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FRACTIONAL POSITIVE CONTINUOUS-TIME LINEAR SYSTEMS
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A new class of fractional linear continuous-time linear systems described by state equations is introduced. The solution
to the state equations is derived using the Laplace transform. Necessary and sufficient conditions are established for the
internal and external positivity of fractional systems. Sufficient conditions are given for the reachability of fractional
positive systems.
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1. Introduction

In positive systems, inputs, state variables and outputs
take only nonnegative values. Examples of positive sys-
tems are industrial processes involving chemical reac-
tors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric
pollution models. A variety of models behaving as posi-
tive linear systems can be found in engineering, manage-
ment science, economics, social sciences, biology, medi-
cine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive systems
is more complicated and less advanced. An overview of
the state of the art in positive systems is given in the mo-
nographs (Farina and Rinaldi, 2000; Kaczorek, 2002). An
extension of positive systems are cone systems (Kaczorek,
2006; Kaczorek, 2007b).

The notion of cone systems was introduced in (Ka-
czorek, 2006). Roughly speaking, a cone system is a
system obtained from a positive one by substitution of
the positive orthants of states, inputs and outputs by su-
itable arbitrary cones. The realization problem for cone
systems was addressed in (Kaczorek, 2006; Kaczorek,
2007a). The positive controllability of dynamical sys-
tems was investigated in (Klamka, 2002) and the appro-
ximate constrained controllability of mechanical systems
in (Klamka, 2005).

The first definition of the fractional derivative was
introduced by Liouville and Riemann at the end of the
19-th century (Nishimoto, 1984; Miller and Ross, 1993;
Podlubny, 1999). This idea was used by engineers for
modelling various processes in the late 1960s (Vinagre
et al., 2002; Vinagre and Feliu, 2002; Zaborowsky and
Meylaov, 2001). Mathematical fundamentals of fractional
calculus are given in the monographs (Miller and Ross,
1993; Nishimoto, 1984; Podlubny, 1999; Oldham and
Spanier, 1974; Oustalup, 1993). Fractional-order con-
trollers were developed in (Oustalup, 1993; Podlubny et
al. 1997). A generalization of the Kalman filter for
fractional-order systems was proposed in (Sierociuk and
Dzieliński, 2006). Some others applications of fractional-
order systems can be found in (Engheta, 1997; Ostalczyk,
2000; Ostalczyk, 2004a; Ostalczyk, 2004b; Ferreira and
Machado, 2003; Moshrefi-Torbati and Hammond, 1998;
Reyes-Melo et al.,2004; Riu et al., 2001; Sjöberg and
Kari, 2002; Vinagre et al., 2002; Samko et al., 1993).
In (Ortigueira, 1997), a method for computation of the
impulse responses from the frequency responses for frac-
tional standard (nonpositive) discrete-time linear systems
was given. Fractional polynomials and nD systems were
investigated in (Gałkowski and Kummert, 2005).

In this paper a new class of fractional positive
continuous-time systems described by state equations will
be introduced, and necessary and sufficient conditions for
internal and external positivity will be established.
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The paper is organized as follows: In Section 2, using
the Caputo definition and Laplace transform, a solution to
the state equations of fractional systems is derived. The
necessary and sufficient conditions for the internal and
external positivity of fractional systems are established in
Section 3. In Section 4, the reachability of positive fractio-
nal systems is investigated. Concluding remarks are given
in Section 5.

To the best of the author’s knowledge, positive frac-
tional continuous-time linear systems have not been con-
sidered yet.

The following notation will be used in the paper: the
set of n × m real matrices will be denoted by R

n×m,
and R

n := R
n×1. The set of n × m real matrices

with nonnegative entries will be denoted by R
m×n
+ , and

R
n
+ := R

n×1
+ . A matrix A with nonnegative entries will

be also denoted by A ≥ 0. The set of nonnegative integers
will be denoted by Z+ and the n×n identity matrix by In.

2. Continuous-time fractional linear
systems and their solutions

In this paper, the following Caputo definition of the frac-
tional derivative will be used (Oustalup, 1993):

Dαf(t) =
dα

dtα
f(t)

=
1

Γ(n − α)

∫ t

0

f (n)(τ)
(t − τ)α+1−n

dτ,

n − 1 < α ≤ n ∈ N = {1, 2, . . . }, (1)

where α ∈ R is the order of the fractional derivative and

f (n)(τ) =
dnf(τ)

dτn
.

Consider the continuous-time fractional linear system de-
scribed by the state equations

Dαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (2a)

y(t) = Cx(t) + Du(t), (2b)

where x(t) ∈ R
N , u(t) ∈ R

m, y(t) ∈ R
p are respectively

the state, input and output vectors, and A ∈ R
N×N , B ∈

R
N×m, C ∈ R

p×N ,D ∈ R
p×m.

Theorem 1. The solution to (2a) is given by

x(t) = Φ0(t)x0 +

t∫
0

Φ(t − τ)Bu(τ) dτ,

x(0) = x0, (3)

where

Φ0(t) = Eα(Atα) =
∞∑

k=0

Aktkα

Γ(kα + 1)
, (4)

Φ(t) =
∞∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
, (5)

Eα(Atα) is the Mittage-Leffler matrix function, Γ(x) =
∞∫
0

e−ttx−1 dt is the gamma function.

Proof. Applying the Laplace transform to (2a) and taking
into account that

L[Dαx(t)] = sαX(s) − sα−1x0, (6a)

X(s) = L[x(t)] =

∞∫
0

x(t)e−st dt, (6b)

we obtain

X(s) = [INsα − A]−1(sα−1x0 + BU(s)), (7)

where U(s) = L[u(t)].
It is easy to check that

[INsα − A]−1 =
∞∑

k=0

Aks−(k+1)α (8)

since

[INsα − A]

( ∞∑
k=0

Aks−(k+1)α

)
= IN . (9)

Substitution of (8) into (7) yields

X(s)

=
∞∑

k=0

Aks−(kα+1)x0+
∞∑

k=0

Aks−(k+1)αBU(s). (10)

Applying the inverse Laplace transformation to (10) and
the convolution theorem, we obtain

x(t) = L−1[X(s)] =
∞∑

k=0

AkL−1[s−(kα+1)]x0

+
∞∑

k=0

AkL−1[s−(k+1)αBU(s)]

= Φ0(t)x0 +

t∫
0

Φ(t − τ)Bu(τ)d τ ,

(11)

where

Φ0(t) =
∞∑

k=0

AkL−1[s−(kα+1)] =
∞∑

k=0

Aktkα

Γ(kα + 1)
,

Φ(t) = L−1{[INsα − A]−1} =
∞∑

k=0

AkL−1[s−(k+1)α]

=
∞∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
.

�
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Note that the solution (3) of (2a) for Bu(t) = 0 and
x0 �= 0 is the same as that in (Vinagre et al., 2002), but
the second term of (3) is different.

Remark 1. From (4) and (5) for α = 1 we have

Φ0(t) = Φ(t) =
∞∑

k=0

(At)k

Γ(k + 1)
= eAt.

Remark 2. Note that the classical Cayley-Hamilton the-
orem yields that if

det[INsα − A]

= (sα)N + aN−1(sα)N−1 + · · · + a1s
α + a0,

(12)

then

AN + aN−1A
N−1 + · · · + a1A + a0I = 0. (13)

Example 1. Find the solution to (2a) for 0 < α ≤ 1 and

A =

[
0 1
0 0

]
, B =

[
0
1

]
, x0 =

[
1
1

]
,

u(t) = 1(t) =

{
1 for t > 0,

0 for t < 0.
(14)

Using (4) and (5), we obtain

Φ0(t) =
∞∑

k=0

Aktkα

Γ(kα + 1)
= I2 +

Atα

Γ(α + 1)
, (15a)

Φ(t) = I2
tα−1

Γ(α)
+ A

t2α−1

Γ(2α)
, (15b)

since

Ak =

[
0 1
0 0

]k

=

[
0 0
0 0

]
for k = 2, 3, · · ·

Substitution of (15) and u(t) = 1 into (3) yields

x(t) = Φ0(t)x0 +

t∫
0

Φ(t − τ)Bu(τ) dτ

= x0 +
Ax0t

α

Γ(α + 1)

+

t∫
0

(
B

Γ(α)
(t − τ)α−1 +

AB

Γ(2α)
(t − τ)2α−1

)
d τ

= x0 +
Ax0t

α

Γ(α + 1)
+

Btα

Γ(α + 1)
+

ABt2α

Γ(2α + 1)

=

⎡
⎢⎢⎢⎢⎣

1 +
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)

1 +
tα

Γ(α + 1)

⎤
⎥⎥⎥⎥⎦

(16)

since Γ(α + 1) = αΓ(α). �

3. Positivity of continuous-time fractional
systems

Definition 1. The fractional system (2) is called an inter-
nally positive fractional system if and only if x(t) ∈ R

N
+

and y(t) ∈ R
p
+ for t ≥ 0 for any initial conditions

x0 ∈ R
N
+ and all inputs u(t) ∈ R

m
+ , t ≥ 0.

A square real matrix A = [aij ] is called a Met-
zler matrix if its off-diagonal entries are nonnegative, i.e.
aij ≥ 0 for i �= j (Engheta, 1997; Kaczorek, 2002).

Lemma 1. Let A ∈ R
N×N and 0 < α ≤ 1. Then

Φ0(t) =
∞∑

k=0

Aktkα

Γ(kα + 1)
∈ R

N×N
+ for t ≥ 0 (17)

and

Φ(t) =
∞∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
∈ R

N×N
+ for t ≥ 0 (18)

if and only if A is a Metzler matrix.

Proof. (Necessity) From the expansions

Φ0(t) = IN +
A

Γ(α + 1)
+ · · · ,

Φ(t) = IN
t(α−1)

Γ(α)
+ A

t2α−1

Γ(2α)
+ · · ·

it follows that Φ0(t) ∈ R
N×N
+ and Φ(t) ∈ R

N×N
+ for

small t > 0 only if A is a Metzler matrix.

(Sufficiency) It is well known (Kaczorek, 2002) that

eAt ∈ R
N×N
+ for t ≥ 0 (19)

if and only if A is a Metzler matrix.
Using (17) we may write

Φ0(t) − eAtα

=
∞∑

k=0

(
(Atα)k

Γ(kα + 1)
− (Atα)k

k !

)

=
∞∑

k=0

k ! − Γ(kα + 1)
Γ(kα + 1)

(Atα)k

k !
≥ 0

for t ≥ 0 (20)

since k ! ≥ Γ(kα + 1) for 0 < α ≤ 1. Thus from (20)
and (19) we have Φ0(t) ≥ eAtα ≥ 0 for t ≥ 0. The proof
for (18) is similar. �

Theorem 2. The continuous-time fractional system (2) is
internally positive if and only if the matrix A is a Metzler
matrix and

B ∈ R
N×M
+ , C ∈ R

p×N
+ , D ∈ R

p×m
+ . (21)
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Proof. (Sufficiency) By Theorem 1 the solution of (2a)
has the form (3) and x(t) ∈ R

N
+ , t ≥ 0 if (18) holds and

A is a Metzler matrix since Φ0(t) ∈ R
N×N
+ , x0 ∈ R

m
+

and u(t) ∈ R
m
+ for t ≥ 0.

(Necessity) Let u(t) = 0, t ≥ 0 and x0 = ei (the i-th
column of the identity matrix IN ). The trajectory of the
system does not leave the orthant R

N
+ only if xα(0) =

Aei ≥ 0, which implies aij ≥ 0 for i �= j. The matrix
A has to be a Metzler matrix. For the same reason, for
x0 = 0 we have xa(0) = Bu(0) ≥ 0, which implies
B ∈ R

N×m
+ , since u(0) ∈ R

m
+ may be arbitrary. From

(2b) for u(t) = 0, t ≥ 0 we have y(0) = Cx0 ≥ 0 and
C ∈ R

p×N
+ , since x0 ∈ R

N
+ may be arbitrary. In a similar

way, assuming x0 = 0, we obtain y(0) = Du(0) ≥ 0 and
D ∈ R

p×m
+ , since u(0) ∈ R

m
+ may be arbitrary. �

Definition 2. The fractional system (2) is called exter-
nally positive if and only if y(t) ∈ R

p
+, t ≥ 0 for every

input u(t) ∈ R
m
+ , t ≥ 0 and x0 = 0.

The impulse response g(t) of a single-input single-
output system is called its output for the input equal to the
Dirac impulse δ(t) with zero initial conditions. Assuming
successively that only one input is equal to δ(t) and the
remaining inputs and initial conditions are zero, we may
define the impulse response matrix g(t) ∈ R

p×m of the
system (2).

The impulse response matrix of the system (2) is gi-
ven by

g(t) = CΦ(t)B + Dδ(t) for t ≥ 0. (22)

Substitution of (3) into (2b) for x0 = 0 yields

y(t) =

t∫
0

CΦ(t − τ)Bu(τ) dτ + Du(t), t ≥ 0. (23)

The formula (22) follows from (23) for u(t) = δ(t).

Theorem 3. The continuous-time fractional system (2)
is externally positive if and only if its impulse response
matrix (22) is nonnegative, i.e.,

g(t) ∈ R
p×m
+ for t ≥ 0. (24)

Proof. The necessity of the condition (24) follows imme-
diately from Definition 2. The output y(t) of the system
(2) with zero initial conditions for any input u(t) is given
by the formula

y(t) =

t∫
0

g(t − τ)u(τ) dτ , (25)

which can be obtained by the substitution of (22) into (23).
If the condition (24) is met and u(t) ∈ R

m
+ , then from (25)

we have y(t) ∈ R
p
+ for t ≥ 0. �

From (22) and (18) it follows that if A is a Metzler
matrix and (21) holds, then the impulse response matrix
(22) is nonnegative. Therefore, we have the following two
corollaries:

Corollary 1. The impulse response matrix (22) of the in-
ternally positive system (2) is nonnegative.

Corollary 2. Every continuous-time fractional internally
positive system (2) is also externally positive.

4. Reachability

Definition 3. The state xf ∈ R
N
+ of the fractional system

(2) is called reachable in time tf if there exist an input
u(t) ∈ R

m
+ , t ∈ [0, tf ] which steers the state of (2) from

the zero initial state x0 = 0 to xf . If every state xf ∈ R
N
+

is reachable in time tf , the system is called reachable in
time tf . If for every state xf ∈ R

N
+ there exists a time tf

such that the state is reachable in time tf , then the system
(2) is called reachable.

A real square matrix is called monomial if and only if
each its row and column contains only one positive entry
and the remaining entries are zero.

Theorem 4. The continuous-time fractional system (2) is
reachable in time tf if the matrix

R(tf ) =

t∫
0

Φ(τ)BBT ΦT (τ) dτ (26)

is a monomial matrix. The input which steers the state of
the system (2) from x0 = 0 to xf is given by

u(t) = BT ΦT (tf − t)R−1(tf )xf , (27)

where T denotes the transpose.

Proof. If the matrix (26) is a monomial matrix, then
R−1(tf ) ∈ R

N×N
+ and the input defined by (27) is a non-

negative vector, i.e. u(t) ∈ R
m
+ , t ≥ 0. Using (3) for

x0 = 0, t = tf , (27) and (26) we obtain

x(tf ) =

tf∫
0

Φ(tf − τ)BBT ΦT (tf − τ) dτR−1(tf )xf

=

tf∫
0

Φ(τ)BBT ΦT (τ) dτR−1(tf )xf = xf .

Therefore, the input (27) steers the state of the system (2)
from x0 = 0 to xf . �

Theorem 5. If A = diag[a1, a2, . . . , aN ] ∈ R
N×N
+ and

B ∈ R
N×m
+ is a monomial matrix, then the continuous-

time fractional system (2) is reachable.
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Proof. From (5) it follows that if the matrix A is dia-
gonal, then so is the matrix Φ(t) and the matrix Φ(t)B
is monomial since, by assumption, the matrix B is mono-
mial. From (26) written in the form

R(tf ) =

tf∫
0

Φ(τ)B[Φ(τ)B]T dτ (28)

it follows that the matrix (28) is monomial. Thus, by The-
orem 3, the fractional system is reachable. �

Example 2. We shall show that the fractional system (2)
with

A =

[
1 0
0 0

]
, B =

[
0 1
1 0

]
(29)

is reachable. Taking into account that

Ak =

[
1 0
0 0

]k

=

[
1 0
0 0

]
for k = 1, 2, . . .

and using (5), we obtain

Φ(t) =
∞∑

k=0

Akt(k+1)α−1

Γ[(k + 1)α]
=

[
Φ1(t) 0

0 Φ2(t)

]
, (30)

where

Φ1(t) =
∞∑

k=0

t(k+1)α−1

Γ[(k + 1)α]
, Φ2(t) =

tα−1

Γ(α)

and

Φ(t)B =

[
0 Φ1(t)

Φ2(t) 0

]
.

In this case, from (28) we have

R(tf ) =

tf∫
0

Φ(τ)B[Φ(τ)B]T dτ

=

tf∫
0

[
Φ2

1(τ) 0
0 Φ2

2(τ)

]
dτ . (31)

The matrix (31) is monomial and by Theorem 3 the frac-
tional system is reachable.

�

Remark 3. It is well known that the system

ẋ = Ax + Bu (32)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 a0

1 0 . . . 0 a1

0 1 . . . 0 a2

. . . . . . . . . . . . . . . . . . . .

0 . . . . . . 1 aN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(33)

is reachable for any values of the coefficients ai, i =
0, 1, . . . , N − 1, since the reachability matrix is

[B, AB, · · · , AN−1B] = IN . (34)

The system (32) is also reachable as a positive system if
ai ≥ 0, i = 0, 1, . . . , N − 2. The fractional system (2)
with (33) is reachable even for ai = 0, i = 0, 1, . . . , N −
1 if and only if there exist u(t) > 0, t ∈ [0, tf ] such that
the following condition is met:

xf =

tf∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(tf − τ)α−1

Γ(α)
(tf − τ)2α−1

Γ(2α)
. . . . . . . . . . . . .

(tf − τ)Nα−1

Γ(Nα)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(τ) dτ. (35)

The condition (35) follows from (3) for x0 = 0, (34) and
that for ai = 0, i = 0, 1, . . . , N − 1, we have Ak = 0 for
k = N, N + 1, . . . and

Φ(t) =
N−1∑
k=0

Akt(k+1)α−1

Γ[(k + 1)α]
.

This example shows that the reachability conditions
for the fractional positive system (2) are much stronger
than the conditions for the positive system (2).

5. Concluding remarks

A new class of fractional positive continuous-time sys-
tems was introduced. The solution to the state equation
describing the fractional systems was derived using the
Laplace transform (Theorem 1). The classical Cayley-
Hamilton theorem was extended to fractional systems
(Remark 2). Necessary and sufficient conditions were es-
tablished for the internal and external positivity of frac-
tional systems (Theorems 2 and 3). Sufficient conditions
for fractional positive systems are much stronger than for
classical positive systems. The deliberations were illustra-
ted by examples of fractional continuous-time linear sys-
tems. The deliberations presented for reachability can be
extended to the controllability of fractional continuous-
time systems.
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