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CIRCULAR OBJECT DETECTION USING A MODIFIED HOUGH TRANSFORM

MARCIN SMEREKA, IGNACY DULĘBA
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A practical modification of the Hough transform is proposed that improves the detection of low-contrast circular objects.
The original circular Hough transform and its numerous modifications are discussed and compared in order to improve
both the efficiency and computational complexity of the algorithm. Medical images are selected to verify the algorithm. In
particular, the algorithm is applied to localize cell nuclei of cytological smears visualized using a phase contrast microscope.
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1. Introduction

In many practical situations on the factory floor or in na-
ture sciences, a task of the detection of circular objects is
encountered. In technical reality, rolling elements are of
great usability, while in nature sciences, biological objects
are usually circular as they optimize the area-to-perimeter
ratio. Two problems are major concern here: either the
objects searched for are difficult to distinguish or the de-
tection is to be performed in real time. The first problem
is due to non-even illumination, low-contrast, noise or re-
stricted, partial visibility of objects. The second problem
is caused by technological requirements (on-line detec-
tion, classification and sorting). Real, industry-sourced
images of circular objects are frequently well structured
as a camera observes them in a particular place of a co-
nveyor belt. Moreover, in this case, an ideal shape of ob-
jects to be detected is known in advance. In this paper, a
slightly more involved task is considered when real ima-
ges are sourced from a microscope observing a medical
slide. Obviously, techniques developed for medical ima-
ges can be applied to images rooted in industry as well
with some domain-specific modifications.

The joint research conducted at the Wrocław Univer-
sity of Technology and in the Gynecology Clinic GMW
in Opole is aimed at the recognition and classification of
objects present in phase contrast (PhC) cytological ima-
ges. PhC microscopy is a modern and promising techno-
logy to visualize cellular structures of tissues and smears

(Glab et al., 2001). Contrary to the Papanicolau techni-
que (World Health Organization, 1988), commonly used
in medical procedures, structures are visualized without
staining and fixing. Therefore, the PhC technique is suita-
ble to support any immediate diagnosis technique (it can
be easily coupled with colposcopy). The most important
objects in Ph images are cell nuclei as they carry out va-
luable information on pre-cancerous cell stages. To con-
struct an effective algorithm of cell detection, as much as
possible a-priori knowlegde should be incorporated into
the algorithm. It is well known (Ross, 1967) that due to
hallo and shading-off effects Ph microscopy emphasizes
object edges. Thus, searching for nuclei can be replaced
by searching for their edges. Moreover, for most types of
cells their nucleus shape is circular or elliptic, so oval pat-
terns are of main interest. When a fixed magnification mi-
croscope is in use, only objects within a prescribed range
of radii are considered as potential cell nuclei.

Popular methods of detecting circular or elliptic sha-
pes from low-contrast noisy images are the Circular Ho-
ugh Transform (CHT) and Elliptical Hough Transform
(EHT). In this paper, practical modifications of the CHT
are presented in order to improve the sensitivity and speci-
ficity of the segmentation of medical microscopic images.
This paper is organized as follows: Section 2 presents an
overview of methods designed to detect oval shapes. Sec-
tion 3 describes the original and the modified CHT. In Sec-
tion 4, different versions of the CHT are compared expe-
rimentally. Final conclusions are collected in Section 5.
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Fig. 1. Idea of voting: (a) classical CHT, (b) CHT with multiple radii in one parameter space, (c) oriented CHT, (d) oriented CHT with
multpile radii in one parameter space.

2. Related methods

The detection of circular and elliptic shapes is a common
task in computer vision and image recognition. Some me-
thods rely on converting gray-scale images to binary ones
using edge detection techniques and calculating numeri-
cal shape descriptors. Peura and Ilvarinen (1997) studied
some simple shape descriptors. One of them, known as
elliptic variance, is especially useful for detecting ellip-
ses. Rosin proposed other descriptors (moment invariants,
Euclidean distances) that can be adapted to measure the el-
lipticity of shapes (Rosin, 2000). Fitzgibbon et al. (1999)
were the first to present a direct method for fitting ellipses
to a set of points in the least-squares sense. Their me-
thod is exploited in the segmentation algorithm presen-
ted in this work. Previous methods used a generic co-
nic fitting or an iterative approach to recover elliptic solu-
tions. A variety of ‘fit-to-data’ functions were discussed
in (Rosin, 1996).

Low level edge detection operators do not guaran-
tee continuous boundaries of objects. This makes many
image analysis tasks difficult, especially for noisy images.
The aim of contour grouping algorithms is to connect ed-
ges that are supposed to be sub-parts of the same object.
Contour grouping techniques were concentrated mainly

on detecting salient curves (Shashua and Ullman, 1991;
Zhu, Payne and Riordan, 1996). Their improvements fa-
vor closed ( Elder and Zucker, 1996) shapes rather than
long and smooth ones.

Methods based on active contours (snakes) are de-
signed to detect objects with boundaries not necessarily
defined by gradients (Chan and Vese, 2001). Their basic
idea is to reshape an initial curve prvided by any rough
segmentation technique, subject to constraints from a gi-
ven image. Initially, the current curve is set to the initial
one. In an iterative process it is moved according to an
appropriately designed energy function until eventually it
stops in a local optimum. Its final shape is assumed to de-
fine the object boundary. Ray et al. (2002) showed that
active contours can also be employed for tracking moving
objects. The energy function calculates the difference be-
tween object features and background features, so it is
useful for stained smears. In the case of Ph images, it
is difficult to define features that distinguish nuclei and a
cytoplasm clearly.

3. CHT and its variants

The Hough Transform (HT) has been recognized as a very
powerful tool for the detection of parametric curves in
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images ( Duda and Hart, 1972; Hough, 1962). It imple-
ments a voting process that maps image edge points into
manifolds in an appropriately defined parameter space.
Peaks in the space correspond to the parameters of detec-
ted curves. The Circle Hough Transform (CHT, Fig. 1(a))
is designed to find a circle characterized by a center point
(x0, y0) and a radius r, while the Ellipse Hough Trans-
form (EHT) finds elliptical formations coded by a center
(x0, y0), the orientation of the ellipse Θ and its semiaxes
a and b. HT algorithms used to detect circles and ellipses
are computationally more expensive than line detection al-
gorithms, due to the large number of parameters involved
in describing the shapes. To determine a circle, it is ne-
cessary to accumulate votes in the three-dimensional pa-
rameter space (x0, y0, r). When detecting an ellipse, the
search must be performed in the five-dimensional parame-
ter space (x0, y0,Θ, a, b).

To keep computational and memory requirements at
an acceptable level, a few improvements of the CTH al-
gorithm were proposed in the image-processing litera-
ture. Kimme et al. (1975) proposed to exploit an edge
orientation. Accordingly, the point of the image space
votes for two points in the parameter space, rather than
for a circle (Fig. 1(c)). Minor and Sklansky ( Gerig
and Klein, 1986; Minor and Sklansky, 1981) used the
same parameter space for different radii (Fig. 1(b) and
(d)). Some researchers investigated real-values of radii
and considered a complex parameter space to code their
values (Atherton and Kerbyson, 1993; Atherton and Ker-
byson, 1993). Guil and Zapata (1997) determined circles
and ellipses via consecutive determination of their mid-
point, orientation and axes. Hierarchical (coarse-to-fine)
search techniques successively narrow down the region
of interest in images. Consequently, the detailed detec-
tion is conducted only in those regions where the co-
arse detection succeeded (Atiquzzaman, 1999). Compe-
titive implementation of the HT (HT convolution filters,
recognition by invariance kernels) is an alternative appro-
ach to search in a parameter space (Atherton and Kerby-
son, 1999; McLaughlin and Alder, 1998). Some architec-
tures were proposed for parallel computing performed on
multiprocessors. They can substantially decrease the time
of detection without reducing its computational comple-
xity (Kavianpour et al., 1994).

In our approach, to prepare a phase contrast cytolo-
gical image for segmentation, an initial image was trans-
formed to an edge image (Fig. 2). Then, to detect a gra-
dient and an orientation for each point, the initial image
I1 was convolved with 3× 3 horizontal and vertical Sobel
operators. Consequently, horizontal and vertical gradient
images IX and IY were obtained. And, finally, to com-
pute the amplitude of an edge gradient and an orientation,
the images IX and IY were transformed into images IA

and Iφ expressed in polar coordinates:

I
(x,y)
A =

√
(I(x,y)

X )2 + (I(x,y)
Y )2,

I(x,y)
ϕ = atan2(I(x,y)

Y , I
(x,y)
X ). (1)

For clarity of presentation, in all formulas the normali-
zation transformation was ommited. To separate edges
from the background and eliminate very weak edges, thre-
sholding with a constant threshold was performed in the
image IA.

All the above-mentioned modifications of the CHT
were designed either to improve robustness or to simplify
computations. The CHT is more robust when hardly visi-
ble circles can be detected and noise in an image does not
influence the performance of the detection. In the case of
phase-contrast medical images, two main problems must
be addressed. The first results from object irregularity.
Therefore, the uncertainty of radii and orientations must
be incorporated into the voting process. The second one
is the fact that circular objects (for example, nuclei) can
be easily mixed with circular arcs that come from cell
walls or other irregular structures. In order to deal with
the first problem, a point in the image space can vote for
an annular sector in the parameter space, rather than for a

(a)

(b)

Fig. 2. Example of phase-contrast images: (a) initial image I1,
(b) edge amplitude image IA.
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single point (cf. Fig. 3(a)). The width of the annulus cor-
responds to the assumed uncertainty of radii (rmin, rmax)
while the angle of the sector α corresponds to the uncer-
tainty of orientation. Both the parameters can be adju-
sted experimentally and depend on the magnification of a
phase-contrast microscope.

(a)

(b)

Fig. 3. (a) Idea of voting with uncertainty handling, the radius
[rmin, rmax] and the orientation α, (b) voting from an arc
and a circle.

Another original modification of the CHT was de-
signed to distinguish circles from arcs. It should prefer
full circles, rather than circular arcs (Fig. 3(b)). Let us di-
vide the full angle into K equi length angular sectors and
define the three-dimensional parameter space (x0, y0, k)
where the parameters (x0, y0) correspond to the coordina-
tes of a midpoint while the third parameter is responsible
for the sector label. In each elementary voting process for
a fixed point, extra information, based on edge orienta-
tion, is used to calculate the angular sector the vote comes
from. Then accumulation is performed separately for each
sector. After all the votes were counted and the desribed
transformation H(x0, y0, k) was completed, the third di-
mension of the parameter space was flattened according
to the following formula:

H1(x, y) =
K∏

k=1

{
1 if H(x, y, k) > 0,

0 otherwise.
(2)

The value of 1 in the parameter space H1(x0, y0) was as-
signed to those points with a nonzero response in all K
sectors. Equation (2) allowed us to segment these places
in the parameter space which were likely the centers of

circles and to clear locations where the accummulation re-
sulted from arcs or noise. Finally, the H1 space contained
the centers of circles with the radii range (rmin, rmax). In
the case of cytological images it is very likely that these
circles are cell nuclei. Obviously, when K is relatively
large, the condition (2) should not be so restrictive and a
majority of votes coming from dispersed sectors are eno-
ugh to classify an object as a circle.

4. Experiments

The aim of the first test was to detect circular objects from
Fig. 2 assuming that the radius of a cell may vary between
15 and 25 pixels. The image was transformed using diffe-
rent versions of the CHT in order to search for three nuclei
visualized in the image. The classical CHT was unable to
perform the task as it works only with a constant value of
the radius.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Classical CHT for the following radii: (a) 17, (c) 20, (e)
23. The result of thresholding left panel images with the
best possible thresholds: b) 86, d) 64, f) 36, respectively.

In Figs. 4(a), (c) and (e), examples of the classical
CHT were presented for a fixed cell nucleous radius with
the values of 17, 20, 23 pixels. To facilitate visualization,
the parameter space was normalized to a gray scale and
all values are within the range of [0, 255]. In Figs. 4 (b),
(d) and (f), the results of the tresholding of the parameter
space are presented with a manually adjusted threshold
value which was assessed as best for segmentation. For
the radii 17 and 20 there was no threshold value capable
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of segmenting the three visible nuclei and, simulataneu-
sly, to neglect the background. For the radius 23 and the
threshold value between 31 and 36, the segmentation was
successful. It appears that the classical CHT is effective
only in the case when the values of the exact radius and
the threshold are known in advance. Unfortunately, it is
rather a rare case in real applications. In Fig. 5 another

(a)

(b)

Fig. 5. (a) CHT with one parameter space for radii between 15
and 25, (b) result of thresholding with the value of 100.

example of the CHT is presented, this time with one para-
meter space for all radii within the range of 15 to 25 pixels.
It corresponds to the idea of voting from Fig. 1(b). As can
be seen, also in this case there was no threshold value to
detect the three nuclei as the accumulation resulting from
the noise was much stronger than the accumulation from
circular structures. This type of CHT may be applied to
low-noise images only.

In the next experiment, the oriented CHT was exami-
ned, which corresponds to the idea visualized in Fig. 1(c).
The oriented CHT was carried out for the radii 17, 20 and
23 separately and the results are collected in Figs. 6(b),
(d) and (f). Thresholding in the parameter space brought
satisfactory results only for r = 23, where the threshold
values between 92 and 100 allowed us to segment the nuc-
lei. Still the results of segmentation were unsatisfactory,
this time due to irregularities of the radius and orienta-
tion, which were not handled properly by the fixed radius
oriented CHT.

Next, the performance of the oriented CHT with a
condensed, multi-radii parameter space was examined (its

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Oriented CHT for the radii: (a) 17, (c) 20, (e) 23. The
result of thresholding left panel images with the best po-
ssible thresholds: (b) 95, (d) 72, (f) 100, respectively.

idea is illustrated in Fig. 1(d)). The results are provided
in Fig. 7 for the parameter space covering radii between
15 and 25 pixels. This approach strenghtened midpoints
of nuclei, which was also confirmed by thresholding the
parameter space. For distant threshold values (between
44 and 77) all nuclei were determined and clearly differed
from the background. These results seemed to be promi-
sing.

Even better results of segmentation were observed
for the oriented CHT with uncertainty included both in
the radius and orientation (cf. Fig. 3(a)). The range of
threshold values resulting in a satisfactory segmentation
varied between 40 and 92, which was the widest range for
all previously tested methods. In Fig. 8 this version of the
CHT is illustrated.

The last experiment illustrated the original modifica-
tion introduced in this paper. In Fig. 9 the results of the
CHT with separate accumulation for K = 8, 16 and 32
sectors are presented. An appropriately adjusted number
of sectors K allows us to neglect the stage of threshol-
ding in the parameter space (thus, to choose the threshold
value). Locations where the accumulation took the value
of 0 for at least one sector were zeroed in the final image
(the white background in the figures). Due to the radius
and orientation uncertainty handling, the transform appe-
ared to be robust for irregularities and, additionally, resi-
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(a)

(b)

Fig. 7. (a) Oriented CHT with one parameter space for radii be-
tween 15 and 25, (b) thresholding the resulting image
with the value of 77.

(a)

(b)

Fig. 8. (a) Oriented CHT with radius in the range of [15, 25]
and uncertainty in the orientation α = 20◦, (b) result of
thresholding with the value of 92.

(a)

(b)

(c)

Fig. 9. Oriented CHT with uncertainty in the radius and orien-
tation r ∈ [15, 25], α = 20◦ with separate accumulation
for (a) K = 8, (b) K = 16, (c) K = 32 sectors.

stant to the presence of circular arcs in images. Further
experiments conducted on other cytological images pro-
ved that it was much easier to select a constant number
of sectors K, rather than the threshold value in the para-
meter space. This modification of the CHT method was
successively employed for the segmentation of cytologi-
cal images of uterine cervix in order to detect pathological
changes (Smereka, 2003).

The computational complexity of the CHT is propor-
tional to the image size and the accummulation area that
corresponds to each pixel. Processing a single 640 × 480
image took less than one second on an 1.8GHz Athlon
processor with a 512MB RAM for all examined variants
of the CHT.

A statistical comparison of the proposed method
with known modifications of the CHT was not performed
due to the impossibility of adjusting a common threshold
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value for a series of images. A clear advantage of the
new CHT method is the lack of the necessity to select the
threshold value at all.

5. Conclusions

An effective method for circular object recognition was
introduced. This approach was verified on microscopic
medical images to recognize nuclei of cells that come
from phase contrast microscopy. It is robust for irre-
gularities in detected objects and for disturbances like
noise or even lenghty circular arcs. Despite the three-
dimensional parameter space, the computational comple-
xity corresponds to a two-dimensional HT, because each
pixel of the image is assigned to one sector only. The
method designed for the detection of demanding (noisy,
not clearly distiguishable) circular objects can be applied,
after fixing some data with domain-specific values, to any
real industry images.
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