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We consider a system which is assumed to be affected by an expanding disturbance which occurs at the initial time. The
compensation of the disturbance is accomplished by extending the concept of remediability to a class of nonlinear systems.
The results are implemented and illustrated with a nonlinear distributed model.
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1. Introduction

Systems analysis concerns a set of concepts which lead to
a better understanding of systems and their evolution. This
allows more convenient controls to achieve any objective.
In the case of distributed parameter systems, in which the
space variable plays an important role, there is a wide lite-
rature on controllability, observability, stability, detectabi-
lity, compensation, etc., see (Afifi ef al., 2002; Bernoussi
and El Jai, 2000; Bernoussi and Amharref, 2003; El Jai
and Kassara, 1994; El Jai et al., 1995; El Jai, 2002; El
Jai, 2004; Kassara and El Jai, 1983) and the references
therein. Moreover, the analysis itself has to deal not with
the whole domain, but with its specific subdomains of in-
terest. Thus, since the beginning of the 1990s, motivated
by practical applications, Afifi, El Jai, and Zerrik (2008)
have introduced and studied the so-called regional analy-
sis. Generally speaking, such analysis aims to analyze or
control a system in which an objective function is defined
only on a prescribed subregion. Therefore the system dy-
namics are defined in the whole of the domain €2, whilst
the objective is focused on a given subregion o, where
o C €. This approach gave rise to a new research field.
The usual concepts were reconsidered from another
point of view in the case of linear systems. In the case
of controllability, if we consider the spatial evolution of
a distributed parameter system in a domain 2 C R" and
in its subdomain o C 2, given a regional desired state in
o, the regional controllability (or o-controllability) consi-

sts in steering the system from its initial state to a desired
state, while the objective is focused on o. This notion
is useful since it has been shown that there exist systems
which are not controllable but which are regionally con-
trollable. Moreover, the transfer of a system from its ini-
tial state to a desired final state requires a lower cost (Afifi
et al., 2008). In addition, as the regional analysis is de-
veloped, its ability to deal with real complex systems is
extended and becomes deeper.

In 1994, applications to environmental systems led
to study the case where the properties of the region un-
der consideration may evolve in time. It may increase
or decrease in a sense to be made precise. In some bio-
geographic processes, regions where a given property is
satisfied such as a certain biomass density (in vegeta-
tion dynamics), fire expansion, deforestation, immuno-
logy, etc. can be identified. The spreadability concept,
which describes the expansion process, was then born.
Given a property P, we say that a system (S) is P-
spreadable if the subregions (w;)ie; of ) satisfying
the property P are increasing in time (EIl Jai and Kas-
sara, 1994). The usefulness of the spreadability concept
justifies the increasing interest in it, and this turns out to
necessitate additional mathematical investigations. A con-
cept which naturally follows from the spreadability notion
is that of spray control. That is a control which makes
the system spreadable (Bernoussi and El Jai, 2000; Ber-
noussi et al., 2001; El Jai and Kassara, 1994). It was
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made meaningful and then explored by introducing the
idea of spread.

As it is almost impossible to stop the spreadability of
some processes such as epidemic or desert expansion, one
could be interested in the remediability of a given subdo-
main. Specifically, given an expansion phenomenon P,
such as an epidemic or a fire, is a given zone ¢ vulnera-
ble? That is, vulnerable in the sense that it will be affected
by the expansion of the property P (Bernoussi, 2007).

When a system is subjected to disturbances, then one
of the objectives becomes to find controls which compen-
sate the effect of the disturbance. In the case of a distribu-
ted parameter system, the disturbance can be located in a
given subregion w of the space domain 2 while the con-
trol is active in another subregion D of {2. The problem
of finding a control in D which would compensate the ef-
fects of the disturbance located in w is the space compen-
sation problem, i.e., regional remediability. The notion of
remediability was introduced in the case of linear systems
for both finite and infinite time horizons. Weak and exact
regional asymptotic remediability and regionally asymp-
totic efficient actuators were introduced as well. Various
characterizations and an application were investigated and
reported in (Afifi et al., 2008; Afifi et al., 2002).

Several other works in this area were devoted to
the study of controllability (Doubova et al., 2006) and
disturbance compensation (Christofides, 2001) in nonli-
near distributed systems. Thus, under some hypothesis
on the system dynamics and the nonlinearity term, the
problem of control is studied using global Carleman es-
timates, parabolic regularity and the fixed point method
when the nonlinear term involves the state and the gradient
(Doubova et al., 2006). Moreover, an approach using di-
rect space discretization (Christofides, 1998; Christofides
and Daoutidis, 1998; Christofides, 2001) is given for the
second problem. In this paper, the problem considered is
different in the sense that it consists in an extension of the
regionally remediability concept to a class of nonlinear di-
stributed parameter systems in the case where the system
is subject to an initial expanding disturbance, i.e., a distur-
bance that happens in w at the initial time only, as shown
in the left part of Fig. 1(a) and will spread over the do-
main and may affect a part of the domain (the right part of
Fig. 1(b)) or the whole domain.

Consequently, given a subregion o, the disturbance
effect can reach o, see Fig. 1(b). In this paper we consider
an extension of remediability which neutralizes the effect
of the disturbance on o, i.e., the disturbance effect changes
from Fig.[[(b) to Fig.[2

The paper is organized as follows: The next section
is devoted to the problem statement of the regional reme-
diability of a class of nonlinear systems. We recall and
extend the remediability definition to the case of nonlinear
systems. In Section 3, we consider some mathematical re-
sults which lead to a new problem statement that is more

(b)

Fig. 1. Initial disturbance in w (a) and disturbance
expansion in €2 (b).

useful for implementation. Can we find a control which
makes it possible to compensate such a disturbance at a
certain time 7'? This is considered in Section 4, where
we show how the problem may be solved using pseudo
inverse techniques and the fixed point theorem. In the last
section, we give an algorithmic scheme and illustrate the
developed approach by a one-dimensional example.

Let €2 be an open bounded domain of R™ and I =
10, T'[ a time interval. Consider a distributed system whose
state Z(x,t) satisfies a nonlinear equation in 2 x I, and
the initial state Z(x,0) = zo(z) is subject to a space di-

2
(S

f

Fig. 2. Remediability of the region o.
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sturbance f defined on §2,

[ E®) = FE@) + Bu(), 0<t<T,
(5) (H
Z(0) = (20 + f) € D(F),

where Z € LP(0,T; Z) for p €]1, +oo[, u € L*(0,T;U),
feF, Be LU;Z),and F : X = D(F) — Zis
a nonlinear operator with the domain X being a Banach
space dense in Z and satisfying the assumptions

2. FeClin ffor f € D(F).

The state space Z, the control space U, and the di-
sturbance space F are assumed to be separable Hilbert
spaces, and F C D(F").

Let o be a fixed subregion in 2. Denote by X, the
restriction to o and consider the set of restriction states to
o given by

Zy = {xoz(t) = 2(t)| : 2(t) € Z}, Vtel. (2

It is clear that Z,, is a subspace of the state space Z.
Usually, Z = L?(12), and then Z, = L?(o). The adjoint
operator of x, is defined by

Xo 1 Ze — 2

such that
z in o,

Xp? = (3)
0 elsewhere.

The system () is augmented by the output function

(E) 97(t) = Cxoxo2(t),

where C' € L(Z;Y) and Y is a separable Hilbert space
(the observation space).

We assume that the disturbance f is spreadable from
w and may spread to the whole domain €2. Thus the spre-
adability effect can reach the subregion o, which is then
said to be f-vulnerable.

Remark 1. In (), the disturbance function f has a space
support which can be, in practical applications, a part w of
the domain €2 (w C ). It can also be written in the form
f(z) = x_g where g is defined in €2, so the disturbance
f can be considered as defined in all {2, assuming that it
vanishes in Q\w. This initial state in its form () is more
convenient for the spreadability description. In both cases
the whole domain §2 will be affected by the effect of the
disturbance f.

2. Problem statement

In this paper we explore the possibility of finding a control
u yielding a regional compensation of the space distur-
bance f at some time 7', in the sense that the system out-
put becomes, at time 7', equal to the output of a nondistur-
bed system. Under the effect of the space disturbance f,
which affects the initial state, the disturbed system (f # 0
and u = 0) becomes P-spreadable where P is a property
generated by the disturbance f. Consequently, the fixed
subregion ¢ can be vulnerable (i.e., likely to be reached
by the property P) (Bernoussi and Amharref, 2003). How
can we determine a control allowing us to neutralize the
spreadability of the disturbed system on ¢ at the final time
T'? This is the principle of the regional remediability pro-
blem. _

We assume that the system (.5) has a unique solution
denoted by Z ,, and we adopt the following notation:

Zr.u  solution of (S),
Zpo solution of (S) whenw = 0 and f # 0,

Zo,0 solution of (S) whenw = 0and f =0,

“4)

gjiu output (E),

?j%o output (E) when v = 0 and f # 0,

Y§o output (E) whenu = 0and f = 0.

Thus zy, ¢ is the solution to the disturbed and autonomous
system, i.e., f # 0 and u = 0, while 37;{0 is the associated
output. Given the property P, consider the sets

W0t = {x cN: ng’o(x,t)}, 5)

where wy o, denotes the set of points x € ) where the
state of the disturbed system Zz ¢ satisfied the property P
at the time t. Let u(E) = [} d signify the Lebesgue
measure. We recall the following definition (Qaraai et al.,
2008):

Definition 1.

1. We say that the disturbance f is spreadable (respec-
tively, A-spreadable) if the family (wy )i is in-
creasing in the inclusion sense,

wror CWros, VEsEL t<s,

(resp. in the sense of measure,

wwyroe/wyros) < p(wypos/wrot),

Vt,s eI, t<s).

2. The subregion o is said to be f-vulnerable if there
exists ¢ € [0, 7] such that

o Nwy ot =+ 0.

6amcs
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Note that the vulnerability definition is based on the

interior & instead of o because the boundary I', can be a
natural barrier which can stop the spreadability of f.
Thus for the initial state zp € X and the disturbance

f € F, using the output (E) and Definition Il we consider
the following definitions:

Definition 2. If the subregion o is f-vulnerable, then:

1. The system (.5) is said to be exactly f-o-remediable if

Ju € L*(0,T;U) such that 7 ,(T) = 55 (7).

2. The system (.9) is said to be weakly f-o-remediable if

Ju € L*(0,T;U) such that ||57,,(T) — 45.o(T)|ly <e.

In the above, Case 1 concerns the case where the con-
trol u compensates in o the effect of the disturbance f at
time 71". In Case 2 the control allows the weak neutrali-
zation of the effect of f in the subregion with a tolerance
margin €.

From the above definition we can state the remedia-
bility problem as follows:

) Find v € L?(0,T;U) such that
Y.u(T) = y50(T).

The solution of (P) is equivalent to finding a control u

which makes the system (.5) (and then the output (E))

normal in o at time 7. In other words, this is as if we

had y§ o = Cx}Xo20,0, Where zg o is the solution of the

following uncontrolled nondisturbed system:

{ ) =F3(t), 0<t<T,

(6)

Problem (P) is not easy to solve. Indeed, on the one
hand the solution Zf, of the system (S) is not known.
On the other hand, this solution does not take into account
explicitly the control « and the disturbance f, for applying
the remediability results developed in (Afifi et al., 2002).
To overcome these difﬁctgties, a linearization of the sys-
tem (.5) and the output (E) will be considered in the ne-
ighborhood of the disturbance f. Therefore we use a se-
migroup approach (Curtain and Pritchard, 1978; Dautray
and Lions, 1984; Pazy, 1983), pseudo inverse techniques
(El Jai et al., 1986) and the fixed-point theorem for explo-
ring the solution of Problem (P).

Firstly, considering the variable change z(t) =
Z(t) — f, the system () becomes

0<t<T,

{ i(t) = F(z(t) + f) + Bu(t), )

Z(O) = Z0-

Using Assumption 2 on F' and linearizing around f,
we obtain

F(z(t) + ) = Ff + F'(f)z(t) + Ny 2(t), (8
which leads to the linearized system

Z(t) = Apz(t) + Nygz(t) + Ff + Bu(t),
(S) 0<t<T,
2(0) = 2o,

where Ay = F'(f) € L(Z) is the linear part of the dyna-
mic F' with a domain D(Ay) densely included in the state
space Z, and Ny: z(t) € X — Nyz(t) € Z denotes the
nonlinear term defined only in a Banach space X with an
image in Z such that X C Z. Notice that if N; = 0, then
F=Ajand X = Z.

In the vicinity of f the output function (E) becomes

y7(t) = Cxoxo2(t) = Oxoxo (2(t) + f).

Let y7(t) = y7(t) — Cx%xof. Then, since Cxkx, is
linear, the output becomes

(E) y7(t) = Cxyxoz(t).

Finally, in the neighborhood of the disturbance f, we
obtain the following new formulation of the remediability
problem:

Find u € L%(0,T;U) such that
(P)
Y5..(T) = y§o(T) — Cxoxo f-

Remark 2. At this juncture, the following conclusions
can be drawn:

1. Problem (P) is equivalent to (P) in the neighbor-
hood of the disturbance f.

2. In the case when the system () evolves on a time
interval [0, T*], where T* > T, at time T the distur-
bance is neutralized, and therefore the system will
evolve normally on [T, T*] since the effect of the di-
sturbance has been removed.

3. Observe that in the case where o = (2, Problem (P)
is a global remediability problem. It consists in com-
pensating the disturbance f in the whole domain €2
because the domain is necessarily f-vulnerable.

4. 1If the subregion o is not f-vulnerable, then we do not
have to remedy f.

The solution of Problem (P) needs an explicit for-
mulation in f, u and z; .. This will be considered in the
next section.
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3. Regional remediability formulation

In all what follows, we denote by || - ||, = || - | L»(0,7:x)>
for p €]1,+00[ . Suppose that the linear operator Ay is
closed with a domain densely included in Z and generates
a strongly continuous semigroup (Sy(t));>o which satis-
fies the assumption

(A1) 3¢, € L9(0,T) with 1 + 1_ 1
q D
155 ()]l ez < 01 (1), ¥t € 0,7].

Moreover, let the nonlinear operator Ny : X — Z be well
defined and satisfy the following assumption:

1. N4(0) =0,
2. [[Nfz1(t) = Nyza(t)| 2
(A2) < K (lzllps [1z2llp) 122 () — 22(2)[|x,
V21, 20 € LP(0,T;X); K :
R2 — R, : lim K(60,;05) = 0.
i o i 00 O1582)
For a given a €]0, 1] we set
k = sup K(6;0),
6<a
K = sup K(61;62),
[[(01:62)] g2 <a
2
K* = max(k, K). )

Under these assumptions, and with some others that will
be indicated below, we show that the unique solution to
the system (.5) can be written in the form

t
alt) = SO0+ [ S5(t = )Nyz7(s)ds
0
t
+/ S¢(t—s)Ffds
0
t
+ / S¢(t — s)Bu(s)ds (10)
0
or, equivalently,
2pault) = Sp(0)z0 + Hypzpu + Hpaf + Hpgu, (1)
where the three operators have images in Z and act re-
spectively on the state, disturbance and control variables.
They are expressed by
L0, 7;X) — Z,

t
z .—>/ Sy(t—s)Nyz(s)ds,
’ (12)

Hf,t:

F — Z,

ﬁf’ti t
s Hﬁ/ Sy(t— s)Ff ds,
0

(13)

L2(0,T;U) — Z,

t
u — / S¢(t — s)Bu(s)ds.
0
(14
Moreover, we consider the mapping ¢ (-, f,u) : z €
LP(0,T; X) — ¢(z, f,u) € LP(0,T; X) defined by

Hfﬂgl

0, 7] — X,
t = (2, fu)(t) = S¢(t)zo

+ ﬁﬂtz + ﬁf,tf + HfJU,.
5)
Then, to prove that (I0) is well defined amounts to
proving that under some hypothesis there exists d > 0
such that the mapping (-, f,u) has one unique fixed po-
int z7 ,, in a ball B(0,d) of L?(0,T; X).
For this reason we assume the following:

(A3)

U(z, fru) :

Ja > 0: [|Sp(t)zollx < aflzollx,
vt € [0,T7,
B> 0: |[Hypullx < Bllullzz0,14
vt € [0, T,
Iy >0: ”ﬁf,t fHX S’V”foV vt e [07T]7

1
AT < ————,
(B*[lg1llg)"”

(A5) 3 €0, 1[:

A 1
allzollx + 7l flr € |0, 2 (1=TFkllgully) |-
Tv
Before stating the principal result of this section, let
us interpret the various assumptions considered above.

Remark 3.

1. The assumption (Al) is true for every stron-
gly continuous semigroup (Sy(t))ier such that
[S¢(t)|lz(z) < Me™* for some given constants M
and w (Curtain and Pritchard, 1978; Pazy, 1983).

2. For the assumption (A2) the nonlinear operator Ny is
supposed to be globally Lipschitzian on the Banach
space X.

3. The positive constants «, /3 and 7 involved in the as-
sumption (A3) are given respectively by

= t
o= max g1(t),

B = llgllqlIBII,
1
v =T7gullqllFIl

aamcs
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4. The hypotheses (A4) and (AS5) are the conditions on
the final time 7, the initial state zy and the distur-
bance f for which the state z¢,, given in (I0), is
well defined for some control .

Theorem 1. If (Al)—(AS) are satisfied, then we have the
following:

(a) There exist d > 0 and m = m(d) > 0 such
that for all w € B(0,m) C L*(0,T;U) the map-
ping (-, f,w) has one unique fixed point zs, €
B(0,d) C L(0,T; X).

(b) The mapping hy : B(0,m) — B(0,d) defined by
hi(u) = z ., is Lipschitzian.

Proof. (a) The second condition of (A2), i.e.,

(615 62)—(0,0)

implies

Ve >0, 3d €]0,1[:  sup
[1(015 02)[[<d

K(91,92) <ég,

where ||(;-)|| is a norm on R?.. In particular, for
-1
£=——,
7 |lg1llq

where ¢g; is the function involved in (A1), and using the
constant K given by (@), we have

¢1 =T7 g1l K €]0,1]. (16)

Remark 4. Note that the choice of the positive constant
€ is not arbitrary, but it is a direct consequence of (A4),
which implies ¢; €]0, 1[.

First, for f € F and u € L?(0,T;U), let us prove
that ¢)(B(0,d), f,u) C B(0,d). Indeed, for z € B(0,d)
and V¢ € [0, 7] we have

||¢(va>u)(t)||X
= H'(/)(Z’fv u)(t) - ’(/)(vav ’U,)(t) + w(oa fa u)(t)”X
= |Hyez — Hp(0) + (0, f,u)(t)]|x
< || Hy, 12 — Hy o (0)]|x + 190, f,u) (1)l x

< / 1S5 (t — )[Ny2(s) — N (0)(3)]ll ds
+ 000, L) Ol
< / g1 (t = 8) [[Ny2(s) = Np(0)(s)]] s

0

+[9(0, f,u) ()] x »

with g; given in (Al). If we consider the function g defi-
ned by

0.6 — R,
g'{ s = g(s) =gt —s),

then it is clear that g € L9(0,7) and ||g||, = ||g1]|,- Con-
sequently, using the Holder inequality and Assumptions
(A2) and (A3), we have

(2, f,u) () x < allzollx + Bllull L2070
+ 7 + Nlgallg K ([[2]lp; 0) |2l
Then

T
| 1 @l de < 7 (allzolx + Blulleoiran
0
+ 117117 + llgallg
X K (1121:0) 11211

which gives, using the norm || - ||,

p
)

1
19z, fyu)llp < T (allzollx + Bllullz2 0,720
ANz + lgalla K (lzllp; 0) [121]p)-

Thus the condition
z € B(0,d) = ¢(z, f,u) € B(0,d)
is satisfied (using the constant k given by (9)) when
1
T3 (allz0llx +Blullz2 0 ra0) + 9 |7+ Ellgr o) < d.

That is to say,

[ull L2 0,7:20)
1
1 [d (1=Kl
<3 - — allzollx — Il fl#

Finally, we obtain
lull 20,1000 < M,
with
1
1 [d (1=Kl

=3 2 —allzolx =l

A7)
The assumption (A4) implies 1 — T%nglHq > 0.
Then, using (A5) for A = d €]0, 1, we have m > 0. Thus
for u € B(0, m) we obtain (B(0,d), f,u) C B(0,d).
On the other hand, for f € F and u € L%(0,T;U)
we prove that ¢ (-, f,u) is a contraction in B(0,d). Let
z1, z2 € B(0,d). Then for every t € I we have

Hw(zlvazf\)(t) - w(i%fv u)(t)”X
= |[Hy, 121 — Hy, 122 x

y / Sp(t— )[Nyza(s) — Nyza(s)] dsx.
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where H 7.+ and ¢(z, f,u) are respectively given by (I2))
and (13).

Using (A1) and (A2) and the Holder inequality, we
obtain

||¢(Zla fa u)(t) - 7/}(223 fa u)(t)”X

< lgrlla & ([z1llp; 1221lp) 122 = 22]lp-

That is to say,
T
/O (e, £o0)(£) — (2, fru) ()| dt

< T (lgallo K (lz2llp; l1z2llp) llz0 = 22llp)” -

Then, using the norm || - ||,, and the constant ¢; given
in (I6), we have

||w(zlafa ) (227f7 )”

which means that ¢ (-, f, u) is a contraction on B(0, d) as
Cc1 E]O, 1[.

Thus, if u € B(0,m) of L?(0,T;U), the mapping
(-, f, w) has a unique fixed point 2y, in a ball B(0, d) of
L?(0,T; X), which is the solution to the system (5).

(b) Let u,v € B(0,m). Then, using ¥(-, f,u), h1 and
(A3), we have

< eillz1 — 22(lps

[[71 () = ha(v)]lp
= [[¥(ha(u), f,u) = (b (v), f,0)p
< p(ha(w), fru) = ¢(ha(v), fru)llp
Fl[(ha(v), fru) — w(ln() )l
< el (w) = ha(v)]p + T» 5||u—v||L2 (0,7:1)
T8
=7_ ||U—U||L2 (0,T5U) >
which means that h; is Lipschitzian in B(0,m). [

Proposition 1. Under Assumptions (Al)—(AS), the system
(S) has a unique weak solution given by (10).

Remark 5. When the linear operator A is analytic
(Henry, 1981), all the results given in Theorem [Il remain
valid if we take into account the following: Let a € R
such that Re(spec(al + Af)) > 6 > 0, where spec(M)
is the spectrum of the linear operator M. For o € [0, 1],
Z% = D((al + Af)*) is a Banach space densely in-
cluded in Z with the graph norm ||(-)|/ze = |/(al +
Ar)*()|lz. We recall the following result (Henry, 1981):

e>0: [|Si)lizez <ct™ et =g (1),

vtel. (18)

Then for p €]1,4o00[ the assumption (A1) can be
replaced by
(A1) Jq €]1,+00

1 1
[ -+-=1, qa<l,
p q

such that (8 is satisfied. Note that the condition gov < 1
implies g; € L?(0,T). Moreover, the domain X of the
nonlinear operator Ny is replaced by Z<. Then it was
shown (Cholewa and Dtotko, 2000) that if (A2) holds on
Z<, then it remains true on Z for all v € [a, 1].

In all what follows, we consider only the case where
Ay is the infinitesimal generator of a strongly continuous
semigroup. Then, given the solution to the system (.5)
around f,

Zf7u(t) = Sf(t)ZO + ﬁfﬂng,u + ﬁﬁtf + Hyu, (19)

we can rewrite the output function (E) as follows:

(B) y7u(t) = CXixaSs(t)z0 + CXioXo H 475

+CX;Xaﬁf,tf + CX:XUHf,tU-
In the case where f = 0 and u = 0, we have

20,0(t) = So(t)z0 + Hos 20,0- (20)

The associated output function is

Y5.0(t) = OXixXoSo(t)20 + OXixo Hopz00.  (21)

Consequently, Problem (P) can be stated in the fol-
lowing form:

Find u € L*(0,T;U) such that

OXeXoH 120+ CXoXa Hp 1 f
(P)§ +Cxixof +CxixoHyru

+CxXExe S (T) 20 — CxEixeSo(T)z0
—CxixoHo, 20,0 = 0.

Remark 6.

1. If f = 0, then the control v = 0 is the solution to
(P), i.e., when the system is not disturbed, no reme-
diability is needed.

2. If N =0,1ie., ﬁf’T = 0, we retrieve the formulation
given in the linear case in (Afifi et al., 2002).

3. The established results have a local character. This is
a consequence of the linearization of F’ in the neigh-
borhood of f.

4. Problem solution

The solution of Problem (P) consists in finding a control
u which compensates the effect of the disturbance f. This
can be solved, under some assumptions, using pseudo-
inverse techniques (El Jai et al., 1986) and the fixed-point
theorem. This leads to a sequence of controls which co-
nverges to the solution of (P).

aamcs
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A control w is a solution to (P) if it satisfies
CxoxoHyrru+ C’xixgﬁszf’u
+ OxXoxo Hprf + CXoXo f + Oxoxo S5 (T)20
— CxXiXoS0(T)z0 — C’xixgﬁoj 20,0 = 0.

Consider the subset V' = Im(Cx}xoHy, 1) of Y
and write

i = CXixoHor 200 + CX5XaS0(T)20
—CxoxoSp(T)z0 — Cxoxo Hyr f

—CxoXo f-
(22)

Then one seeks a control u such that

CXoXoHyru+ CxoxoHyr 250 = Y7,

where we assume that y7 € V.
Note that when the nonlinear term is zero, i.e.,
CxoXoH 1 254 = 0, the set

{u cOxoxoHpru= y?}

is closed, convex and nonempty in L2(0,7;U). Thus
there exists a unique minimum-norm control «* satisfy-
ing
CxoXoHyr u™ = yf.
Let u* = Ly§. Thus we define a linear operator L
mapping V into L?(0,T;U) which is the pseudo inverse
of CXZ—XUHf,Ts

L= (CX;XaHf,T)T
= H;,TX:'XO'C*
* * * %11
< [OxoxeHyrH pX5xoC*] . (23)

where H} - and C* denote respectively the adjoint opera-
tors of Hy 7 and C.
The space V' can be endowed with the norm

IO = 1Ll 220,720 - (24)

The Banach space (V, || - ||y/) will be considered to study
Problem (P).

For y7 € V and using Theorem [Il we look for a
control w € B(0,m) such that

OXexXoHpr u+ CXoxo Hpr hi(u) = yf

where 27, = hi(u), and the positive constant m is given
by (D
Equivalently, we have

CxoXoHyru=yF — CxoXoHy1 hi(u).

Remark 7. Indeed, we have CX:;XUPAILT hi(u) € V
when Cxix,S¢(t) € L(Z,V).

Using the above remark, and since y;{ € V, we have
that w is a solution to (P) if

uw=1L (y; — CXZ—XUE[f,T hl(u)) ) (25)
Now for y§ € V consider the mapping ¢ (y7, -) given by
L*(0,T;U) — L*(0, T3 U),

u— L (y? —COxioxoHy, 1 hl(u)> .
(26)
To prove that u is a solution to Problem (P) amo-
unts to proving that under some assumptions, the mapping
©(y§, -) has one unique fixed point u* in the ball B(0,m)
of L?(0, T;U).
In fact, apart from (A1)—(AS), we assume the follo-
wing:
(A6) 3go € L1(0,T) :

@(y;, ) :

ICX5xoSs()|lz(z,vy < g2(t), Yt €[0,T].

1

ANDT <
(K*lg1llq + BK*[lg2ll4)"

(A8) 3N €]0,1[: al|zollx + VI fll#

N 1
0.2 (1= ikl + sHlaal)

p

Theorem 2. [f Assumptions (Al)—(A8) are satisfied, then
there exist d and p = p(d) > 0 such that for all y§ €
B(0,p) C V, where y§ is given by @2), the mapping
©(y$, ) has a unique fixed point u* in B(0,m).

Proof. We have

lim K(01;82) = 0.
(61; 62)—(0,0)

Then

Ve >0, 3d€]0,1[:  sup
[1(61; 02)]|<d

K(01,02) < €.

In particular, for

N —1
e = [T% (lgullg + Bllgallo)]

we obtain

s =T (|g1llg + Bllgalle) K €]0,1[.  (27)
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Let us prove that ¢(y7, B(0,m)) C B(0,m) for
yF € V, where m and y§ are respectively given by (I7)
and 22). Indeed, for u € B(0, m) we have

le(ws WLz = 1yF — OxoxoHy, T ha(u)lv

IN

Then by (A2) and (A6) we obtain
||80(y?,U)HL2(0,T;u)
< lyFllv + llg2llg K ([[h1 (w)lp; 0) |1 (w) ] p-

Using @) and the fact that u € B(0,m) implies
hi(u) € B(0,m), we obtain

le(F, wlizzo,ma0 < lyFllv + Ellgzllqd.
Thus the condition
u € B(0,m) = ¢(yf,u) € B(0,m)
is satisfied if
lyFllv < m = kllgallqd.

From (I7) we obtain |[y§[lv < p with

1 Kl —Ti<k||gl||q+ﬁk||gzq>> .

=5 T
—allzollx = yIIfll#]- (28)

As a consequence of (A7) we have
1
1=T%(kllg1llq + BEllg2llq) > 0.

In addition, using (A8) with A* = d we obtain p >
0. Then, if y§ € B(0,p), we get (y7,B(0,m)) C
B(0,m).

Moreover, for y¢ € B(0, p) the mapping ¢(y%,-) is
a contraction in B(0,m). Indeed, for u, v € B(0,m) we
have

e(yF,u) — o(yf,v)
=1L (CX;XJI/{T}«,Thlu — CX(*,XUPAIfVThlv> .
Using @4) we get
||S0(y‘(;7 'LL) - @(y;‘-, U) ||L2(O,T;U)
= |OXE X Hy rhiu — Cxixo Hyhyolly
T
I [ x5 = 5Ny ()
0
— Nyhi(v)(s)] dsllv.
From (A2) and (A6) it follows that

||80(y?a U) - ‘P(y;‘h v)||L2(O,T;Z/I)
< llg2llgK(h1(u) — ha(v)]lp-

lyfllv +1CXGXaHy, 7 ha(u)|v

Since the mapping h; is Lipschitzian with the coef-
1
ficient T'» 3/1 — ¢1 (by the point (b) of Theorem [I)), we
have

le(yF,w) — eyF, v)llzz20,ru) < esllu—vllz20,ru)
with .
_ T Bllgallo K
cg = ————1—
1-— C1
which means that ¢(y7, -) is a contraction on B(0,m) as
0 < ¢3 < 1. Indeed, from the constants ¢y, ¢o and c3,

given respectively by (I6), 27) and 29), we obtain

1
1—c1 —T7fg2l|o K l-c
1—61

) (29)

1—cg= = :
e 1—01

Since ¢1, 2 €]0,1[and ¢; < co, we have 0 < ¢35 < 1.
Finally, for y7 € B(0,p) the mapping ¢(y%,-) has
a unique fixed point v* in B(0,m) which is a solution to
Problem (P). [
For Theorem[2] we have a result ensuring the conver-
gence of a sequence of controls associated with (23) to the
solution u* of Problem (P).

Proposition 2. If the assumptions of Theorem [2l are sa-
tisfied and if y§ € V is such that ||y§|lv < p, then the
sequence defined by

() :0,

Un+1 = @(y;{vun) =1L (y;*CX;XJny T hl(un))
(30)
converges to u* in L?(0,T,U) and satisfies

wnt1 — unllz2 0,700 < 5 llus-

The proof of this proposition is deduced from The-
orem [2] and the properties of the fixed point, where c3 is a
constant given by (29).

Thus if we consider

oy = M(un), yp, (1) = OxoXo#f, (D),

Tn+1 = yf‘ - CX:;XGﬁf’T Z}l,u,ﬁ
then using the output function (£), 20) and 22)) we have
w7, (1) = CxoxoSs (D20 + Cxoxo Hy 2,
+CxoXo Hpr f + OXoxo Hyrun
= y7 + OxoXo S5 (T)20 -
+OX X 12} 0, + OXoX 1 f
+COXoXo Hymtn — Y
= yg,O(T) — OXoXof = Tny1 + 7n
Then

T+l = Tn + yg,o (T) - y;jsn (T) — Cxoxof- (BD)
On the other hand, it is easy to see that
1950 (1) = y5.0(T) — Cxoxo fllv < czlluall. (32)
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5. Numerical approach

In this section, we outline a numerical approach which al-
lows us to compute the solution to Problem (P). An illu-
strative example is developed using two choices of inputs
and outputs. We recall the following definitions (El Jai et
al., 1986):

Definition 3. Let D; and D be closed subsets of €2, and
g € L?(Dy), h € L*(D4).We have the following:
(i) A zone actuator is a couple (D1, g), where

e D is the space support of the actuator,

e ¢ defines the spatial distribution of the actuator.
(ii) A zone sensor is a couple (Do, h), where

e Ds is the space support of the sensor,

e ) defines the spatial distribution of the sensor.

In the pointwise case, we have similar definitions.
Indeed, a pointwise actuator (respectively a sensor) is a
couple (b, ) (resp., (¢, d.)), where b,c € § are the lo-
cations and 9 is the Dirac mass. The notion of a regional
efficient actuator is introduced in (Afifi et al., 2002) and is
related to the concept of regional remediability as defined
below.

Definition 4. The actuator (Dq,g) is said to be o-
efficient if the system (.S) is weakly o-remediable when
it is excited by the actuator (D1, g).

Remark 8. All the explored results of this paper assume
that B and C belong to £(U; Z) and L(Z;Y), respecti-
vely. In the pointwise case, additional hypotheses must be
considered.

Using the above remark in what follows, we are go-
ing to limit ourselves to the zonal case. Then, before
exploring an illustrative example, we provide an algori-
thm resulting from the above results.

5.1. Algorithm. We recall the problem considered as
stated above:
(P) Find u € L*(0,T;U) such that
Y5..(T) =y o(T) — Cxoxo f-

Based on Proposition 2lwe can develop an algorithm
which allows us to determine a sequence of controls which
converges to the solution u* of (P). The output (E) is
given by

(B)  yF u(t) = CxoxoSt(t)z0 + OxoXoHp 2 fu
TOXoXo Hytf + OxoxoHy pu.

Algorithm 1.
1. Data: Q, 0,7, z9,w, f, A, N, B, C, e.

2. Compute yg o: the output (E) when f = 0and u = 0
(an autonomous case).

3. Compute y§ : the output (£) when f # Oandu = 0
(a disturbed case).

4. Letrg =0andr; = yg o(T) — Y5, oT) = Cxixof.
5. Compute u,, = L, where L is given by (23).
6. Compute y7', : the output (E).

7. I |[un — tn—1| L2(0,70) < € then stop.
Otherwise, consider 7,1 given by (3I) and go to
Step 5.

Above, L is the pseudoinverse of the linear opera-
tor C'x s x+CH s which can be computed using (I4) and

il
—1

T
/ CxXoXoSf(T)BB*SHT)X5XoC" dT
0

x B*SHT — t)x5xaC 7. (33)

(Lr)(t) =

The main difficulty in the implementation of the
above algorithm is the computation of the pseudo inverse
and the solution of the partial differential equation (Step 6
of the algorithm).

In the next section we outline an example by means
of the above algorithm.

5.2. A one-dimensional transport system. Let ) =
10, 7/4[ and I =]0, T'[ with T' = 2. Consider the nonlinear
distributed system defined in {2 x I and governed by the
following state equation:

o 07 _
Ha,t) = _cai +72(x,t) + Bu(t),
X
O<z<m/4,0<t<2,

Z(x,0) = zo(x) + f(x), 0<z<m/4,
(34)
with Z € L2(0,T,Z), Z = L*(Q) and ¢ > 0. Set ¢ =
3m/32.
Let w =0, 7/16] (w C ) be the geometrical sup-
port of the disturbance f. Consider the following initial

data and disturbance given respectively by

z0(x) =0,

f(x):{ —cos(z) if z€w,

Ve,

0 otherwise.
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Let o be a fixed subregion in €2 which does not ne-
cessarily satisfy o N w # (). The system (34) is assumed
to be augmented by the output function

(E) 97(t) = Cxoxoz(t).
The remediability problem associated with this example

will be treated by considering various forms of o, actu-
ators (the choice of B) and sensors (the choice of C').

Case 1: o = [37/16, 7w /32].
Consider Bu(t) = g(x)u(t), where

exp(—a?) if 37/16 <z < 7Tr/32,
gm_{ p(—2?) /16 < & < T/

0 otherwise,
and
T /32
CxoXoz(t) = / h(z)Z(z,t) d,
37/16
where
h(z) = exp(z) if 37T/.16 <z <T7mr/32,
0 otherwise.
The system (34)) is a particular case of (I)) with
0z
FZ=—c2 432
z Cax +z
and

Bu(t) = g(x)u(?).

The assumptions on F' are satisfied because we have
F(0) = 0 and F is of class C".
Let 2(z,t) = z(x,t) — f(x). The system (34) beco-

Z(x,t) = —c(?jc(x,t) + gi)

+ (2(z,t) + f(2))* + g(@)u(?)
z(x,0) = 0.

mes
(35)

Linearizing F around f, the system (33) can be rew-
ritten in the form

Y t) = (—ca%+2f(a;))z(x,t)+22(x,t)

H(72@) — 9L (@) + glayult)

0.

z(x,0)
(36)
Consider the linear operator

0
Ay =—c— +2f D(A;) — Z
! C@x—’_ 1 (f)

with the domain
D(Af)—{ZEZ: —c((;z+2szZ}
r

densely included in Z. Ay generates a strongly continu-
ous semigroup given by

exp[2f(x)t]z(z —ct), x> ct,
0, 0<x<ct,

(Sr()2)(z) = {

which satisfies (A1) with g;(t) = exp(—2cos(w/16)t)
(91 € L*(0,2)).

The nonlinear operator Ny : z € X = L*(Q) —
2% € Z = L?(Q) is well defined in a Banach space X and
satisfies (A2) because Ny(0) = 0 and, with the Holder
inequality, we obtain V¢ € [0, 2]:

[Npz1(t) — Ny22(t)| 2 (a)
= [l2(t) — 25(D) |2 (0
= |I(21 + 22)(t) (21 — 22)(t) || L2(0)
< (la@®llx + 22®)][x) [Iz1(F) — 22(t) || x
<V2[Ja®% + ||22(t)||§(]% [21(t) — z2(t)[|x
< K ([lzall2; l22ll2) |21 () — 22(8) [l x

where
K ([lz1]125 | z2ll2) = max [[lz2 (6)[% + l22(D)1%] * -
Itis clear that K : Ry x Ry — R, satisfies

lim K(0:1;65) = 0.
(0135 62)—(0,0)

Letd = 0.8 and
1
(K*[|g1ll2)*’

M= 2 (1= Tl

Then, using numerical computations, we get Table 1. This
shows that (A3)—(AS) are satisfied since the constants c,
(3, y are positive, and the conditions 7' = 2 < T} (respec-
tively, f1 < A1) hold. Moreover, the constants ¢; and m,
given by ({6) and (7)), satisfy ¢; €]0,1[ and m > 0. Con-
sequently, from Theorem [] the system (B@) has a unique
solution given for all ¢ € [0, 2] by

T = fr = allzollx + Al fllx,

2ralt) = /0 85t = 5):2 ,(s) ds
+At5f(t—s)(f2—cg£) ds

+ /0 Syt —s)gu(s)ds.

aamcs
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Table 1. Constants of Theorem/[Il

a B Y

T

fl A1 m C1

1 | 0.1053 | 0.4453

6.9772

0.2945

0.3285 | 0.3229 | 0.5354

To solve the regional remediability problem (P) (and
then (P)), consider the disturbed controlled system (36)

together with the output (E) given by

/32

(B) f@ZCﬁmdﬂ=/

37/16

We have to find a control u such that

/ /77r/32
/ 3717?r/32
Jel®

/ /377/16

771'/32
g
37r/16

x)Sr(2 — s)g(x)u(s)dzrds

x)S(2 — s)zf u(x,8)dads
of

() f(x) dz

771'/32
/ / 2)S0(2 — )25 o(w,5) deds = 0.
37 /16
(37
It is clear that (A6) holds with
g2(t) = ||h||2(») exp(—2cos(7/16) t) Vit €]0,2].

Similarly, if we set
1
(K*lg1ll2 + BE*[lg2]l2)*
a (1= T4 (kllguls + Al g2112))

Ty =

A2

T3

then we obtain the results given in Table 2. Hence we

Table 2. Constants of Theorem[2]

h(z)z(x,t) de.

x)Sy 2—5)(f2 —c%>(m)dxds

)

T2 f1 )\2 14 C2

c3

6.1804 | 0.2945 | 0.3049 | 0.0981 | 0.5689

0.0720

deduce that (A7) and (A8) are also satisfied because we
have T' < Ty and f; < Ag. Thus the constants co, p and

cs3, given respectively by @7), @8) and 29), satisfy p > 0
and cg, c3 €]0, 1[. Then from Theorem[2lthe problem (7))

has a unique solution u.

5.3. Simulation results.

tion in this case is given by

z0,0(z,t) =0,  (z,t) €]0,7/4[x]0,

When the system (34) is not
disturbed (f = 0) and it is autonomous (u = 0), the solu-

9.

When the autonomous system (u = 0) is disturbed by f,
the solution becomes

—cos(x — ct)
1+ tcos(x — ct)
if ct<z<ct+n/16,

+ cos(z — ct)
zro(x,t) =
0 if 0<a<ct.

As for the solution to (34) given by Zj,(z,t) =
zpu(x,t) + f(x), Fig. 3 shows the states zp o and Zy .
In Fig. 3(b) we have the state of the autonomous system

za(x,t)

R

e
“::‘\‘{‘\\\\\

(b)

Fig. 3. States in the autonomous case (a) and in the disturbed
uncontrolled one (b).

Zo,0 and that of the disturbed system Z¢ . The disturbance
f effect is important.
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Consider the property P given by PZso(z,t) <
Zfo(z,t) # Zo,0(x,t), and write

W0t = {:c €N Pzﬁo(a:,t)}.

As Zpo(x,t) = 0, V(z,t) € Q x I, and Zy o(x,t) # 0,
Vo € |et,ct +w/16], t # 0, we have

wyo,t =)ct, ct +w/16].

Consequently, we have the result given in Fig. 4. Na-
mely, the disturbance f is spreadable and the zone o con-
sidered is f-vulnerable.

X

Fig. 4. Spreadability of the disturbance f and vulnerability of
o ~[0.59,0.69].

Consider times ¢; and ¢4 given by
t; = inf {t el: o Nwy o 7# @},

to = inf {t € [t1,T]: U (8 Nwy,o0,s)

s€[t1,t2]

= U (8ﬂwf,078)}.

se(t1,T)

This two instants signify respectively the first time
when the zone o is reached and the first one when the
bigger part of o is reached, which can be o. In this case
(see Fig. M), by using expressions of ¢, wy,, and o, we
have t; = 4/3 and t; = 5/3.

Thus the spreadable disturbance begins to reach o
at time ¢;. It affects all the subregion at time ¢ and the
entire o is reached during the time interval [to, T']. Then
the solution to (37) produces a control which compensates
in o the effect of the spreadable disturbance f.

Thus, when we apply Algorithm 1 with a space step
Az = 0.01, a time step At = 0.03, and for ¢ = 104, we
obtain the evolution shown in Figs. [Bland [6l

In Fig.[5l we present the state of the disturbed con-
trolled system Zy ,, which shows that in ¢ it is very similar
to the autonomous state Zp o at time 7" as n increases. This

220

(b)

Fig. 5. Controlled case: the states for n = 5 (a) and
n = 20 (b).

is also shown in Fig.[6] where the states Z7 ,,(-, 7") and the
outputs yr,,, are very close to Zy o (-, ') and g o, respecti-
vely, at the final time 7" = 2.

In fact, these results show that the control u of the
remediability problem (37)) is regionally efficient since it
neutralizes the spatial disturbance space effect f in the
subregion o.

We can also see that the evolution of states in o (re-
spectively the associated outputs) in the controlled case is
due to the choice of the spatial distribution of the actuator
g (resp. the sensor h) given in Fig.[7l

The sequence of controls converges to u (Fig.[8), and
they are increasing because the disturbed state (or the as-
sociated output) is located in the lower part of that of the
normal system. Figure Blb) shows the error dependence
on the iteration number k. If we consider the margin er-
ror E(k) between the outputs gy, (7") and 3,0(T), then
we notice that F(k) decreases to 0 as k — o0, sho-
wing the convergence of the algorithm where the Lip-
schitz constant is equal to c3 = 0.0720. We also com-
puted the cost of such remediability in ¢ and obtained
||u||L2(O7T) = 0.2992.

Remark 9. As has been mentioned, the transport velocity
c is positive. Consequently, the disturbance is spreadable.



Y. Qaraai et al.

- - -z
o zp
z5
z10
z15
z18
220
__04f
=
X
R
02r |z
0GE0S0BOGA0A0GE0A0BO0A0R0AE0R0S0BE0B0BE0B0ANEE0E = — — — — —
(G0000000000000000
-0.4 n L L ,
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.011

-0.02

-0.03[

-0.04

-0.05

-0.06

-0.07

-0.08

-0.09

0.5 1 1.5 2

(b)
Fig. 6. States of the autonomous, disturbed and controlled cases
at the final time 7" = 2 (a) and the associated outputs (b)
forn = 5,10, 15, 18 and 20.
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®)
Fig. 7. Spatial distributions of the actuator g (a) and the
sensor h (b).

In the case when ¢ < 0, the disturbance is resorbable (or
stationary for ¢ = 0), the subregion o considered is not
vulnerable and then no remediability is needed.

An interesting situation is whenc = 0and 0 = w =
Q. At the initial time the geometrical support of the di-
sturbance f becomes the whole domain 2.

Case2:w=0=Q=|0,r/4, B=Tand C = I.

035} u20

03

0.25 (\\
g o2 \

osff ——
0
() 05 1 15 2
t
(a)
0035
0.03f
0025
< o002
0015}
oot
0.005 :
) 5 10 15 20 25
K
(b)

Fig. 8. Sequence of controls (a) and the error between the out-
puts yo,0(7") and ys,u(T) (b).

In much the same way as in the first case, it is easy
to show that all the assumptions of Theorems [Tl and 2] are
satisfied. Then we have to find a control u satisfying

2 /4
/ / 2@ 2=y (s) dx ds
o Jo

2 /4
+/ / e2f(x)(2_s)z]2c’u(x, s)dads
o Jo

2 /4
+ / / 62-f(g”)(2_8)f2(x) dz ds
o Jo

/4 2 pm/4
+ f(z)de — / / 25 o(x, s)dwds = 0.
0 o Jo
(38)

With the same algorithm we obtain the evolution
shown in Figs. OHI2

In Fig. @), we give the state of the autonomous sys-
tem Zp o (a) and that of the disturbed system z o (b). The
disturbance f is globally defined in the whole domain
) = ¢. Consequently, this domain is affected by the effect
of the disturbance.

In this case the subregion ¢ is the entire geometrical
domain €2, the actuator is distributed on 2 with, B = I,
and the output is given by means of one distributed sen-
sor, C = I. From Fig.[IQlit is seen that the state of the
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Fig. 9. State of the autonomous case (a) and the disturbed

(b)

case (b).
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Controlled case: the states for n = 3, and n = 10.

Fig. 11. States of the autonomous, disturbed and controlled ca-
ses at the final time 7" = 2 (a) and the associated out-
puts (b) forn = 3, 5,8 and 10.

(b)
Fig. 12. Sequence of controls for n = 2,...,10 (a) and the
error between the outputs yo,0(7") and y ... (1), (b).
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disturbed controlled system zy ,, is very similar to the au-
tonomous state Zp o at time 7" as n increases. Also, from
Fig. [Tl we observe that the states Zf (-, T") and the out-
puts ¥, are respectively gradually near Zyo(-,T") and
Yo,0 at the final time 7" = 2.

In Fig. [[2(a) we see that the sequence of controls
converges to the solution u of the global remediability
problem (38). This shows that the control u is efficient
since it neutralized the spatial disturbance effect f in
the whole domain 2. The cost of such remediability is
Hu||L2(07T) = 5.7303.

Similarly to the regional case, the increasing control
sequence is due to the fact that the disturbed state (or the
associated output) is located at the lower part of that of the
normal system, which is a consequence of the homogene-
ous boundary condition in z = 0. In Fig. 10(b) we presen-
ted the error dependence on the iteration number k. More
precisely, we consider the error margin F(k) between the
outputs 47, (T") and 3o,0(T"). One can notice that the er-
ror margin E(k) decreases to 0 as k — oo, showing the
convergence of the algorithm.

6. Conclusion

In this work we studied the problem of regional remedia-
bility for a class of nonlinear distributed systems. The
space disturbance occurs in the initial condition. This
problem was solved combining pseudo inverse techniques
and the fixed-point theorem. An example was developed
numerically to illustrate the various steps. The discussed
transformation of the system in the neighborhood of the
disturbance enables us to solve the remediability problem
and, in addition, allows the connection between the con-
cepts of remediability and spreadability through that of
vulnerability. Based on this approach, it will be very inte-
resting to consider the protector control problem for non-
linear distributed parameter systems as it was introduced
for linear systems by Qaraai ez al. (Qaraai et al., 2006; Qa-
raai et al., 2008). This will be published in a future work.
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