. The linearity of the above scheme yields a num-
ber of limitations in the accuracy. Indeed, linear methods
over-smooth edges—an essential component of an image
structure. This fact has been recognized recently in the
image processing literature (Takeda et al., 2007), where a
nonlinear version of kernel smoothers has been proposed.

In this paper we propose a class of image processing
filtering methods that generalizes the previous existing
techniques which have only been intuitively justified. In
particular, our approach covers, as a special case, neigh-
borhood filters, bilateral filters, adaptive smoothing, and
the SUSAN algorithm (Yaroslavsky, 1985; Saint-Marc
and Medioni, 1991; Smith and Brady, 1997; Tomasi and
Manduchi, 1998; Barner et al., 1999; Barash, 2002; Elad,
2002; Buades et al., 2005). It generalizes also the fre-
quently overlooked methodology of nonparametric ver-
tical smoothing, due originally to Lee (1983). This is
done by putting our approach into a formal nonparame-
tric framework (Chiu et al., 1998; Polzehl and Spoko-
iny, 2000; Pawlak and Rafajłowicz, 1999; Pawlak and
Rafajłowicz, 2001). In particular, in (Pawlak and Rafaj-
łowicz, 1999; Pawlak and Rafajłowicz, 2001), a general
nonparametric vertical regression algorithm was propo-
sed for jump preserving signal reconstruction and filte-
ring. This scheme was extended to a robust version of

the mean-squared error based filters by the introduction
of a vertically clipped conditional median filter (Krzyżak
et al., 2001; Pawlak et al., 2004; Steland, 2005).

This paper aims at extending the previous nonlinear
approaches to the problem of image filtering and recon-
struction. We also demonstrate the usefulness of our ap-
proach for the problem of industrial image processing.
The paper is organized as follows. In Chapter 2 we in-
troduce the concept of a Vertically Weighted Regression
(VWR) function. The applicability of this function in for-
ming various image processing tasks is pointed out. A
fundamental nonlinear equation for an image characteri-
zation is derived. Image filtering formulas with respect to
both L2 and L1 loss functions are obtained. Section 3 gi-
ves empirical versions of the filters derived in Section 2.
Important special cases of these filters are discussed in
Section 4. In Section 5 we propose a specialized neural
network structure utilizing radial basis functions (RBF) to
design nonlinear vertically weighted filters. Section 6 de-
monstrates the practical aspects of our methodology in the
context of filtering industrial images.

2. Vertically weighted regression

2.1. Vertically weighted estimator of a location para-
meter.

2.1.1. Estimating a location parameter from a para-
meter dependent noise. In order to introduce the basic
concepts of our paper, let us first consider a vertically we-
ighted estimator of a location parameter. Let θ∗ be a so-
ught parameter observed in the presence of noise, i.e., we
have the following observation model:

Yj = θ∗ + σ(θ∗) · εj , j = 1, 2, . . . , N, (1)

where εjs are i.i.d. random variables such that E εj = 0,
Var εj = 1. In (1) σ(θ) is a function, which is tentatively
assumed to be known (later we admit σ(θ) to be more
freely selected by the user). We do not require σ(θ) to
be nonnegative, but σ2(θ∗) > 0 can be interpreted as the
variance of errors.

Suppose that θ∗ is a gray level of a selected pixel.
Then one may interpret the above model as the estima-
tion problem of a pixel gray level from the repeated ob-
servations, which are corrupted by random errors which
possess the variance dependent on the pixel gray level.
Clearly, in practice we usually do not have repeated ob-
servations from the same pixel, but it is useful to consider
the observations from surrounding pixels as repeated ob-
servations of θ∗ (gray level of the central pixel), which are
additionally biased by the variability of the image in the
vicinity of the selected pixel.

2.1.2. ML estimator of a location parameter. Altho-
ugh the idea of vertical weighting does not require the
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existence of a probability density of εjs, we tentatively
assume that such a density, denoted by fε, exists, since it
is convenient for interpretation purposes. Then by (1) the
probability density function fY (y) of the observed image
Y is given by

fY (y) = fε((y − θ∗)/σ(θ∗))/σ(θ∗). (2)

Then the likelihood function for estimating θ∗ in (1) is of
the form

L(θ) =
N∏

j=1

1
σ(θ)

fε

(
Yj − θ

σ(θ)

)
. (3)

The maximum likelihood (ML) estimator of θ∗, denoted
further by θ̂, is the one for which L(θ) or, equivalently,
the log-likelihood function

l̄(θ) =
N∑

j=1

log fε

(
Yj − θ

σ(θ)

)
− N log(σ(θ)) (4)

attains its maximum. Note that if fε is the standard normal
p.d.f., then the maximization of l(θ) is equivalent to the
minimization of the following function:

l(θ) =
N∑

j=1

(
Yj − θ

σ(θ)

)2

+ N log(σ(θ)). (5)

This equation is a first basic step in introducing a concept
of generalized M -type parametric estimators and then
their vertically weighted modifications. This is examined
in the next subsection.

2.1.3. M-estimators of a location parameter. The
formula (5) is justified if the noise process is Gaussian.
The theory of M estimators (van der Vaart, 1998) rela-
xes this assumption by replacing log fε by a more general
function, Ψ. Hence (5) takes the following form:

crit(θ) =
N∑

j=1

Ψ
(

Yj − θ

σ(θ)

)
+ N log(σ(θ)), (6)

where Ψ is selected in such a way that the existence of a
minimum of (6) is guaranteed.

We need another informal step in order to make mi-
nimization of (6) easier. To do so, let us assume that σ(θ)
is a slowly changing function, i.e., |dσ(θ)/dθ| is small.
Then, by Taylor’s formula and the fact that EYj = θ∗,
we can replace σ(θ) in (6) by σ(Yj). This leads to the
following modified criterion:

c̃rit(θ) =
N∑

j=1

Ψ
(

Yj − θ

σ(Yj)

)
+ N log(σ(Yj)) (7)

Now, we can neglect the last term in (7) as being indepen-
dent of θ and we finally use

Crit(θ) =
N∑

j=1

Ψ
(

Yj − θ

σ(Yj)

)
(8)

as a criterion for estimating θ∗. The flexibility of this ge-
neral estimation method is gained by various choices of Ψ
and σ(·).

Let us also note that under mild conditions imposed
on Ψ and σ(·), the law of large numbers implies that (with
probability 1):

N−1
N∑

j=1

Ψ
(

Yj − θ

σ(Yj)

)
−→ E Ψ

(
Y − θ

σ(Y )

)
, (9)

as N → ∞, where the expectation is calculated with re-
spect to Y . The value of θ minimizing the right-hand side
of (9) will be used in this paper as a preliminary step to de-
sign various vertically weighted filtering algorithms. This
issue will be discussed in the next section.

2.2. Image processing and vertically weighted
regression.

2.2.1. Image model. Consider the image model

yij = θ∗(xij) + σ(θ∗(xij)) · εij (10)

for i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2, where θ∗ :
R

2 → [0, 1] is an image function, which represents gray
levels scaled, without loss of generality, to the interval
[0, 1]. Next xij ∈ R

2 is a 2-D vector, which represents
a known location of the (i, j)-th pixel, i = 1, 2, . . . , n1,
j = 1, 2, . . . , n2, where n1n2 is the total number of pixels
representing the image. Throughout the paper we assume
that the noise process εijs and the function σ(·) satisfy the
conditions introduced in Section 2.1.

2.2.2. Vertically weighted regression. Our principal
problem in this paper is to estimate the function θ∗(·)
from the noisy observations yij , i = 1, 2, . . . , n1, j =
1, 2, . . . , n2. As a by-product of our studies we also exa-
mine some image processing problems like image mat-
ching, segmentation, and motion. In these problems one
wishes to recover a function being closely related to the
original image θ∗(·).

Let us begin with the generalized criterion, see (9),
which characterizes our image recovery techniques, i.e.,
we have

Q(θ) = E Ψ
(

yij − θ

σ(yij)

)
, (11)
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where θ is treated as a decision variable. Assuming that
the minimum of Q(·) exists, let us denote by θ+

ij the mini-
mizer of this criterion function, i.e.,

θ+
ij = arg min

θ
E Ψ

(
yij − θ

σ(yij)

)
. (12)

Note that θ+
ij depends on the true image θ∗(xij). We shall

call θ+
ij the vertically weighted regression function since

the function σ(·) appearing in the definition of Q(·) de-
pends on the observed image yij . It is important to note
that, in general, θ+

ij differs from θ∗(xij). In some impor-
tant cases, however, we show that θ+

ij = θ∗(xij). As a re-
sult, estimates of θ+

ij can provide image recovery methods
which are more accurate in terms of preserving edges and
other image singularities.

2.3. Examples of vertically weighted regression func-
tions. Before entering into the problem of estimating θ+

ij

in (12), it is expedient to explore the flexibility of Q in 11
as a theoretical criterion for obtaining various forms of
θ+

ij . In this respect, it is convenient to define the weight
function w(y) = 1/σ(y).

2.3.1. L2 loss. In this section we choose Ψ(t) = t2 in
(11). This could correspond to the classical mean-squared
error if, additionally, w(y) = 1. Otherwise we have the
vertically weighted counterpart of this criterion, i.e., we
have

Q2(θ) = E
[
w2(yij) · (yij − θ)2

]
. (13)

It is straightforward to show that Q2(θ) is minimized by

θ+
ij = E

[
yij · w2(yij)

]/
E
[
w2(yij)

]
. (14)

Selecting different w(·), we obtain the following impor-
tant special cases of vertically weighted regression:

MEAN VALUE. For w(y) ≡ 1 we have θ+
ij = E (yij).

This is a classical solution yielding linear mean-type
filters. Note that in this case the noise process is image
independent.

HARMONIC MEAN. Selection w(y) = const/
√

y yields

θ+
ij =

1
E (y−1

ij )
. (15)

In this case σ(y) ∼ √
y, i.e., we have a moderate influence

of the image on noise dispersion.

RELATIVE ERROR. If the dependence of the dispersion on
y is linear (w(y) = const/y), then from (14) we obtain

θ+
ij = E (y−1

ij )
/

E (y−2
ij ). (16)

This kind of averaging does not have a commonly accep-
ted name, but we can give the following interpretation of
(13). After substituting w(y) = 1/y we obtain

Q2(θ) = E
(

1 − θ

yij

)2

, (17)

i.e., (16) minimizes the mean relative estimation error.

Lp MEAN. A greater influence of the image amplitude on
the noise dispersion can be obtained if σ(y) = yp/2 or,
equivalently, w(y) = y−p/2, where p > 0. Then

θ+
ij = E

(
y

(−p+1)
ij

)/
E
(
y −p

ij

)
. (18)

An interesting case occurs if p → ∞. Then it can be easily
shown that the solution in (18) corresponds to the average
of the Min operation on the image yij .

Yet another Lp mean can be obtained if the smaller
influence of the image amplitude on the noise dispersion
is required. Thus, let σ(y) = y−p/2 or w(y) = yp/2,
where p > 0. Then

θ+
ij = E

(
y

(p+1)
ij

)/
E
(
y p

ij

)
. (19)

It again can be easily shown that for p → ∞ the empirical
counterpart of (19) corresponds to the Max operation on
the image function.

Hence we can conclude that for p ranging from −∞
to ∞, the family of operators in (19) smoothly covers the
whole range from Min to Max operations, including the
classical mean (p = 0) and the harmonic mean (p = −1).

INCORPORATING INFORMATION FROM EARLIER IMA-
GES. Let θ∗(·) be the last image in a sequence to be pro-
cessed. Denote by θold(·) the image before last in this
sequence. Suppose that we may expect that θ∗(·) does not
differ too much from θold(·). In such a case it is reasona-
ble to use information contained in θold(·) for processing
θ∗(·). Assume for a while that εijs are normally distribu-
ted with a zero mean and the dispersion σε > 0. Let us
choose

w2(yij) = σ−1
a φ ((yij − θold(xij))/σa) , (20)

where φ(t) = exp(−t2/2)/
√

2π, σa > 0 reflects the le-
vel of confidence that θ∗(·) does not differ too much from
θold(·). Then

θ+
ij = λ θ∗(xij) + (1 − λ) θold(xij), (21)

where λ
def= σ2

a/(σ2
ε + σ2

a). If σa → ∞, i.e., we have not
enough confidence in small differences between subsequ-
ent images, then θ+

ij → θ∗(xij), otherwise, if σa → 0,
then θ+

ij → θold(xij).
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PATTERN MATCHING AND THE SEGMENTATION OF

IMAGES. Vertical weighting can be used for verifying
whether θ∗ is close to a given pattern image, denoted fur-
ther by θ0. If the answer is positive, then the knowledge
of θ0 can be used to improve a filtering algorithm.

Denote by U(t) the kernel uniform in [−1, 1], i.e.,
U(t) = 1 in this interval and zero otherwise. Let UH(t) =
U(t/H)/H . Select w2(yij) = UH

(
yij − θ0(xij)

)
,

where H > 0 is a parameter which reflects the level of
tolerance for differences between the observed image and
the pattern θ0. If E

[
UH

(
yij − θ0(xij)

)]
> 0, then

θ+
ij =

E
[
yij · UH

(
yij − θ0(xij)

)]
E [UH (yij − θ0(xij))]

. (22)

If yij is, in the mean, too far from θ0(xij), which yields

E
[
UH

(
yij − θ0(xij)

)]
= 0,

then we set θ+
ij = 0.

Setting θ0(xij) to be a constant, say 0 < c < 1, we
can select objects or parts of an image having (approxima-
tely) the same gray level. In such a case, (22) selects all
the parts of an image which have a gray level contained in
[c − H, c + H].

2.3.2. L1 loss. In this section, in (11) we choose
Ψ(t) = |t|. This defines a vertically weighted counter-
part of the classical L1 criterion. The latter yields a well
studied class of median and rank filters (K.E. Barner and
G.R. Arce). Hence we have the following criterion:

Q1(θ) = E [w(yij) · |yij − θ|] . (23)

Let fij(y) be the probability density function of yij . De-
fine

f
(mod)
ij (y) =

w(y)fij(y)∫
w(y)fij(y) dy

, (24)

assuming the convergence of the integral in the denomi-
nator. Note that (23) can be equivalently rewritten as

Q1(θ) = E [|Zij − θ|] , (25)

where the expectation is calculated w.r.t. Zij , which is

defined as a random variable having the p.d.f. f
(mod)
ij .

This form of Q1(θ) immediately leads to the conclusion
that its minimizer, denoted further by θ#

ij , has the form

θ#
ij = Med [Zij ] , (26)

where Med [·] denotes the theoretical median of a random
variable in the brackets. The analysis of (24) and (26)
leads to the following simple conclusions:

• If w ≡ 1, then θ#
ij reduces to the usual median, i.e.,

θ#
ij = Med [yij ].

• For

w(y) =

{
1 if y ∈ [a, b],
0 if y 
∈ [a, b],

(27)

where 0 ≤ a < b ≤ 1, Zij is the version of yij that
is truncated to [a, b], i.e., Zij = yij , if a ≤ yij ≤
b and zero otherwise. The truncated version of yij

is further denoted as yij

∣∣b
a

. According to (24), the

p.d.f. of yij

∣∣b
a

is proportional to fij(y)
∣∣b
a

and suitably
normalized.

Thus, for the weight in (27) we have

θ#
ij = Med

[
yij

∣∣b
a

]
. (28)

Remark 1. Selecting w(y) = yp and setting large p > 0
magnifies the largest element in the support of fij(y), i.e.,
supp{y : fij(y) > 0}. Simultaneously, the normalization
in (24) leads to reducing w(y)fij(y) in other areas. Thus,
for p → ∞, θ#

ij = Med [Zij ] acts as the Max opera-
tor on the support of fij(y). The analogous reasoning for
w(y) = yp and p → −∞ provides the Min operator.

2.4. Image filtering from VWR. The classical equ-
ation which is commonly used for constructing filters for
θ∗ follows directly from (10) and has the familiar form

E [yij ] = θ∗(xij). (29)

The main advantage of this equation lies in its simplicity
and the linearity of the expectation operator, which provi-
des “automatic” smoothing. At the same time, the expec-
tation yields unwanted smoothing of edges, corner points,
and other image details.

Our aim is to derive nonlinear equations for θ∗,
which further provides alternative ways of filtering, which
are able to preserve sharp changes in the filtered image.

2.4.1. L2 loss. As we have already noted, the minimi-
zer θ+

ij of (13) is not equal to θ∗(xij). Nevertheless, we
can still use (14) to characterize the true image. This leads
to some nonlinear equation for θ∗.

Hence, let us specify the following weight function:

w2(yij) = V ((yij − θ∗(xij))/H) , (30)

where V (·) is a given kernel function, and H > 0 is a
parameter which controls the width of V . The kernel V (·)
is assumed to be chosen in such a way that

V (t) ≥ 0,

∫ ∞

−∞
V (t) dt = 1,

V (t) = V (−t), t ∈ R . (31)
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Assume that fε, being the p.d.f. of εijs, is also symmetric
fε(−t) = fε(t). Substituting (30) into (14), using (31)
and changing the variables, we obtain θ+

ij = θ∗(xij) and

θ∗(xij) =
E [ yij · VH (yij − θ∗(xij)) ]

E [ VH (yij − θ∗(xij)) ]
, (32)

where VH(t) def= V (t/H). This equation is fundamental
for further studies. If V is a uniform kernel, then (32)
simplifies to

θ∗(xij) = p−1
H · E [ yij · UH (yij − θ∗(xij))] , (33)

where pH =
∫H

−H
fε(t) dt is the probability of the event

εij ∈ [−H,H].

2.4.2. L1 loss. Let the same assumptions as in the pre-
vious subsection hold for fε and V . Additionally, assume
the continuity of V with possible exception of the end po-
ints of the interval {t : V (t) > 0} if this interval is finite.
Choosing w(y) = VH(y − θ∗(xij)) in (23), we obtain

Q1(θ) = E [VH(yij − θ∗(xij)) · |yij − θ|] . (34)

Changing the variables η = yij − θ∗(xij) we have

Q1(θ) =
∫

VH(η)|θ∗(xij) − θ + η|fε(η) dη. (35)

From (35) it follows that Q1(θ) is minimized by θ#
ij =

θ∗(xij) and this minimizer is unique, yielding Q1(θ#) =∫
VH(η)|η|fε(η)dη. Comparing this equality with (26),

we conclude that

θ∗(xij) = Med [Zij ] , (36)

where Zij is defined as in (26) and its p.d.f. has the form

f
(mod)
ij (y) =

VH(y − θ∗(xij)) · fε(y − θ∗(xij))∫
VH(η) · fε(η) dy

. (37)

We can be more explicit if we select VH(t) = U(t/H). In
this case we have

θ∗(xij) = Med
[
yij

∣∣∣θ∗(xij)+H

θ∗(xij)−H

]
. (38)

From the above it follows that, under the symmetry of fε

and the kernel V , one can use both (38) and (32) for con-
structing filters.

Remark 2. We mainly confine our attention to local ope-
rations on images. Note, however, that the proposed ap-
proach is sufficiently flexible to perform also some global
operations. For example, selecting w(y) in (24) as either
w(y) = sin(πy/2) or w(y) = cos(πy/2) for y ∈ [0, 1],
we can either decrease or increase the content of black or
gray-black parts of an image, respectively.

3. Empirical VWR filters

Our aim in this section is to propose a practical class of
filters stemming from (14). This will be obtained by esti-
mating the optimal solution obtained in the previous sec-
tion based on the observed record of noisy image data. As
a result, we derive a rich family of nonlinear filters which
includes some known solution.

3.1. Image filtering methods. Let us again recall (14),
i.e., we have

θ+
ij = E

[
yij · w2(yij)

]/
E
[
w2(yij)

]
. (39)

Replacing the expectations w.r.t. yij by empirical averages
from neighborhood pixels in a rectangular window (2M+
1) × (2M + 1), M ≥ 1, we obtain the estimator θ̂+

ij of
θ+

ij , given by

θ̂+
ij =

M∑
k,l=−M

yi+k,j+l · w2(yi+k,j+l) · κ(i,j,k,l,h)

M∑
k,l=−M

w2(yi+k,j+l) · κ(i,j,k,l,h)

,

(40)
where

∑M
k,l=−M is a shorthand notation for the double

sum
∑M

k=−M

∑M
l=−M . In (40),

κ(i,j,k,l,h)
def= Kh(xi+k,j+l − xij). (41)

For t
def= [t(1), t(2)], the kernel Kh : R

2 → R is defined
as follows:

Kh(t) =
1

h(1) h(2)
K(1)

(
t(1)

h(1)

)
K(2)

(
t(2)

h(2)

)
, (42)

where h = [h(1), h(2)], h(1) > 0, h(2) > 0 control the
width and height of a rectangular neighborhood of pixel
xij , respectively. This rectangular neighborhood is placed
horizontally in the image plane. The kernels K(u)(t) ≥ 0,
u = 1, 2 are selected according to the rules which are
commonly used in the area of nonparametric regression
estimation, i.e., they are required to fulfill the following
conditions:∫

K(u)(t) = 1,

∫
tK(u)(t) = 0,

∫
t2K(u)(t) < ∞,

(43)
where u = 1, 2 and the integrals are calculated either from
−1 to +1 (bounded support kernels) or from −∞ to ∞
(unbounded support case). In the latter case, unbounded
support is, treated formally in the sense that in fact the
support does not extends beyond the image range. It is,
however, convenient to permit, e.g., the Gaussian kernel
K(u)(t) = 1√

2π
exp(−t2/2). Examples of bounded sup-

port kernels, for which the conditions (31) hold, include
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the uniform kernel K(u)(t) = U(t)/2 and the Epanechni-
kov kernel K(u)(t) = (3/4)(1 − t2) for |t| < 1 and zero
otherwise.

Remark 3. In (40) we have intentionally omitted the well-
known details concerning the necessary corrections when
pixel xij is near the boundaries of the image. For simpli-
city of formulas, this convention is also used later on.

Let us select both the kernels as rectangular, i.e.,
K(u)(t) = U(t)/2, u = 1, 2. Let h(1) = h(2) be cho-
sen in such a way that Kh([t(1), t(2)]) is nonzero only in
the rectangle [−M,M ] × [−M,M ], where M > 0 is the
number of pixels. Under these assumptions, (40) can be
expressed as

θ̂+
ij =

M∑
k,l=−M

yi+k,j+l · w2(yi+k,j+l)

M∑
k,l=−M

w2(yi+k,j+l)

. (44)

The problem of the convergence of θ̂+
ij to θ+

ij can be tac-
kled in a rather standard form but this issue is outside the
scope of this paper.

3.2. Case studies. In parallel to the discussion in Sec-
tions 2.3.1 and 2.3.2, we briefly summarize empirical co-
unterparts of the formulas presented there. For simplicity,
we temporarily set Kh to be the uniform weight.

3.2.1. L2 born filters. Special cases of (44) provide
the following filters:

EMPIRICAL MEAN. Setting w(·) ≡ 1 in (44) we arrive at
the well-known moving average filter

θ̂+
ij =

1
(2M + 1)2

M∑
k,l=−M

yi+k,j+l . (45)

EMPIRICAL HARMONIC MEAN. Selecting in (44) w(y) =
1/
√

y we obtain a filter which is not in common use:

θ̂+
ij = (2M + 1)2

/ M∑
k,l=−M

y−1
i+k,j+l . (46)

Trying to apply this filter we have to correct the formula
(46) if some of yi+k,j+ls are zero.

EMPIRICAL MINIMIZER OF THE RELATIVE ERROR. The
empirical counterpart of (16) has the form

θ̂+
ij =

M∑
k,l=−M

y−1
i+k,j+l

/ M∑
k,l=−M

y−2
i+k,j+l . (47)

EMPIRICAL MAX AND MIN OPERATIONS. The empiri-
cal versions for (19) and (18) have the form

θ̂+
ij =

M∑
k,l=−M

yp+1
i+k,j+l

/ M∑
k,l=−M

yp
i+k,j+l , (48)

where, for p −→ ∞,

θ̂+
ij −→ max

k,l
{yi+k,j+l : |k| ≤ M, |l| ≤ M}, (49)

and, for p −→ −∞,

θ̂+
ij −→ min

k,l
{yi+k,j+l : |k| ≤ M, |l| ≤ M} . (50)

To justify (49), recall that for ai > 0 we have

(
n∑

i=1

ap
i

)1/p

−→ max
i

{ai : i = 1, 2, . . . , n}. (51)

Dividing the nominator and denominator of (49) by
(2M + 1)2 and letting p to be sufficiently large, we can
approximate the nominator by (maxk,l{yi+k,j+l})p+1,
where the maximum is taken over the same set as
in (49). Analogously, the denominator is close to
(maxk,l{yi+k,j+l})p. The justification for (50) is quite
similar.

EMPIRICAL SEGMENTATION BY THRESHOLDING. The
empirical counterpart of (22) has the form

θ̂+
ij =

M∑
k,l=−M

yi+k,j+l · UH

(
yi+k,j+l − θ0(xij)

)
M∑

k,l=−M

UH

(
yi+k,j+l − θ0(xij)

) ,

(52)
if

M∑
k,l=−M

UH

(
yi+k,j+l − θ0(xij)

)
> 0 , (53)

i.e., if the set of all those observation yi+k,j+ls, k, l =
−M, . . .,0, 1, . . . , M , for which |yi+k,j+l − θ0(xij))| <

H is nonempty. Otherwise, we set θ̂+
ij = white.

Remark 4. In (52) the empirical mean is, in fact, calcu-
lated from those yi+k,j+ls, which are close to the pattern
θ0(xij) both horizontally (k, l) (ranging from −M to M )
and vertically (with the accuracy to H). Simultaneously,
the actual number of these neighbors is calculated in the
denominator, since U is 1 only for vertically close obse-
rvations.
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3.2.2. L1 born filters. Empirical versions of (26) and
(24) are based on the empirical median of observations,
which is denoted by M̂ed{ ai, i = 1, 2, . . . k }, for the
observations as indicated in the curly brackets. We shall
denote by θ̂#

ij the estimators of θ#
ij .

• If w(y) ≡ 1, then as the estimator of θ#
ij = Med [yij ]

it is natural to take

θ̂#
ij = M̂ed{ yi+k,j+l, k, l = −M, . . . , 0, 1, . . . M },

(54)
i.e., the well-known empirical median from neigh-
borhood pixels.

• The estimator for (28) is given by

θ̂#
ij = M̂ed{[yi+k,j+l, k, l = −M, . . . M ]

∣∣b
a
}. (55)

In (55) and further, the notation [ai, i =
1, 2, . . . , n]

∣∣b
a

is interpreted as follows: after apply-

ing the operation
∣∣b
a

to a sequence ai, i = 1, 2, . . . , n
we obtain a subsequence which contains only those
ais for which the condition a ≤ ai ≤ b holds. Then,
in (55), the empirical median is calculated if the set

{ [yi+k,j+l, k, l = −M, . . . , 0, 1, . . . ,M ]
∣∣b
a
} is no-

nempty. Otherwise, we set θ̂#
ij = white.

Remark 5. Note that, in general, (55) differs from (54),
since [a, b] must not be centered near the empirical median
taken from all the pixels in the current window. Selecting
a and b appropriately, we can use (55) in a way similar
to (52) for the segmentation of images, but with the mean
replaced by the median. We shall use this fact also later.

It is also possible to give an empirical version of the
median for weights w(·) more general than uniform ones,
but its applicability in image processing seems to be limi-
ted.

4. Jump-preserving filters based on pilot
estimators

In this section we return to the general class of horizontal
weights Kh(·). Our aim is to discuss a new family of
nonlinear filters, which includes the well known sigma-
filter as a special case.

Recall that under the assumed symmetry of the ker-
nel V and fε we have obtained (see (32)):

θ∗(xij) =
E [ yij · VH (yij − θ∗(xij)) ]

E [ VH (yij − θ∗(xij)) ]
. (56)

One can interpret this expression as a nonlinear equation
for unknown θ∗(xij). It cannot be solved, since we unable
to evaluate the expectations. However, we can replace the
expectations by the corresponding empirical means ho-
ping that a solution of the empirical counterpart of (56)

is close to θ∗(xij). The above-sketched approach is out-
side the scope of this paper. We shall take a more direct
approach, namely, θ∗(xij) on the r.h.s. of (56) is replaced
by a pilot estimator, then the expectations are replaced by
the empirical means, and finally the resulting expression
is taken as the estimator of θ∗(xij) on the l.h.s. of this
equation. The idea of using pilot estimators in nonpara-
metric setting is a well-established concept. In the context
of the vertical weighting, the pilot estimators, which are
based on the median and the mean, were used in (Krzyżak
et al., 2001; Steland, 2003).

Recalling that εij = yij − θ∗(xij), one can rewrite
(56) also as follows:

θ∗(xij) = E [ yij · VH (εij) ]
/

E [ VH (εij) ] . (57)

According to this equation, θ∗(xij) is expressed in terms
of the expectations with respect to yij and εij . The appro-
ach to estimating θ∗(xij), which is based on the estima-
tion of errors εij , is discussed below.

Let θ̌(xij) be a pilot estimator of θ∗(xij), which is a
measurable function of (not necessarily all) gray level yij

of the pixels x(i+k,j+l), |k| ≤ M, |l| ≤ M . We shall use
θ̌(xij) for estimating errors in a vicinity of εij . Then the
expectation with respect to εij can be estimated by empi-
rical averaging estimates of εi+k,j+l from a neighborhood
of pixel (i, j). These estimates have the form

ε̌i+k,j+l = yi+k,j+l − θ̌(xij). (58)

Replacing the expectations in (57) with their empirical co-
unterparts, we get the following general class of nonlinear
filters:

θ̂∗ij =

M∑
k,l=−M

yi+k,j+lVH(yi+k,j+l − θ̌(xij)) · κ(i,j,k,l,h)

M∑
k,l=−M

VH(yi+k,j+l − θ̌(xij)) · κ(i,j,k,l,h)

,

(59)
where θ̂∗ij is the filter output, which estimates θ∗(xij), i.e.,
the image gray level at pixel (ij).

Selecting various pilot estimators θ̌(xij), we can ge-
nerate a large class of filters, some of which are listed in
the next two subsections. We present formulas for the uni-
form kernels Kh and VH , but each filter has its more ge-
neral counterpart for the general kernels Kh and VH .

4.1. Mean-based filters. MEAN-RAW FILTER (σ-
FILTER). Selecting in (59) θ̌(xij) = yij , we obtain the
so called σ-filter (see (Lee, 1983)). If we additionally se-
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lect V and K to be the uniform kernels, then

θ̂∗ij =

M∑
k,l=−M

yi+k,j+lUH (yi+k,j+l − yij)

M∑
k,l=−M

UH (yi+k,j+l − yij)

, (60)

which is the σ-filter originally proposed in (Lee, 1983).
Note the similarity of (60) and (52), but this time the con-
dition (53) always holds.

In (60), filtering is carried out by calculating the em-
pirical mean of those observations which fall into the box

[i−M, i+M ]×[j−M, j+M ]×[yij−H, yij +H], (61)

which is centered in the raw observation yij . Therefore,
one can call this filter the mean-raw filter.

The disadvantage of centering the box in yij comes
from the fact that yij contains random errors, which can
move out the box far from θ∗(xij).

MEAN-MEAN FILTER. The above disadvantage can be re-
duced by selecting θ̌(xij) to be the empirical mean from
all the pixels contained in [i−M, i+M ]× [j−M, j+M ]
(see (45)). We do not discuss this filter further, since the
empirical mean as the pilot estimator rules out edges from
the image and the box (61) slides too smoothly across ed-
ges.

MEAN-MEDIAN FILTER. The empirical median is known
to be less destructive for edges than the empirical mean.
Thus, selecting

θ̌(xij) = M̂ed{ yi+k,j+l, k, l = −M, . . . , M } (62)

and substituting this expression to (59), we obtain a fil-
ter which is expected to be less sensitive to gross errors
than the σ-filter and more jump preserving than the mean-
mean filter. The simplest form of this filter is obtained by
substituting (62) into the following expression:

θ̂∗ij =

M∑
k,l=−M

yi+k,j+lUH

(
yi+k,j+l − θ̌(xij)

)
M∑

k,l=−M

UH

(
yi+k,j+l − θ̌(xij)

) . (63)

The only difference between this filter and the σ-filter (60)
is replacing yij by the median.

4.2. Median-based filters. MEDIAN-RAW FILTER.
Our starting point is (38), repeated here for convenience:

θ∗(xij) = Med
[
yij

∣∣∣θ∗(xij)+H

θ∗(xij)−H

]
. (64)

As the pilot estimate for θ∗(xij) on the r.h.s. of (64) we
take a raw observation yij with the hope that the possible
gross error contained in it is reduced by using the empi-
rical median, which is truncated to the box (61). These
deliberations lead to

θ̂∗ij = M̂ed
{ [

yi+k,j+l, |k|, |l| ≤ M
]∣∣∣yij+H

yij−H

}
. (65)

Remark 6. At this point we skip the discussion of the
median-mean filter for the same reasons as explained for
the mean-mean filter.

MEDIAN-MEDIAN FILTER. We start again from (64).
Using (55) as a guideline and substituting (62) as the pi-
lot estimate into the r.h.s. of (64), we obtain the following
filter:

θ̂∗ij = M̂ed
{ [

yi+k,j+l, |k|, |l| ≤ M
]∣∣∣θ̌∗(xij)+H

θ̌∗(xij)−H

}
.

(66)
We have called this filter the median-median filter, since
we firstly calculate the empirical median from gray values
of all the pixels in the window [i−M, i+M ]×[j−M, j+
M ], which is treated as a pilot estimate θ̌∗(xij), and then
the empirical median is calculated from gray values in the
following box:

[i−M, i+M ]×[j−M, j+M ]×[θ̌∗(xij)−H, θ̌∗(xij)+H].

Remark 7. The filters mean-mean, mean-median and
median-median have their counterparts, which are based
on calculating the pilot estimate from all the pixels in the
horizontal window [i−M, i+M ]× [j −M, j +M ] with
the exception of the central one. This may reduce the bias
of the corresponding estimator.

5. RBF net structure of vertically weighted
filters

Our aim in this section is to sketch the structure of a net
which corresponds to the family of filters described by
(59).

Firstly, we rewrite (59) as follows:

θ̂∗ij =
M∑

k,l=−M

yi+k,j+l β(i,j,k,l,h) (67)

· VH

(
yi+k,j+l − θ̌(xij)

)
· Kh(xi+k,j+l − xij),

where

β−1
(i,j,k,l,h)

def=
M∑

k,l=−M

VH

(
yi+k,j+l − θ̌(xij)

)
(68)

Kh(xi+k,j+l − xij).

Formula (67) looks similar to the description of RBF nets.
There are, however, also important differences, which are
pointed out below:
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1. The weights yi+k,j+l β(i,j,k,l,h) depend also indirec-
tly on the smoothing kernel Kh acting in the horizon-
tal direction.

2. The weights β(i,j,k,l,h) depend also on the pilot esti-
mator θ̌(xij).

These differences can be taken into account in construc-
ting an RBF net for (67) by noticing that also β−1

(i,j,k,l,h)
has an RBF like structure. Furthermore, as the initial es-
timate in (67) and (68) one can take the classical kernel
smoother of the following form:

θ̌(xij) =
M∑

k,l=−M

yi+k,j+l · Kh(xi+k,j+l − xij). (69)

In fact, in (69) one can take a different smoothing para-
meter h than in (67), (68), but it seems reasonable to keep
the same value for them.

Input stream

RBF1 net

RBF2 net

RBF3 net

Initial estimate

Image

I

j

Weights

Output
stream

Fig. 1. Structure of three RBF nets which realize vertical
filtering.

Summarizing, vertically weighted filters can be reali-
zed by the three RBF networks given by (67)–(69). Addi-
tionally, the structure of all these nets is the same, which
facilitates their implementation in, e. g., FPGA techno-
logy. The overall scheme of these networks is shown in
Fig. 1, where the RBF 2 net corresponds to (67), the RBF
1 net is described by (69), while the RBF 3 net is defined
by (68). For transparency of this figure, the connection
between the output of the RBF 1 net and the RBF 3 net is
not shown.

Let us note that the above RBF structure has a much
smaller number of tunable weights than usual RBF nets.
The reason is that we have established values of many we-
ights through the analysis of vertically weighted estima-
tors. The only tunable parameters are 0 < H < 1 and
h > 0 (or, equivalently, M > 0).

From our simulations it follows that the rules for se-
lecting the horizontal window (half-)width M should be
the same as for the classical image processing filters.

We have to stress that the choice of H is crucial for
the proper performance of the filters proposed above. At
least the following approaches to the choice of H can be
considered.

The first one is based on a-priori knowledge concer-
ning the heights of edges to be preserved after filtering.

The a-priori information can be collected if we have a le-
arning sequence of typical images to be filtered. Such a
learning sequence is frequently available when industrial
images are processed, since a camera usually provides
very similar images of a production process. One can es-
tablish H by selecting parts of these images which contain
defects and read out heights of typical defects.

The second approach admits H to be tuned locally
for each window centered at (i, j). Thus, we admit
H = Hij and permit a data driven choice. A number
of different procedures can be used at this stage. We shall
describe one of the simplest of them, which is based on es-
timating the range (or the standard deviation) in a vicinity
of (i, j) in order to decide whether the image intensity
changes are sufficiently high.

Denote by r̂ij the difference between the maximum
and the minimum of the intensities in [i − M, i + M ] ×
[j −M, j + M ]. By σ̂ij we denote the empirical standard
deviation of the intensities in this window. Then the rule
for selecting local vertical parameters is as follows:

Hij =

{
R/r̂ij if r̂ij > 0,

Hij = 1 otherwise,
(70)

where R > 0 is a preselected parameter.
Alternatively, one can consider the rule

Hij =

{
c/σ̂ij if σ̂ij > 0,

Hij = 1 otherwise,

where c > 0 is a preselected parameter.
In the next section we shall demonstrate how the for-

mer rule performs.

6. Examples of filtering industrial images

The aim of the first example is to demonstrate the per-
formance of simple versions of vertically weighted filters
applied to the copper slab shown in Fig. 2 (top left panel).
Larger and smaller defects are clearly visible, but one can
also notice cracks which emerged during the burnishing
of the metal surface. Our task is to filter out these cracks,
leaving the defects visible.

In the middle panel of the second row the result of ap-
plying the classical 11 × 11 running mean filter is shown,
while the bottom right panel contains the result of apply-
ing the running median filter with the window size 11×11.
In both the cases the cracks are highly reduced, but small
defects either vanished or became much less visible. The
boundaries of larger defects are oversmoothed, although
the median filter corrupted the boundaries much less than
the running mean filter.

The results of applying 11 × 11 vertically weighted
median and mean filters are shown in the middle and ri-
ghtmost panels in the first row, respectively. In both the
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Fig. 2. Copper slab with defects and unwanted cracks to be filtered out (top left panel). The results of filtering by the 11× 11 classical
running mean (middle panel, bottom row) and median (bottom right panel) corrupt the boundaries of the defects. The vertically
weighted median (middle panel, first row) and mean (top right panel) provide better results (H = 0.1). The data driven choice
of the vertical window height (bottom left panel) provides the best result.
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Fig. 3. Piece of a steel wall with rust stains (top left panel). Filtering by the vertically weighted median (top right panel) and mean
(bottom left panel), H = 0.2. The classical mean filtering in the 11 × 11 window is reflected in the bottom right panel. The
vertically weighted mean with a data driven choice of Hij is shown in the middle row for R = 0.06 (left panel) and R = 0.1
(right panel).

cases the vertical window height H = 0.1 was applied
and the results of reproducing the boundaries of the de-
fects are satisfactory. The cracks were filtered, but they
are still visible even in the areas which are far from de-
fects.

It seems that the best result was obtained in the bot-
tom left panel. This image was obtained using the ver-
tically weighted mean 11 × 11 filter with a data driven
choice of the vertical window height described by (70).
R = 0.015 was used in this experiment.

In all of the above-applied vertical filters the raw ob-
servations were used as the initial estimates.

Similar conclusions can be drawn from the second
series of experiments. In the top left panel of Fig. 3 a piece
of steel with rust stains is shown. Two kinds of cracks and
patches caused by the rust can be distinguished: small
ones, which are not yet dangerous for a steel wall, and
larger cracks and patches, which should be kept unchan-
ged after filtering. In the bottom right panel the result of
filtering using the classical 11×11 filter is shown for com-
parisons. The top right and the bootom left panels contain
the image filtered by the 11 × 11 vertically weighted me-
dian and mean, respectively. In both the cases H = 0.2
was used. In the middle row we collected the results of fil-
tering by the vertically weighted mean with a local, data
driven choice of H , according to (70). The image on the
r.h.s was obtained using R = 0.1, while the one on the

l.h.s. panel with R = 0.06. It seems that in the latter
case the best result was obtained, since large cracks and
patches are clearly visible and smaller stains were filtered
out.

7. Concluding remarks

In this paper a thorough analysis of filtering algorithms
using the idea of Vertical Weighted Regression (VWR)
was conducted. It was shown that nonparametric estima-
tors of VWR provide a framework for designing a large
family of nonlinear filters. This gives new filter structu-
res and includes many filters recently considered in the
image analysis literature. It is argued that filters based on
vertical weighting can be implemented as three intercon-
nected neural networks of the RBF type. A data driven
choice of vertical weighting was also proposed (see (70)),
and its performance was verified using industrial images
with low contrasts. It was demonstrated that a vertically
weighted mean filter with a data driven choice of vertical
weighting gives precise tuning. This allows us to filter out
small defects or inaccuracies, simultaneously keeping the
larger ones almost unchanged.
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