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1. Importance of information

Even if a small number of symbols is distorted due to in-
formation noise in a given information block, such infor-
mation is rejected regardless of the fact that the remaining
symbols in this particular information block are correct.
Using detection codes we can only detect the occurrence
of a distortion. In order to assure the required level of
credibility of any information being sent, correcting codes
are applied. Correcting codes can detect errors and recon-
struct information that has been distorted provided that the
noise level does not exceed the correcting capabilities of
the code applied. The most commonly employed codes
provide the same level of protection for all the information
symbols in an information block. Such an approach as-
sumes that every symbol is of the same importance. As the
level of protection should be adequate to the importance
of the information, the correcting codes that provide the
level of protection required for the most important sym-
bols are in reality applied to the entire information block.
However, this solution is not always optimal.

We should now analyse the issue of controlling cer-
tain technological processes. The information about the
condition of all devices in a managed building is sent to a
decision centre (dispatcher). In many cases particular de-
cisions need to be taken, although the acquired informa-
tion is incomplete or even distorted. In order to avoid such
disadvantageous situations, we should guarantee appro-
priate protection against information distortion and pro-

vide a level of credibility which will be appropriate to the
importance of the information.

In turn we should now investigate the transfer of in-
formation in a railway traffic management system. If we
take the safety of railway traffic as the evaluation criterion
of information importance, then distorting the “stop” sig-
nal (red) into the “go” symbol (green) in a report channel
is less dangerous than distorting the “go” signal (green)
into the “stop” signal (red). As a result, in the first case
the system will force a train in a standstill to stop, whereas
in the second case the system will not take any actions to
stop a train set in motion. This example shows that infor-
mation can be of variable importance for a user, depending
on the evaluation criterion applied.

The interpretation of an amount of money to be paid
for a purchased product can be yet another example of
varied information significance in the information block.
The figures on the left-hand side are of lesser importance
(however, it does not mean that they are not important at
all) than the figures on the right-hand side; the longer the
sequence is, the more disappointed we are. The above
case proves that some symbols in the information block
are more important—that is why we should provide the
appropriate level of protection with reference to informa-
tion importance.

In fact, to increase the credibility of information,
one usually applies correcting codes. They protect each
symbol in the information block against the same num-
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ber of distortions. Such an approach to information secu-
rity means that the resources spent on the less important
pieces of information are the same as those spent on those
parts of information that have higher priority. Hence, the
engaged correcting codes protecting every symbol of the
information block against the same number of distortions
are not always optimal.

It is common knowledge that information has quan-
titative and qualitative values (Boyarinov and Katsman,
1981; Englund and Hansson, 1997; Masnik and Wolf,
1967). The quantity of information is a constant measure
but its importance as a qualitative measure may change.
Depending on the chosen criterion, the same piece of in-
formation can be of different importance. When evaluat-
ing each symbol within the information block, it is rea-
sonable to use correcting codes with unequal error protec-
tion codes (UEP codes). These codes provide protection
for the symbols or groups of symbols of higher priority
against the higher number of distortions and for the re-
maining symbols they provide a respectively lower level
of security. This means that the information received in
the transferred information block will be of different level
of credibility.

2. Theory of UEP codes

As some data of linear UEP codes will be necessary for
further analysis, their basic parameters are specified be-
low.

There exists a linear (n, k, d) code � in the field
GF (q). Ū = |u1 . . . uk| is a registration, and X̄(M) =
Ū G� is a codeword of �. If the codeword X̄(M) =
|x1 . . . xn| is distorted, while wt ē ≤ t, then we can de-
fine the error vector as

ē = X̄(O) − X̄(M) = |e1 . . . en| , (1)

where X̄ is the obtained distorted codeword.
If the decoding proceeds according to the optimal

rule consisting in the search of the nearest codeword (ac-
cording to Hamming’s metric) for the assumed vector
X̄(O), and if the i-th symbol in codeword X̄(M) is pro-
tected against errors of class wt Ēi whereas the other sym-
bols are protected against errors of class wt Ēj , where
wt Ēi > wt Ēj , then the xi-th symbol can be decoded cor-
rectly if wt Ei ≥ t > wtĒj and the error vector distorting
the codeword is e ∈ Ei > Ej , whereas the other symbols
protected against errors of class wt Ēj can be distorted. In
general, we can say that if Ēi is a set of distortion vectors,
the magnitude of which is not higher than ti, then the i-th
symbol of the codeword is protected against ti errors.

Most of the known decoding methods applying Ham-
ming’s minimum distance strategy do not use the potential
capabilities of the code (Boyarinov, 1980; MacWilliams
and Sloane, 1977). If a code provides protection for c1

symbols against t1 distortions, for c2 symbols against t2

distortions, whereas cz symbols are protected against tz
distortions, provided that t1 < t2 < · · · < tz , then we
can assume that the code protects the codeword against
t1 distortions. This means that if t < f ≤ tj , then the
uj-th symbol of codeword X̄ is protected against tj ≥ f
distortions when codeword X̄ is protected by the mini-
mum distance of dmin = 2t + 1 . All other symbols,
for which tx ≥ f , will be also correctly decoded in this
codeword. Hamming’s distance between any two code-
words with different i-th information symbols should not
be lower than 2fi + 1 and, as a result, the magnitude of
any codeword with a nonzero i-th symbol should not be
lower than 2fi + 1.

3. Methods of code generation

The structure of concatenating known linear systematic
codes mentioned below allows generating of new linear
UEP codes (Boyarinov, 1980).

Given rectangular matrices

Ā =

∥∥∥∥∥∥∥∥∥∥

a11 a12 · · · a1n1

a21 a22 · · · a2n1

...
...

. . .
...

ak11 ak12 · · · ak1n1

∥∥∥∥∥∥∥∥∥∥
(2)

and

B̄ =

∥∥∥∥∥∥∥∥∥∥

b11 b12 · · · b1n2

b21 b22 · · · b2n2

...
...

. . .
...

bk21 bk22 · · · bk2n2

∥∥∥∥∥∥∥∥∥∥
, (3)

we can form matrices Ā′ and B̄′ of dimensions n′
1 × k′

1

and n′
2 × k′

2, respectively, by removing a certain (none if
possible) number of rows and columns.

By appropriately concatenating Ā and B̄, one can
create rectangular matrices

C̄I =

∥∥∥∥∥
Ā 0̄B̄

0̄Ā B̄

∥∥∥∥∥ (4)

and

C̄ ′
I =

∥∥∥∥∥∥∥
0̄B̄

Ā B̄

0̄Ā

∥∥∥∥∥∥∥ (5)

of the following dimensions:

C̄I : nI × kI (nI = n′
1 + n′

2, kI = k′
2 + m, 0 ≤ m ≤ k′

1),
C̄ ′

I : n′
I × k′

I (n′
I = n′

1 + n′
2, k′

I = k′
1).

Here Ā′ is created from Ā after removing k1 − k2

rows while k1 ≥ k2.
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The following matrices will be generated after con-
catenating matrices Ā′ and B̄′:

C̄II =

∥∥∥∥∥
Ā′ 0̄B̄′

0̄Ā′ B̄′

∥∥∥∥∥ (6)

and

C̄ ′
II =

∥∥∥∥∥∥
Ā′

0̄B̄′ B̄′ 0̄Ā′

∥∥∥∥∥∥ (7)

of the following dimensions:

C̄II : nII × kII (nII = m + n′
2, kII = k′

1 + k′
2,

0 ≤ m ≤ n′
1),

C̄ ′
II : n′

II × k′
II (n′

II = n′
1, k′

II = k′
1 + k′

2).

The presented concatenations of matrices can be used
to generate new correcting codes. However, we shall fo-
cus on two special cases of concatenation of type I:

C̄ ′ =
∥∥ Ā B̄

∥∥ , (8)

C̄ ′′ =

∥∥∥∥∥ Ā
B̄

0̄B̄

∥∥∥∥∥ . (9)

It is evident that if �1 and �2 are linear (n1, k1, d1)
and (n2, k2, d2) codes in GF (q), given by generation
matrices Ḡ1 and Ḡ2, then the concatenation of type
Ḡ′ (concatenation of matrices Ḡ1 and Ḡ2) generates a
linear (n1 + n2, k2 = k1, d

′ = d1 + d2) code �′, while
the concatenation of type Ḡ

′′
will generate a linear

(n1 + n2, k1, d
′′ ≥ d1) code �

′′
. This results from the fact

that for code �
′′

the number of information symbols is
k1 > k2 . A particular switch of the rows in Ā can re-
sult in generating a code which will protect two groups of
symbols: the first group will be protected by Hamming’s
distance of d′ = d1 + d2 and the second one by d

′′ ≥ d1.
It is often possible to select a matrix Ḡ1 from code �1 (by
removing a number of rows and columns) such that the ob-
tained code �

′′
will have the minimum distance d

′′
> d1.

Let us assume that if some rows and columns are
switched, it is possible to select a subcode �̃1 of (n1, k̃1)
from code �1 whose dimensions are (n1, k1) with the min-
imum distance d̃1 > d1, where k̃1 = k1−k2. We will then
create a matrix of code �1 in such a way that its k̃1 rows
will be the base of subcode �̃1.

The matrix

Ḡ′ =

∥∥∥∥∥ Ḡ1
Ḡ2

0̄

∥∥∥∥∥ =

∥∥∥∥∥ Ĝ Ḡ2

G̃1 0̄

∥∥∥∥∥ (10)

generates a linear (n1 + n2, k1) code �
′′

with the mini-
mum distance of d

′′
= min (d1, d1 + d2), where matrices

G̃1,

Ḡ1 =

∥∥∥∥∥ Ĝ

G̃1

∥∥∥∥∥ ,

and Ḡ2 are code generation matrices for �̃1, �1 and �2,
respectively, whereas 0̄ is a zero matrix whose dimensions
are n2 × (k1 − k2).

4. Generation of asymptotically perfect
UEP codes

The necessary and sufficient conditions to generate lin-
ear codes are specified by Lemma 1 (Boyarinov, 1980)
and Theorem 2 (Kacman, 1980). Taking into account all
the necessary and sufficient conditions for code generation
and the above-described methods of matrix concatenation,
the optimal linear UEP code with two groups of symbols
protected against distortions f1 and f2, respectively, can
be obtained, where f1 > f2 (Kuriata, 1982).

The matrix concatenations

C̄III =
∥∥∥∥ Ā 0̄

0̄ B̄

∥∥∥∥ (11)

and

C̄ ′
III =

∥∥ Ā B̄
∥∥ , (12)

are analysed below, where the dimensions of matrices
Ā and B̄ are n1 × k1 and n2 × k2, respectively. An
(n1 + n2) × (k1 + k2) matrix of type C̄III generates an
� code with the minimum distance of d = min (d1, d2),
while an (n1 + n2) × max (k1, k2) matrix of type C̄ ′

III

generates a λ̄ code with the minimum distance of

(a) dmin = d1 + d2 if k1 = k2,

(b) dmin = d1 if k1 > k2 and d1 > d2,

(c) dmin = d2 if k1 < k2 and d1 < d2.

If the component codes Ā and B̄ protect the infor-
mation against the same number of distortions, then the
codes generated on the basis of the structures of type C̄III

or C̄ ′
III often have worse parameters than other codes

of the same length, number of information symbols, and
correcting capabilities (MacWilliams and Sloane, 1977).
The structures presented above enable the generation of
asymptotically perfect UEP codes.

Now UEP codes will be generated with the use of
the presented methods of matrix concatenation, while the
matrices of known codes will constitute component ma-
trices. Hamming’s code H with parameters n = 2N − 1,
k = 2N − 1−N , d = 3 and N ≥ 3 will be used as a base
code.

A matrix

C̄III =

∥∥∥∥∥ ḠH 0̄
0̄ H̄ ′

∥∥∥∥∥ (13)

will be created. The dimensions of the matrix are (2N +
N)×(2N+1+N−1), where ḠH is Hamming’s code gen-
eration matrix whose dimensions are k1 × (k1 + r) , H

′
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is Hamming’s code orthogonal matrix whose dimensions
are (k1 + r) × r.

After swapping some columns and rows, the follow-
ing matrix is created:

˜̄CIII =
∥∥∥∥ N̄ Ī

0̄ H̄T

∥∥∥∥ , (14)

where N̄ is a matrix of Hamming’s code control po-
sitions whose dimensions are N × (

2N − 1 − N
)
, I

is a matrix of Hamming’s code information positions

whose dimensions are N × N , H
T

is Hamming’s
code transposed control matrix whose dimensions are(
2N − 1 − N

) × N , 0̄ is a zero matrix whose dimensions
are

(
2N − 1

) × (
2N − N − 1

)
.

If Hamming’s extended code (n = 2N , k = 2N −1−
N , d = 4) is used in (14), then a code will be generated
as in Fig. 1. We have

� =

∥∥∥∥∥∥ 1̄
N̄R ĪR

0̄R N̄T
R

∥∥∥∥∥∥ , (15)

where 1̄ is a diagonal (all-ones) matrix whose di-
mensions are 2N × 2N , N̄R is a matrix of Ham-
ming’s extended code control symbols whose dimen-
sions are (N + 1) × (

2N − 1 − N
)
, IR is a ma-

trix of Hamming’s extended code information sym-

bols whose dimensions are (N + 1) × (N + 1), N
T

R

is a transposed control matrix of Hamming’s ex-
tended code redundant symbols whose dimensions are(
2N − 1 − N

) × (N + 1), 0̄R is a zero matrix whose di-
mensions are

(
2N − N − 1

) × (
2N − N − 1

)
.

1 000000000001111111100 000000

0 100000000001111000011 110000

0 010000000001100110011 001100

0 001000000001010101010 101010

0 000100000001111111111 111111

0 000010000000000000100 000001

0 000001000000000000100 000011

0 000000100000000000100 000101

0 000000010000000000100 000111

0 000000001000000000100 010001

0 000000000100000000100 010011

0 000000000010000000100 010101

   ℜ =   

0 000000000001000000100 010111

Fig. 1. � code matrix created according to (14) for
N = 4.

Two groups of symbols protected against various
numbers of distortions can be found in the codeword of the

code �: the first group is protected against f1 errors and
the second group against f2 errors, while f1 > f2. The
matrix (15) generates an � code which protects N + 1
against f1 distortions, whereas 2N − 1 symbols protect
against f2 distortions.

The parameters of the code � are presented below:

(a) length of the code sequence: n = 2N+1;

(b) correcting capability of symbols protected against f1

errors: d1 = 2N−1 + 2;

(c) correcting capability of symbols protected against f2

errors: d2 = 3;

(d) correcting capability of symbols protected against f2

errors: k1 = N + 1;

(e) number of symbols protected against f1 errors: k2 =
2N − 1 − N .

With n → ∞ the code is not trivial (Fig. 2), for

D =
d

n
=

d1

n
=

2N−1 + 2
2N+1

=
1
4

and

R =
k

n
=

(2N − N − 1) + (N + 1)
2N+1

=
1
2
.

 

D 

R 

1/4 

1/2 

Fig. 2. Asymptotic (n → ∞) bounds of the code �.

Matrix concatenation will now be using the follow-
ing rule:

C̄IV =

∣∣∣∣∣∣
H̄

0̄ H̄T

∣∣∣∣∣∣ =
∣∣∣∣ N̄ Ī

0̄ H̄T

∣∣∣∣ . (16)

The dimensions of the matrix C̄IV will be(
2N + N

) × 2N , and the component submatrices will be
as follows: H̄ is a matrix of Hamming’s extended code
parity tests (N + 1) × 2N , H̄T is a transposed matrix
of Hamming’s extended code parity tests 2N × (N + 1),
N̄ is a submatrix of control symbols in the matrix
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of Hamming’s extended code parity tests whose di-
mensions are

(
(N + 1) × (

2N − 1 − N
))

, I is a sub-
matrix of information symbols in the matrix of ex-
tended Hamming’s code parity tests whose dimensions are
(N + 1) × (N + 1), 0̄ is a zero matrix whose dimensions
are 2N × (

2N − N − 1
)
.

By means of the structure C̄IV a code can be created
as in Fig. 3. We have

� =

∥∥∥∥∥ 1̄ N̄ Ī

0̄ H̄T

∥∥∥∥∥ , (17)

where 1̄ is a diagonal (all-ones) matrix whose dimensions
are

(
2N + N + 1

) × (
2N + N + 1

)
.

 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 001 1 1 1 1 1 1 100 00 0 00 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 001 1 1 1 0 0 0 011 11 0 00 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 001 1 0 0 1 1 0 011 00 1 10 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 001 0 1 0 1 0 1 010 10 1 01 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 001 1 1 1 1 1 1 111 11 1 11 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 000 00 0 00 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 000 00 0 01 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 000 00 0 10 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 000 00 0 11 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 000 0 0 0 0 0 0 000 01 0 00 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 000 0 0 0 0 0 0 000 01 0 01 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 000 0 0 0 0 0 0 000 01 0 10 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 000 0 0 0 0 0 0 000 01 0 11 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 00 000 0 0 0 0 0 0 100 00 0 00 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00 000 0 0 0 0 0 0 100 00 0 01 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 00 000 0 0 0 0 0 0 100 00 0 10 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 00 000 0 0 0 0 0 0 100 00 0 11 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 000 0 0 0 0 0 0 100 01 0 00 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 000 0 0 0 0 0 0 100 01 0 01 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 100 0 0 0 0 0 0 100 01 0 10 1

   ℑ   = 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 010 0 0 0 0 0 0 100 01 0 11 1

Fig. 3. � code matrix created according to (17) for
N = 4.

According to the theory of codes, dmin =
min

(
wt

(
X̄(i)

))
. In the generated matrix the magnitude

of the (N + 2)-th row is wt Rp = 2. As a result, a code
� with the minimum Hamming distance dmin = 2 (sym-
bol) is a detection code. Once we remove the (N + 2)-th
row from this matrix (in this case the sixth), we will ob-
tain a new matrix of the code dmin = 3 (symbol) with the
minimum distance.

The matrix (17) obtained after the application of the
correction will have the following form:

ℵ =

∥∥∥∥∥∥ 1̄
N̄ Ī

0̄ H̄T
m

∥∥∥∥∥∥ , (18)

whose dimensions are
(
2N + N

) × (
2N+1 − 1

)
(Fig. 4),

where: N̄ is a submatrix of control symbols in the
matrix of Hamming’s extended code parity tests whose
dimensions are (N + 1) × (

2N − 1 − N
)
, I is a sub-

matrix of information symbols in the matrix of Ham-
ming’s extended code parity tests whose dimensions are
(N + 1) × (N + 1), 0̄ is a zero matrix whose dimensions
are

(
2N − 1

) × (
2N − N − 1

)
, H̄T

m is a transposed ma-
trix of extended code parity tests.

The code ℵ has the following parameters:

(f) length of the code sequence: n = 2N + 2N + N =
2N+1 + N,

(g) correcting capability of symbols protected against f1

errors: d1 = 2N−1 + 2,

(h) correcting capability of symbols protected against f2

errors: d2 = 3,

(i) number of symbols protected against f1 errors: k1 =
N + 1;

(j) number of symbols protected against f2 errors: k2 =
2N − 1.

 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 11 1 00 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 00 0 11 1 1 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 10 0 11 0 0 1 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 01 0 10 1 0 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 11 1 11 1 1 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 0 0 0 1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 00 0 00 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00 1 00 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 1 00 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 1 00 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 1 00 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 1 00 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 00 1 00 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 00 1 00 0 1 0 1 0 1

ℵ  = 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 1 00 0 1 0 1 1 1

Fig. 4. ℵ matrix after removing selected columns and
rows created according to (18).

Asymptotic (n → ∞) parameters of the code ℵ are

D =
d

n
=

d1

n
=

2N−1 + 2
2N+1

=
1
4
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and

R =
k

n
=

(2N − N − 1) + (N + 1)
2N+1

=
1
2
.

This code reaches Hamming’s upper bound and
Hilbert’s lower bound (Kuriata, 1982).

5. Bounds of UEP codes

Theorem 1. There exists a Ḡ1 generation matrix of a
(2N − 1, 2N − N − 1, 3) Hamming code (N ≥ 3). If an
N × (

2N − 1
)

matrix Ḡ2 exists, the matrix∥∥∥∥∥ Ḡ1

Ḡ2

∥∥∥∥∥
generates the space of all binary (2N − 1)-vectors and a
(2N −1, N ) matrix S̄ with the minimum distance of 2N−1,
then the matrix ∥∥∥∥∥ Ḡ1 0̄

Ḡ2 S̄

∥∥∥∥∥
generates a linear code with the following parameters:

(2N+1+N−2, 2N +N−1, 2N−1, . . . , 2N−1︸ ︷︷ ︸
N

, 3, . . . , 3︸ ︷︷ ︸
2N−1

)

being at Hamming’s upper bound.

Proof. That the code generated by the matrix∥∥∥∥∥ Ḡ1 0̄
Ḡ2 S̄

∥∥∥∥∥
is the code

(2N+1+N−2, 2N +N−1, 2N−1, . . . , 2N−1︸ ︷︷ ︸
N

, 3, . . . , 3︸ ︷︷ ︸
2N−1

)

results directly from the structure of Ḡ
′′

(10).
A new matrix

C =

∥∥∥∥∥ 1̄ Ā Ī

0̄ ḠH′

∥∥∥∥∥
generates a code with the parameters specified in Theo-
rem 1.

The UEP codes presented below asymptotically
reach Hilbert’s bound

R1 (R2, δ1, δ2)

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

β (1 − H [(δ1 − δ2) /β])
⇐ 2 (δ1 − δ2) ≤ β ≤ (δ1 − δ2) δ1,

β−H (δ1)+(1−β) H

(
δ2

1−β

)

⇐ (δ1−δ2)
δ1

< β ≤ 1−2δ2,

(19)

where

R2 = (1 − β)
[
1 − H

(
δ2

1 − β

)]
, δ = lim

n→∞

(
d

n

)
,

0 ≤ β ≤ 1 − 2δ2,

and also Griesmer’s bound

2N+1 + N − 2 =
N−1∑
i=0

⌈
2N−1

2i

⌉
+

2N−2∑
i=N

⌈
3
2i

⌉
. (20)

A conclusion can be drawn that having a specified
length of any linear (n, k, d1, d2, . . . , dk) code, the depen-
dence

n ≥
k∑

j=1

dj

2k−j
(21)

can be adopted as an analog model of Plotkin’s bound for
UEP codes (Kuriata, 1982).

The types of matrix concatenations discussed in the
article enable the generation of codes that reach both
Hilbert’s lower bound and Hamming’s upper bound (Kuri-
ata, 1982). The asymptotic bounds of the analysed codes
are presented in Fig. 5.

The bounds of codes protecting all symbols in the
codeword against the same number of distortions are de-
fined by the following dependences: Hamming’s upper
bound

t∑
i−o

Ci
n(q − 1)i ≤ qr,

and Hilbert’s lower bound

qr ≥
d−1∑
i−o

Ci
n(q − 1)i.

 

Fig. 5. Asymptotic bounds for UEP codes
(n → ∞, δ2 = 0) (Kuriata, 1982).
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Graphically such bounds are usually presented on
graphs of coordinates of R = k/n and D = d/n.

In the case of UEP codes a graph of bounds cannot
be made in a similar way because here the groups of sym-
bols are protected against various numbers of distortions.
Hence, we can determine bounds in the s-dimensional
space, where s is the number of symbol groups protected
against fi distortions.

Figure 6 presents the graph of bounds for a family
of codes generated by means of (16) with the following
parameters:

ℵ
{

n = 2N+1 + N, k1 = N + 1, k2 = 2N − 1,

d1 = 2N−1 + 2, d2 = 3
}

.

According to (17) and (18), the generated codes can
be taken as broadband codes (Kower, 1974), in which
R2 = f (R1) (Fig. 6).

Fig. 6. Analog model of Hilbert’s bound for UEP codes
(R2 = f (R1)).

6. Conclusion

The constructive methods of code generation presented in
this paper enable the generation of codes with two groups
of symbols being differently protected. They are called

“floating protection codes” (Kuriata, 1982). It is thus
justified to use UEP codes in order to protect information
of variable importance, for we can significantly shorten
the length of the code block while maintaining the ap-
propriate level of credibility for top-priority information.
Such a code block would be longer if we used codes which
protect the entire information block against the same num-
ber of distortion. Hence, it has been established that the
bounds for the asymptotically perfect UEP codes (Hem-
ming’s upper bound and Hilbert’s lower bound) coincide.
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