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According to the World Health Organization (WHO), breast cancer (BC) is one of the most deadly cancers diagnosed
among middle-aged women. Precise diagnosis and prognosis are crucial to reduce the high death rate. In this paper we
present a framework for automatic malignancy grading of fine needle aspiration biopsy tissue. The malignancy grade is
one of the most important factors taken into consideration during the prediction of cancer behavior after the treatment. Our
framework is based on a classification using Support Vector Machines (SVM). The SVMs presented here are able to assign
a malignancy grade based on preextracted features with the accuracy up to 94.24%. We also show that SVMs performed
best out of four tested classifiers.
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1. Introduction

Breast cancer is the most often diagnosed cancer among
women aged 40 to 60. According to the World Health
Organization there are 7.6 million deaths worldwide due
to cancer each year, out of which 502,000 are caused by
breast cancer alone. With such a high rate, breast cancer
also is one of the most deadly cancers. For many years
researchers have been trying to find the best way to treat
breast cancer. Successful treatment is a key to reduce the
high death rate. To successfully cure a patient with breast
cancer we need to diagnose it as early as possible. Can-
cers in their early stages are vulnerable to treatment while
cancers in their most advanced stages are usually almost
impossible to treat.

The most common diagnostic tools are mammogra-
phy and a fine needle aspiration biopsy (FNA). Mammo-
graphy, which is a non-invasive method, is most often
used for screening purposes rather than for precise dia-
gnosis. It allows a physician to find possible locations of
microcalcifications and other indicators in breast tissue.
When a suspicious region is found, the patient is sent to
a pathologist for a more precise diagnosis. This is when
the FNA is taken. A fine needle aspiration biopsy is an
invasive method to extract a small sample of the questio-

nable breast tissue that allows the pathologist to describe
the type of the cancer in detail. Using this method patholo-
gists can very adequately describe not only the type of the
cancer but also its genealogy and malignancy. They can
also foresee the course of cancer development by attribu-
ting a predictive factor to it. The stage of cancer depends
on the malignancy factor that is assigned during an FNA
examination. The determination of malignancy is essen-
tial when predicting the progression of cancer.

In the literature one can find approaches to breast
cancer classification (Wolberg and Mangasarian, 1990;
Wolberg, Street and Mangasarian, 1994; Street, 2000;
Walker and Albertelli, 1998; Walker, Albertelli, Titkov,
Kaltsatis and Seburyano, 1998; Nezafat, Tabesh, Akha-
van, Lucas and Zia, 1998; Schnorrenberg, Pattichis, Ky-
riacou and Schizas, 1994). All of these approaches are
concentrated on classifying FNA slides as benign or mali-
gnant. The system presented in this study classifies a ma-
lignancy stage of cancer that is nearly always malignant
due to the prescreening process before taking an FNA.

During examination, there are certain features in the
cytological slides that are taken into account. These fe-
atures are used to assign a grade to the diagnosed tissue.
One of the most popular and widely used schemes for
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grading cytological tissue is the Bloom-Richardson gra-
ding scheme (Bloom and Richardson, 1957). This system
was originally introduced for grading breast cancer histo-
logical pictures. The same scale can easily be used to as-
sess malignancy for cytological smears. According to this
system, there are three factors that are taken into account
while grading cancerous tissue. Each of the three factors
is evaluated on a three-point scale according to the follo-
wing description:

1. Degree of structural differentiation (SD): In histo-
pathological slides this is also described as tubule
formation, which reflects cell tendency to form tu-
bules. Since in cytological smears tubules are not
preserved, the following scoring for this factor is ba-
sed on the classification of cell groupings within a
smear, see, e.g., Fig. 1:

– One point: cells in the image are grouped regu-
larly.

– Two points: both grouped and single cells can
be found within the image.

– Three points: cells are spread irregularly.

2. Pleomorphism (P): This factor takes into conside-
ration differences in size, shape and staining of the
nuclei. This scoring is fairly straightforward because
with the growth of irregularity of the nuclei the pro-
gnosis becomes worse. Figure 2 shows an example
of these variations. We have the following scoring:

– One point: nuclei with uniform size, shape and
staining.

– Two points: moderate variations are found.

– Three points: very significant variations.

3. Frequency of hyperchromatic and mitotic figures
(HMF): Mitosis is a process in the cell life cycle
in which a mother cell is divided into two identical
cells. Figure 3 shows an example of mitosis. In the
center part one can notice a thin border between two
nuclei. A darker shade of staining can also be seen.
The main objective of this factor is to assess the num-
ber of mitotic figures in the viewed field. Several
fields of view on the same slide are taken into acco-
unt because this step is done in large magnification.
The more cases of mitosis found, the worse the pro-
gnosis. We have the following scoring:

– One point: occasional figures per field are fo-
und.

– Two points: smears with two or three figures in
most fields.

– Three points: more than three figures per field
are found.

Fig. 1. Cell groupings: (a) spread cells, (b) grouped cells.

Fig. 2. Size, shape and staining variations as shown by
the arrows: (a) G2 Ductal Carcinoma, (b) G3
Ductal Carcinoma.

All three factors are initialized to zero. According to the
BR scheme, the malignancy of the tumor is assigned a
grade that depends on the quantitative values of the above
factors and is determined by the following equation:

G = SD + P + HMF. (1)

The final grade is obtained by the summation of all
the awarded points for each factor described earlier. De-
pending on the value of G, the tumor is assigned one of
three grades:

– Grade I: Low malignancy.

– Grade II: Intermediate malignancy.

– Grade III: High malignancy.

These grades are determined according to the chart shown
in Fig. 4.

The evaluation of the malignancy of the tumor in-
dicates the likelihood that the case can undergo metasta-
sis at the time of or after the treatment. It also has an
impact on the patient’s type of treatment. Therefore, as-
signing a diagnosis to a case is a very difficult task and
is dependent on the experience of the pathologist. More
experienced pathologists that have seen more cases are
more reliable in their diagnosis. On the other hand, due
to overwork and fatigue, seeing more similar cases may
lead to the misclassification of malignancy. To address
this problem, we present an automated grading approach
that is able to evaluate and assign a grade to fine needle
aspiration biopsy tissue. To achieve this, we convert the
Bloom-Richardson (Bloom and Richardson, 1957) gra-
ding scheme into a classification problem. In our method,
the input FNA slice is first preprocessed and segmented
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Fig. 3. Example of a mitosis.

according to the algorithm described in Section 2.1. Ba-
sed on the segmentation results, features taken into consi-
deration are calculated (see Section 2.2) and used to train
the classifier. Here we classify FNA slides into one of the
three classes that represent a malignancy grade.

A detailed description of methods used in this study
can be found in Section 2 followed by a comparison of the
results obtained for the tested classifiers in Section 3.

2. Method

Classification is a task of assigning an item to a certain
category, called a class, based on the characteristic featu-
res of that item. This task in any classification system is
performed by a classifier that takes a feature vector as an
input and responds with a category to which the object be-
longs. A feature vector is a set of features extracted from
the input data. Here we make use of neural network clas-
sifiers that are a collection of neurons (systems with many
inputs and one output that are trained to fire, or not, for
particular input patterns) that are connected one to ano-
ther. Each connection is assigned an initial weight during
the training process which are then adjusted to give a pro-
per answer. The final decision is made based on the inte-
raction of weights and the feature vector.

Before we can extract features used for classification,
our input data need to be preprocessed and segmented.
Preprocessing is a task of removing unimportant informa-
tion from the data. Segmentation is an operation during
which we isolate the boundaries of the important parts of
data that are then used for feature extraction and classifi-
cation.

The classification framework presented here consi-
sts of three main blocks: preprocessing, feature extraction
and classification. Each of these blocks will be explained
in detail in the following subsections.

Points︷ ︸︸ ︷
3 4 5︸ ︷︷ ︸

Grade I

6 7︸︷︷︸
Grade II

8 9︸︷︷︸
Grade III

Fig. 4. Grade determination for the Bloom-Richardson grading
scheme (Bloom and Richardson, 1957).

Fig. 5. Graphical representation of convexity
(Zunic and Rosin, 2002).

Fig. 6. Graphical representation of eccentricity.

2.1. Preprocessing. Preprocessing is a complicated
process that has a tremendous impact on feature extrac-
tion and further on the classification error in any classifi-
cation system. In this work we make use of the automated
segmentation procedure that involves the level set method
proposed by Li et al. (2005). Compared with other me-
thods, such as the Hough transform (Ballard, 1981), le-
vel sets seem to be a better choice for segmentation be-
cause of their better time performance. In the literature
we can find approaches based on the generalized Hough
transform (Street, Wolberg and Mangasarian, 1993; Lee
and Street, 2000) that showed good segmentation results
due to the use of an elliptical shape to identify the location
and size of nuclei. These approaches are computationally
intensive and therefore time consuming (Jeleń, Krzyżak
and Fevens, 2006). On the other hand, level set me-
thods, which, also proved to be a powerful tool for medical
image segmentation (Li, Xu, Gui and Fox, 2005; Droske,
Meyer, Rumpf and K., 2001; Deng and Tsui, 2002; Tsai,
Yezzi, Wells, Tempany, Tucker, Fan, Grimson and Will-
sky, 2003; Li, Fevens, Krzyżak, Jin and Li, 2006), invo-
lve fewer computations than Hough transform approaches
and therefore achieve faster computational times.

Level sets were first described by Osher and Sethian
(1988) as a method for capturing moving fronts. In the
level set formulation, the segmentation problem is equiva-
lent to the computation of a surface Γ(t) that propagates in
time along its normal direction. The Γ surface is also cal-
led a propagating front, which, according to Osher and Se-
thian (1988), is embedded as a zero level of a time-varying
higher dimensional function φ(x, t):

Γ(t) =
{

x ∈ R
3 | φ(x, t) = 0

}
. (2)

An evolution equation for an interface Γ, where Γ is a clo-
sed curve in R

2, can be written in a general form (Sethian
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Segmentation results: (a), (c), (d) and (e) represent intermediate malignancy, while (b) and (f) correspond to high malignancy.

and Adalsteinsson, 1997)

∂φ

∂t
+ F |∇φ| = 0. (3)

The function φ describes a curve defined by
φ(x, t) = d, where d is a signed distance between x and
the surface Γ. If x is inside (resp. outside) of Γ, then d is
negative (resp. positive). The function F is a scalar speed
function that depends on image data and the function φ.

The main drawback of this procedure is that during
the evolution, φ can assume sharp or flat shapes. To over-
come this problem, φ is initialized as a signed distance
function before the evolution. Later, during the evolution,
it is periodically reshaped to be a signed distance function
(Li et al., 2005).

In our framework, we make use of variational level
sets (Li et al., 2005), which are more robust than those
originally proposed by Osher and Sethian because they

incorporate shape and region information into the level set
energy functions.

Li et al. (2005) proposed a modification of traditio-
nal variational level sets to overcome the problem of the
reshaping of function φ to be a distance function within
the evolution cycle. They proposed an evolution equation
of the form

∂φ

∂t
= −∂E

∂φ
, (4)

where ∂E/∂φ is the Gâteaux derivative of the energy func-
tion E and is represented by

∂E
∂φ

= −μ
[
Δφ − div(

∇φ

|∇φ| )
]

− λδ(φ)div
(
g
∇φ

|∇φ|
)
− νgδ(φ), (5)

where Δ is the Laplacian operator, ‘div’ is the divergence
operator and μ > 0 is a parameter controlling the effect of
penalizing the deviation of φ from the signed distance.
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(a)

(b)

(c)

(d)

(e)

Fig. 8. Histograms of feature values for intermediate (G2) and
high (G3) malignancy classes: (a) area, (b) perimeter, (c)
eccentricity, (d) convexity and (e) texture.

All level set methods start with an initial level set
function. The closer the initial level set function is to the
final segmentation, typically, the more likely the level set
method will quickly converge to the segmentation. There-
fore, to automate the segmentation process and start with
a good initial level set function, we make use of an ite-
rative clustering approach for automatic image threshol-
ding. This method was proposed by Riddler and Calvard
(1978). In principle, their method seeks a threshold T , re-
presented by a curve, within an image, which is restricted
to have a bimodal histogram, and the final threshold level

(a)

(b)

(c)

Fig. 9. Classification results: (a) intermediate malignancy misc-
lassified as high, (b) intermediate malignancy correctly
classified, (c) high malignancy correctly classified.

is calculated as
T =

μ1 + μ2

2
, (6)

where μ1 and μ2 are the means of the components separa-
ted by T .

Due to the staining process of FNA images, the red
channel provides best information about nuclear structu-
res out of the three RGB channels. During the staining
process nuclei stain with a shades purple and, when the
red channel is extracted, all the nuclear features are pre-
served while the background information is lost. This ob-
servation allows us to extract and threshold the image red
channel and then use it as an initial contour that is required
by level sets. For our classification framework we make
use of the level set proposition of (Li et al., 2005) with an
initial level set obtained by thresholding with the Ridler
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and Calvard method (Ridler and Calvard, 1978). Some of
the segmentation results are shown in Fig. 7.

2.2. Feature extraction. The features presented here
were chosen to correspond to the indicators used for the
Bloom-Richardson scheme. To precisely estimate the ne-
cessary features, only nuclear features, rather than cellular
features, are taken into consideration because only these
features are most discriminant and these are the features
graded by pathologists. Taking this into consideration, as
well, we use four shape-based features and one textural fe-
ature. The values obtained for these features yield a good
differentiation between cancerous and healthy cells. For
classification purposes we use the following features:

• Area: It is calculated as the sum of all pixels (x) of the
segmented nucleus(N ):

A =
∑
x∈N

1. (7)

• Perimeter: It is the length of the nuclear envelope cal-
culated as the length of a polygonal approximation of
the boundary (B):

p =
∑
x∈B

1. (8)

• Convexity: It is calculated as the ratio of the nucleus
area and its convex hull (Zunic and Rosin, 2002),
which is the minimal area of the convex polygon that
can contain the nucleus:

C(S) =
A

Area(CH(S))
, (9)

where S is a nucleus and CH(S) is its convex hull.
Convex shapes will yield a value of 1, while concave
shapes will have a value less than 1 (see Fig. 5).

• Eccentricity: It allows us to track how much a segmen-
ted nucleus differs from a healthy nucleus. Healthy
nuclei will assume circular shapes while cancerous
nuclei can assume arbitrary shapes. We calculate ec-
centricity as the ratio of the distance between the foci
of an ellipse, which has the same second moments
as the extracted nuclei, and the length of its major
axis. The values of this feature vary between 0 and
1. These are degenerate cases because a shape whose
eccentricity is 0 is actually a circle, while a shape
whose eccentricity is 1 is a line segment (see Fig. 6).

• Texture measure: It represents nuclear intensity chan-
ges in the image. We calculate this feature as an ave-
rage red channel value of a nucleus.

The first four features describe changes in the size
and shape of the cancer nuclei. The texture measure de-
scribes changes in the staining of the nuclei and is also
used as a feature for the third BR factor, i.e., the frequ-
ency of hyperchromatic and mitotic figures.

The classification stage of the system that uses these
features is described in the following subsection and the
obtained results are presented in Section 3.

2.3. Classification. Here we make use of neural net-
works based on support vector machines for classification
purposes. The classification process is based on trans-
forming a feature vector into a higher-dimensional space
where a separating hyperplane is constructed. During the
training process only those vectors that are closest to the
separating plane are used because they carry the most va-
luable information about classification. The SVMs used
in this study use the idea of large margin classifiers for
training that provides a good generalization of the pro-
blem. Large margin classifiers use kernel-based methods
for data separation.

The learning process uses the Adatron algorithm
(Friess, Cristianini and Campbell, 1998) that was exten-
ded by the substitution of the inner product of patterns in
the input space by the kernel function which yields

J(α) =
N∑

i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαjdidjG2σ2(xi − xj),

(10)
with the following constrains:

N∑
i=1

diαi = 0 αi ≥ 0, i = 1, . . . , N,

where xi, xj are feature vectors, di, dj ∈ {2, 3} are ma-
lignancy grades, αi are multipliers and G is a Gaussian
kernel with variance σ. We also have

g(x) = di

( N∑
j=1

djαjG2σ2(x − xj) + b
)
, (11)

αi(n + 1) ={
αi(n) + Δαi(n) if αi(n) + Δαi > 0,

αi(n) if αi(n) + Δαi ≤ 0,
(12)

M = min
i

g(x), (13)

where g is a decision boundary, αj is nonzero if and only
if xj is a support vector.

Training starts with a starting multiplier αi = 0.1 and
a terminating threshold t = 0.01. We calculate Δαi =
η[1 − M ] and perform an update according to Eqn. 12 as
long as M > t, η is a predefined learning rate.
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Table 1. Some of the calculated features along with pathologist grading.

Feature Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Area 591 434 617 184 218 320

Perimeter 80.5 70.0 105.0 40.8 48.0 56.2

Convexity 0.9420 0.9454 0.9045 0.9420 0.9561 0.9640

Eccentricity 0.7180 0.6761 0.6547 0.6920 0.6036 0.6000

Texture 116.7 124.7 120.3 98.0 123.8 108.2

BR Grade G3 G3 G3 G2 G2 G2

Table 2. Training and testing sets used for classification.

G2 G3

Training [%] Testing [%] Training [%] Testing [%]

set #1 50 50 30 70

set #2 50 50 50 50

set #3 50 50 70 30

set #4 50 50 90 10

set #5 30 70 50 50

set #6 70 30 50 50

Table 3. Error rates of the tested classifiers versus different training sets.

Classifier Set #1 Set #2 Set #3 Set #4 Set #5 Set #6 Average performance.

SOM 23.28% 21.91% 19.49% 22.43% 6.32% 23.75% 19.53%

MLP 23.18% 16.47 % 22.76 % 12.44 % 6.73 % 24.71 % 17.30 %

SVM 21.55 % 20.25 % 20.91 % 23.15 % 5.76 % 24.71 % 19.39 %

PCA 22.84 % 16.32 % 20.88 % 22.01 % 7.22 % 23.66 % 18.82 %

To classify FNA cytological tissue, we use an SVM
classifier that takes a five-element feature vector as an in-
put and responds with a two-element output vector (1, 0)T

for intermediate malignancy and (0, 1)T for high mali-
gnancy.

To compare the performance of the SVM classi-
fier, we make use of additional tree classifiers such as
the Multilayer Perceptron (MLP), Self-Organizing Maps
(SOM), Principal Components-based neural networks
(PCA). MLPs are simple feedforward neural networks
trained with the backpropagation method in a supervised
manner (Duda, Hart and Stork, 2000). SOM neural net-
works reduce the input space into representative features
according to a self-organizing process (Kohonen, 1990)
and are trained in an unsupervised manner. PCA neural
networks are a combination of supervised and unsupervi-
sed trained neural networks. PCA analysis finds solutions
in an unsupervised manner from input data and then su-
pervised MLPs are used for the classification of the com-
ponents (Oja, 1982).

3. Results

In this section we will demonstrate the performance of
the framework presented in Section 2 along with results
obtained for three other classifiers for comparison. The
classifiers were trained and tested with images from our
database of FNA slides. All of the images were stained
with the Haematoxylin and Eosin techniques (HE), which
yielded purple and black stains for nuclei, shades of pink
for cytoplasm and orange/red for red blood cells. All the
images were obtained with an Olympus BX 50 micro-
scope with a mounted CCD-IRIS camera connected to a
PC computer with the MultiScan Base 08.98 software.

Our database consists of 110 fine needle aspiration
biopsy images with known malignancy grades collected
at the Department of Pathology at the Medical University
of Wrocław. There are 44 images with high malignancy
(G3) and 66 images with intermediate malignancy (G2).
Benchmark grades of the images were assigned by a pa-
thologist and used for verification purposes during the te-
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sts. Since 2005 none of the performed biopsies has been
assigned a low malignancy grade, therefore all cases inc-
luded in the database are graded as intermediate or high
malignancy. Figure 7 shows an example of segmentation
that was used for feature extraction and Table 1 shows
some of the extracted features along with malignancy gra-
des assigned by an expert pathologist. Figure 8 shows hi-
stograms of features for both classes. From the table we
can see that features extracted by our framework reflect
the tendency of malignant cancer cells, where more ma-
lignant cases have larger nuclei and their border is more
deformed than those of healthy nuclei. Using such feature
vectors, we performed six different tests on our database
with different training and testing sets.

The training sets were chosen randomly to contain
different numbers of high and intermediate malignancy
cases. The remaining cases were used to form the test sets.
Table 2 shows the chosen training and testing sets that
were used in this study. Using these sets we trained and te-
sted the performance of four different classifiers. We took
into consideration four neural networks: a Multilayer Per-
ceptron (MLP), Self-Organizing Maps (SOM), Principal
Components (PCA) and Support Vector Machines (SVM),
cf. Section 2.3, and compared their performance using our
database.

Out of the four classifiers, the MLP showed the best
average performance with an average error rate of 17.3%.
Although the MLP showed the best average performance,
we can conclude that SVMs perform better achieving an
error rate of 5.76%, which is the lowest recorded error
rate. The highest recorded error rate for the test set #5
was 7.22% for the PCA. For the same training and te-
sting sets, the MLP performed significantly worse than the
SVM, achieving a 6.73% error rate.

Table 3 and Fig. 10 show the performance of all clas-
sifiers for each set taken into consideration in this study.
From Fig. 10 one can see that the set #5 achieved the best
performance, having the lowest error rates out of all te-
sting sets taken into consideration. In pattern recognition
and machine learning, Receiver Operating Characteristics
(ROC) are widely used for performance analysis and pro-
vide tools to select a possibly optimal classification mo-
del. An ROC shows that the SVM performed better that
any other tested classifier. When comparing the area un-
der the ROC curve (AUC), one can notice that for the
SVM the area is larger than for any other classifier ta-
ken into consideration in this study. According to ROC
analysis, we choose the classifier with the largest AUC
(Bradley, 1997). This is reflected in Fig. 11, which shows
comparative performance of all tested classifiers.

In Fig. 9 we present examples of the misclassified
case (Fig. 9(a)) and two correctly classified cases (Figs. 9
(b) and (c)).

Fig. 10. Error rates of the tested classifiers for each training set.

Fig. 11. ROC curves for all classifiers.

4. Conclusions

In Section 2 we presented a framework for breast cancer
malignancy grading based on an SVM classifier that was
able to classify malignancy and, based on that classifica-
tion, assign a malignancy grade to fine needle aspiration
biopsy slides.

In Section 2.1 the preprocessing part of the sys-
tem was described. From the previous work (Jeleń
et al., 2006), where the Hough transform approach to nuc-
lei classification was described, we can conclude that the
level set approach is a faster method for nuclei segmen-
tation and also provides a good nuclei representation (see
Fig. 7).

The performance of our system given in Section 3
shows that SVMs are able to classify malignancy with
very good results, achieving the highest accuracy of
94.24% for the training set #5, which includes only 30%
of G2 cases and 50% of G3 cases. Using only 30% of G2
cases introduces less redundant information, which sho-
wed a very good influence on classification results.

The 5.76% error rate is very promising and allows
us to further investigate this problem on feature extrac-
tion and preprocessing levels to achieve better classifica-
tion rates. Another possibility to lower the error would be
to increase the database to include more malignancy ca-
ses, which we are currently investigating. From a patho-
logist point of view, having a system that is able to assist
them during the decision making process is very useful
and helpful especially in situations where it is difficult to
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decide to which malignancy class a case should belong.
Such a system would help to make their diagnosis more
objective and precise.
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