
Int. J. Appl. Math. Comput. Sci., 2008, Vol. 18, No. 2, 189–198
DOI: 10.2478/v10006-008-0017-8

TIME-OPTIMAL BOUNDARY CONTROL OF AN INFINITE ORDER
PARABOLIC SYSTEM WITH TIME LAGS

ADAM KOWALEWSKI ∗, ANNA KRAKOWIAK ∗∗

∗ Institute of Automatics, AGH University of Science and Technology
Al. Mickiewicza 30, 30–059 Cracow, Poland

e-mail: ako@ia.agh.edu.pl

∗∗ Institute of Mathematics, Technical University of Cracow
ul. Warszawska 24, 31–155 Cracow, Poland

e-mail: skrakowi@riad.usk.pk.edu.pl

In this paper the time-optimal boundary control problem is presented for a distributed infinite order parabolic system in
which time lags appear in the integral form both in the state equation and in the boundary condition. Some specific
properties of the optimal control are discussed.

Keywords: time-optimal boundary control, infinite order, parabolic system, time lags.

1. Introduction

Distributed parameter systems with delays can be used
to describe many phenomena in the real world. As is
well known, heat conduction, properties of elastic-plastic
material, fluid dynamics, diffusion-reaction processes, the
transmission of the signals at a certain distance by using
electric long lines, etc., all lie within this area. The ob-
ject that we are studying (temperature, displacement, con-
centration, velocity, etc.) is usually referred to as the
state.

We are interested in the case where the state satis-
fies proper differential equations that are derived from ba-
sic physical laws, such as Newton’s law, Fourier’s law,
etc. The space in which the state exists is called the state
space, and the equation that the state satisfies is called the
state equation. In particular, we are interested in the cases
where state equations are one of the following types: par-
tial differential equations, integro-differential equations,
or abstract evolution equations.

Equations with deviating arguments appeared in Eu-
ler’s works. However, systematic research of such equ-
ations began only in the 20th century, as a result of the
development of applied sciences and particularly automa-
tic control theory. Consequently, equations with deviating
arguments are a well-known mathematical tool for repre-
senting many physical problems. Historically, they have

achieved great popularity among mathematicians, physi-
sts, and engineers.

During the last twenty years, equations with devia-
ting arguments have been applied not only in applied
mathematics, physics and automatic control, but also in
some problems of economy and biology. Currently, the
theory of equations with deviating arguments constitu-
tes a very important subfield of mathematical control
theory.

Consequently, equations with deviating arguments
are widely applied in optimal control problems of distri-
buted parameter systems with time delays.

Various optimization problems associated with the
optimal control of distributed parabolic systems with time
delays appearing in the boundary conditions were stu-
died recently in (El-Saify, 2005; El-Saify, 2006; Know-
les, 1978; Kowalewski, 1988; Kowalewski, 1990a; Ko-
walewski, 1990b; Kowalewski, 1993; Kowalewski, 1998;
Kowalewski, 1999; Kowalewski, 2001; Kowalewski and
Duda, 1992; Kowalewski and Krakowiak, 1994; Kowa-
lewski and Krakowiak, 2000; Kowalewski and Krako-
wiak, 2006; Wang, 1975).

In (Wang, 1975), optimal control problems for se-
cond order parabolic systems with Neumann boundary
conditions involving constant time delays were conside-
red. Such systems constitute in a linear approximation,
a universal mathematical model for many diffusion pro-
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cesses in which time-delayed feedback signals are intro-
duced at the boundary of a system spatial domain. For
example, in the area of plasma control, it is of interest
to confine a plasma in a given bounded spatial domain Ω
by introducing a finite electric potential barrier or a “ma-
gnetic mirror” surrounding Ω. For a collision-dominated
plasma (Kowalewski and Duda, 1992), its particle density
is describable by a second order parabolic equation. Due
to particle inertia and the finiteness of the electric poten-
tial barrier or the magnetic mirror field strength, the par-
ticle reflection at the domain boundary is not instantane-
ous. Consequently, the particle flux at the boundary of Ω
at any time depends on the flux of particles which escaped
earlier and reflected back into Ω at a later time. This leads
to Neumann boundary conditions involving time delays.
Necessary and sufficient conditions which optimal con-
trols must satisfy were derived. Estimates and a sufficient
condition for the boundedness of solutions were obtained
for second order parabolic systems with specified forms
of feedback controls.

Subsequently, in (Knowles, 1978), time-optimal con-
trol problems of linear second order parabolic systems
with Neumann boundary conditions involving constant
time delays were considered. Using the results of (Wang,
1975), the existence of a unique solution of such parabolic
systems was discussed. A characterization of the optimal
control in terms of the adjoint system is given. This cha-
racterization was used to derive specific properties of the
optimal control (bang-bangness, uniqueness, etc.). These
results were also extended to some cases of the nonlinear
control without convexity and to certain fixed time pro-
blems.

Consequently, in (Kowalewski, 1988; Kowalewski,
1990a; Kowalewski, 1990b; Kowalewski, 1993; Kowa-
lewski, 1998; Kowalewski, 1999; Kowalewski, 2001) and
(Kowalewski and Duda, 1992), linear quadratic problems
for second order parabolic systems with time delays given
in a different form (constant time delays, time-varying de-
lays, time delays given in the integral form, etc.) were pre-
sented. Moreover, in (Kowalewski and Krakowiak, 1994)
and (Kowalewski and Krakowiak, 2000), time-optimal di-
stributed control problems of second order parabolic sys-
tems with constant and integral time lags appearing both
in state equations and Neumann boundary conditions were
investigated.

Finally, in (El-Saify, 2005; El-Saify, 2006), linear qu-
adratic optimal distributed and boundary control problems
for n × n second order and n × n infinite order parabolic
time-varying lag systems were considered.

In particular, in (Kowalewski and Krakowiak, 2006),
time-optimal boundary control problems for second order
parabolic systems with deviating arguments appearing in
an integral form both in state equations and in Neumann
boundary conditions were considered. The presented mi-
nimum time problem can be generalized to the case of in-

finite order time delay parabolic systems.
For this reason, in this paper we consider the time-

optimal boundary control problem for a linear infinite or-
der parabolic system in which time lags appear in an inte-
gral form both in the state equation and in the Neumann
boundary condition. Such an infinite order parabolic sys-
tem can be treated as a generalization of the mathematical
model for a plasma control process.

The existence and uniqueness of solutions of such a
parabolic equation are proved. The optimal control is cha-
racterized by the adjoint equation. Using this characteri-
zation, particular properties of the time-optimal boundary
control are proved, i.e., bang-bangness, uniqueness, etc.

2. Preliminaries

Let Ω be a bounded open set of R
n with a smo-

oth boundary Γ. We define the infinite order Sobolev
space H∞{aα, 2}(Ω) of functions Φ(x) defined on Ω
(Dubinskii, 1975; Dubinskii, 1976) as follows:

H∞{aα, 2}(Ω)

=

⎧⎨
⎩Φ(x) ∈ C∞(Ω) :

∞∑
|α|=0

aα‖DαΦ‖2
2 < ∞

⎫⎬
⎭ , (1)

where C∞(Ω) is the space of infinite differentiable func-
tions, aα ≥ 0 is a numerical sequence, ‖ · ‖2 is the norm
in the space L2(Ω), and

Dα =
∂|α|

(∂x1)α1 . . . (∂xn)αn
, (2)

α = (α1, . . . , αn) being a multi-index for differentiation,
|α| =

∑n
i=1 αi.

The space H−∞{aα, 2}(Ω) (Dubinskii, 1975; Du-
binskii, 1976) is defined as the formal conjugate space to
the space H∞{aα, 2}(Ω), namely,

H−∞{aα, 2}(Ω)

=

⎧⎨
⎩Ψ(x) : Ψ(x) =

∞∑
|α|=0

(−1)|α|aαDαΨα(x)

⎫⎬
⎭ , (3)

where Ψα ∈ L2(Ω) and
∑∞

|α|=0 aα‖Ψα‖2
2 < ∞.

The duality pairing of the spaces H∞{aα, 2}(Ω) and
H−∞{aα, 2}(Ω) is postulated by the formula

〈Φ,Ψ〉 =
∞∑

|α|=0

aα

∫
Ω

Ψα(x)DαΦ(x) dx, (4)

where Φ ∈ H∞{aα, 2}(Ω), Ψ ∈ H−∞{aα, 2}(Ω).
From above, H∞{aα, 2}(Ω) is everywhere dense in

L2(Ω) with topological inclusions and H−∞{aα, 2}(Ω)
denotes the topological dual space with respect to L2(Ω),
so we have the following chain of inclusions:

H∞{aα, 2}(Ω) ⊆ L2(Ω) ⊆ H−∞{aα, 2}(Ω) . (5)
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3. Existence and uniqueness of solutions

Consider now the distributed-parameter system described
by the following parabolic delay equation:

∂y

∂t
+ Ay +

b∫
a

c(x, t) y(x, t − h) dh = u,

x ∈ Ω, t ∈ (0, T ), (6)

y(x, t′) = Φ0(x, t′), x ∈ Ω, t′ ∈ [−b, 0), (7)

y(x, 0) = y0(x), x ∈ Ω, (8)

∂y

∂ηA
=

b∫
a

d(x, t)y(x, t − h) dh + v,

x ∈ Γ, t ∈ (0, T ), (9)

y(x, t′) = Ψ0(x, t′), x ∈ Γ, t′ ∈ [−b, 0), (10)

where Ω has the same properties as in Section 2. We have

y ≡ y(x, t;u), u ≡ u(x, t), v ≡ v(x, t),
Q ≡ Ω×(0, T ), Q̄ = Ω̄×[0, T ], Q0 = Ω×[−b, 0),
Σ = Γ×(0, T ), Σ0 = Γ×[−b, 0),

T is a specified positive number representing a time hori-
zon, c is a given real C∞ function defined on Q̄ , d is a
given real C∞ function defined on Σ, h is a time lag such
that h ∈ (a, b) and a > 0, Φ0 and Ψ0 are initial functions
defined on Q0 and Σ0, respectively.

The operator
∂

∂t
+ A in the state equation (6) is an

infinite order parabolic operator, A is given by

Ay =
∞∑

|α|=0

(−1)|α|aαD2αy(x, t), (11)

and ∞∑
|α|=0

(−1)|α|aαD2α (12)

is an infinite order elliptic partial differential operator
(Dubinskii, 1981).

Equations (6)–(10) constitute a Neumann problem.
The left-hand side of (9) is written in the following form:

∂y

∂ηA
=

∞∑
|w|=0

(Dwy(v)) cos(n, xi) = q(x, t),

x ∈ Γ, t ∈ (0, T ), (13)

where ∂y/∂ηA is the normal derivative at Γ, directed to-
wards the exterior of Ω, cos(n, xi) is the i-th direction

cosine of n, with n being the normal at Γ to the exterior
to Ω, and

q(x, t) =

b∫
a

d(x, t)y(x, t − h) dh

+ v(x, t), x ∈ Γ, t ∈ (0, T ).

(14)

First we shall prove sufficient conditions for the exi-
stence of a unique solution of the mixed initial-boundary
value problem (6)–(10) for the case where the boundary
control v ∈ L2(Σ).

For this purpose, we introduce the Sobolev space
H∞,1(Q) (Lions and Magenes, 1972, Vol. 2, p. 6) de-
fined by

H∞,1(Q) = H0(0, T ;H∞{aα, 2}(Ω))
∩H1(0, T ;H0(Ω)), (15)

which is a Hilbert space normed by

⎛
⎝ T∫

0

‖y(t)‖2
H∞{aα,2}(Ω) dt + ‖y‖2

H1(0,T ;H0(Ω))

⎞
⎠

1/2

,

(16)
where the space H1(0, T ;H0(Ω)) is defined in Chapter 1
of (Lions and Magenes, 1972, Vol. 1).

The existence of a unique solution for the mixed
initial-boundary value problem (6)–(10) on the cylinder
Q can be proved using a constructive method, i.e., first,
solving (6)–(10) on the subcylinder Q1 and in turn on Q2,
and so on, until the procedure covers the whole cylinder
Q. In this way, the solution in the previous step determi-
nes the next one.

For simplicity, we introduce the following notation:

Ej
∧= ((j − 1)a, ja), Qj = Ω × Ej ,

Q0 = Ω × [−b, 0), Σj = Γ × Ej ,

Σ0 = Γ × [−b, 0) j = 1, . . . , K .

Using Theorem 15.2 of (Lions and Magenes, 1972, Vol. 2,
p. 81) we can prove the following lemma:

Lemma 1. Let

u ∈ (H∞,1(Q))′, v ∈ L2(Σ), (17)

fj ∈ (H∞,1(Qj))′, (18)

where

fj(x, t) = u(x, t) −
b∫

a

c(x, t)yj−1(x, t − h) dh,

yj−1(·, (j − 1)a) ∈ H∞{aα, 2}(Ω), (19)

qj ∈ L2(Σj), (20)
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where

qj(x, t) =

b∫
a

d(x, t)yj−1(x, t − h) dh + v(x, t).

Then there exists a unique solution yj ∈ H∞,1(Qj) for
the mixed initial-boundary value problem (6), (9), (19).

Proof. We observe that for j = 1,

yj−1|Q0
(x, t − h) = Φ0(x, t − h)

and
yj−1|Σ0

(x, t − h) = Ψ0(x, t − h).

Then the assumptions (18), (19) and (20) are fulfilled
if we assume that Φ0 ∈ H∞,1(Q0), y0 ∈ H∞{aα, 2}(Ω),
and Ψ0 ∈ L2(Σ0). These assumptions are sufficient to en-
sure the existence of a unique solution y1 ∈ H∞,1(Q1).
In order to extend the result to Q2, we have to prove
that y1(·, a) ∈ H∞{aα, 2}(Ω), y1|Σ1

∈ L2(Σ1) and
f2 ∈ (H∞,1(Q2))′. Really, from Theorems 2.1 and 2.2
of (Kowalewski, 1998), y1 ∈ H∞,1(Q1) implies that
the mapping t → y1(·, t) is continuous from [0, a] →
H∞{aα, 2}(Ω). Thus, y1(·, a) ∈ H∞{aα, 2}(Ω). Then
using the trace theorem (Theorem 2.3 of (Kowalewski,
1998)) we can verify that y1 ∈ H∞,1(Q1) implies
that y1 → y1|Σ1

is a linear, continuous mapping of
H∞,1(Q1) → H∞,1(Σ1). Thus, y1|Σ1

∈ L2(Σ1). Also
it is easy to notice that the assumption (18) follows from
the fact that y1 ∈ H∞,1(Q1) and u ∈ (H∞,1(Q))′. Then,
there exists a unique solution y2 ∈ H∞,1(Q2). The fore-
going result is now summarized for j = 3, . . . , K. �

Theorem 1. Let y0,Φ0,Ψ0, v and u be given with
y0 ∈ H∞{aα, 2}(Ω), Φ0 ∈ H∞,1(Q0), Ψ0 ∈ L2(Σ0),
v ∈ L2(Σ) and u ∈ (H∞,1(Q))′. Then there exists
a unique solution y ∈ H∞,1(Q) for the mixed initial-
boundary value problem (6)–(10). Moreover, y(·, ja) ∈
H∞{aα, 2}(Ω) for j = 1, . . . , K.

4. Problem formulation. Optimization
theorems

Now, we shall formulate the minimum-time problem for
(6)–(10) in the context of Theorem 1, i.e.,

v ∈ U =
{
v ∈ L2(Σ) : |v(x, t)| ≤ 1

}
. (21)

We shall define the reachable set Y such that

Y =
{
y ∈ L2(Ω) : ‖y − zd‖L2(Ω) ≤ ε

}
, (22)

where zd, ε are given with zd ∈ L2(Ω) and ε > 0 .
Solving the stated minimum-time problem is equiva-

lent to hitting the target set Y in minimum time, that is,
minimizing the time t, for which y(t; v) ∈ Y and v ∈ U .

Moreover, we make the following assumption:

There exists T > 0 and v ∈ U with y(T ; v) ∈ Y. (23)

Theorem 2. If the assumption (23) holds, then the set
Y is reached in minimum time t∗ by an admissible control
v∗ ∈ U . Moreover,∫

Ω

(zd − y(t∗; v∗))(y(t∗; v) − y(t∗; v∗)) dx ≤ 0,

∀v ∈ U. (24)

Outline of the proof: Let us define the following set:

t∗= inf{t : y(t; v) ∈ Y for some v ∈ U}. (25)

The minimum is well defined, as (23) guarantees that this
set is nonempty. By definition, we can choose tn ↓ t∗ and
admissible controls {vn} such that

y(tn; vn) ∈ Y, n = 1, 2, 3, . . . (26)

Each vn is defined on Γ×(0, tn) ⊃ Γ×(0, t∗). To simplify
the notation, we denote the restriction of vn to Γ× (0, t∗)
again by vn. The set of admissible controls then forms
a weakly compact, convex set in L2(Γ × (0, f∗), and so
we can extract a weakly convergent subset {vm}, which
converges weakly to some admissible control v∗.

Consequently, Theorem 1 implies that y(t; v) ∈
H∞{aα, 2}(Ω) ⊂ L2(Ω) for each v ∈ L2(Σ) and t > 0.
Then using Theorem 1.2 of (Lions, 1971, p. 102) and The-
orem 1 it is easy to verify that the mapping v → y(t∗; v),
from L2(Γ×(0, t∗)) into L2(Ω), is continuous. Since any
continuous linear mapping between Banach spaces is also
weakly continuous (Dunford and Schwartz, 1958), The-
orem V. 3.15, the affine mapping v → y(t∗; v) must also
be weakly continuous. Hence,

y(t∗; vm) → y(t∗; v∗) weakly in L2(Ω). (27)

Moreover,

dy(v)
dt

∈ L2([0, t∗],H0(Ω)),

for each v ∈ U , by definition of H∞,1(Ω × (0, t∗)), and

‖y(tm; vm) − y(t∗; vm)‖L2(Ω)

= ‖
tm∫

t∗

ẏ(σ; vm)dσ‖L2(Ω)

≤ √
tm − t∗

⎛
⎝ tm∫

t∗

‖ẏ(σ; vm)‖2
L2(Ω) dσ

⎞
⎠

1/2

. (28)
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Applying Theorem 1.2 of (Lions, 1971) and The-
orem 1 again, the set {ẏ(vm)} must be bounded in
L2(0, t∗;H0(Ω)), and so

‖y(tm; vm) − y(t∗; vm)‖L2(Ω) ≤ M
√

tm − t∗. (29)

Combining (27) and (29) shows that

y(tm; vm) − y(t∗; v∗)
= (y(tm; vm) − y(t∗; vm))

+ (y(t∗; vm) − y(t∗; v∗))
(30)

converges weakly to zero in L2(Ω), and therefore
y(t∗; v∗) ∈ Y as Y is closed and convex, hence weakly
closed. This shows that Y is reached in time t∗ by an
admissible control accordingly, t∗ must be the minimum
time and v∗ an optimal control.

We shall now prove the second part of our theorem.
Indeed, from Theorem 3.1 (Lions and Magenes, 1972,
Vol. 1, p. 19) y(v) ∈ H∞,1(Q) implies that the mapping
t → y(t; v), from [0, T ] → H∞{aα, 2}(Ω) ⊂ L2(Ω) is
continuous for each fixed v, and so y(t∗; v) /∈ int Y , for
any v ∈ U , by the minimality of t∗.

From our earlier remarks, the set

A(t∗) = {y(t∗; vx) : vx ∈ U} (31)

is weakly compact and convex in L2(Ω). Applying The-
orem 21.11 of (Choquet, 1969) to the sets A(t∗) and Y
shows that there exists a nontrivial hyperplane z′ ∈ L2(Ω)
separating these sets, that is,∫

Ω

z′y(t∗; v) dx

≤
∫
Ω

z′y(t∗; v∗) dx ≤
∫
Ω

z′y dx (32)

for all v ∈ U and y ∈ L2(Ω) with

‖y − zd‖L2(Ω) ≤ ε. (33)

From the second inequality in (32), z′ must support
the set Y at y(t∗; v∗). Since L2(Ω) is a Hilbert space, z′

must be of the form

z′ = λ(zd − y(t∗; v∗)) for some λ > 0. (34)

Subsequently, dividing (32) by λ gives the desired result
(24).

5. Optimization theorems

We shall apply Theorem 2 to the control problem of (6)–
(10).

To simplify (24), we introduce the adjoint equation,
and for every v ∈ U we define the adjoint variable p =
p(v) = p(x, t; v) as the solution of the equation

−∂p(v)
∂t

+ A∗p(v)

+

b∫
a

c(x, t + h)p(x, t + h; v) dh = 0,

x ∈ Ω, t ∈ (0, t∗ − b), (35)

−∂p(v)
∂t

+ A∗p(v)

+

t∗−t∫
a

c(x, t + h)p(x, t + h; v) dh = 0,

x ∈ Ω, t ∈ (t∗ − b, t∗ − a), (36)

− ∂p(v)
∂t

+A∗p(v) = 0, x ∈ Ω, t ∈ (t∗−a, t∗), (37)

p(x, t∗; v) = zd(x) − y(x, t∗; v), x ∈ Ω, (38)

∂p(v)
∂ηA∗

(x, t) =

b∫
a

d(x, t + h)p(x, t + h; v) dh,

x ∈ Γ, t ∈ (0, t∗ − b), (39)

∂p(v)
∂ηA∗

(x, t) =

t∗−t∫
a

d(x, t + h)p(x, t + h; v) dh

x ∈ Γ, t ∈ (t∗ − b, t∗ − a), (40)

∂p(v)
∂ηA∗

(x, t) = 0, x ∈ Γ, t ∈ (t∗ − a, t∗), (41)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂p(v)
∂ηA∗

(x, t) =
∞∑

|w|=0

(Dwp(v)) cos(n, xi),

A∗p =
∞∑

|α|=0

(−1)|α|aαD2αp(x, t).
(42)

Remark 1. If t∗ < b, then we consider (36) and (40) on
Ω × (0, t∗ − a) and Γ × (0, t∗ − a), respectively.

The existence of a unique solution to the problem
(35)–(41) on the cylinder Ω × (0, t∗) can be proved using
a constructive method. It is easy to notice that for given
zd and u, the problem (35)–(41) can be solved backwards
in time starting from t = t∗, i.e., first, solving (35)–(41)
on the subcylinder QK and in turn on QK−1 , etc., until
the procedure covers the whole cylinder Ω × (0, t∗). For
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this purpose, we may apply Theorem 1 (with an obvious
change of variables).

Hence, using Theorem 1, the following result can be
proved:

Theorem 3. Let the hypothesis of Theorem 1 be satisfied.
Then for given zd ∈ L2(Ω) and any v ∈ L2(Σ), there
exists a unique solution p(v) ∈ H∞,1(Ω× (0, t∗)) for the
adjoint problem (35)–(41).

We simplify the left-hand side of the inequality (24)
using the adjoint equation (35)–(41). For this purpose,
setting v = v∗ in (35)–(41), multiplying both sides of
(35), (36), (37) by y(v) − y(v∗), then integrating over
Ω× (0, t∗ − b), Ω× (t∗ − b, t∗ − a) and Ω× (t∗ − a, t∗)
respectively and then adding both sides of (35)–(37), we
get

t∗∫
0

∫
Ω

(
−∂p(v∗)

∂t
+ A∗p(v∗)

)
(y(v) − y(v∗)) dxdt

+

t∗−b∫
0

∫
Ω

⎛
⎝ b∫

a

c(x, t + h)p(x, t + h; v∗) dh

⎞
⎠

× [y(x, t; v) − y(x, t; v∗)] dxdt

+

t∗−a∫
t∗−b

∫
Ω

⎛
⎝ t∗−t∫

a

c(x, t + h)p(x, t + h; v∗) dh

⎞
⎠

× [y(x, t; v) − y(x, t; v∗)] dxdt

= −
∫
Ω

p(x, t∗; v∗)(y(x, t∗; v) − y(x, t∗; v∗)) dx

+

t∗∫
0

∫
Ω

p(v∗)
∂

∂t
(y(v) − y(v∗)) dxdt

+

t∗∫
0

∫
Ω

A∗p(v∗)(y(v) − y(v∗)) dxdt

+

t∗−b∫
0

∫
Ω

b∫
a

c(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dh dxdt

+

t∗−a∫
t∗−b

∫
Ω

t∗−t∫
a

c(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dh dxdt = 0.

(43)

Then, applying (38), the formula (43) can be expres-
sed as∫

Ω

(zd − y(t∗; v∗))(y(t∗; v) − y(t∗; v∗)) dx

=

t∗∫
0

∫
Ω

p(v∗)
∂

∂t
(y(v) − y(v∗)) dx dt

+

t∗∫
0

∫
Ω

A∗p(v∗) (y(v) − y(v∗)) dx dt

+

b∫
a

∫
Ω

t∗−b∫
0

c (x, t + h) p (x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dx dh

+

t∗−t∫
a

∫
Ω

t∗−a∫
t∗−b

c (x, t + h) p (x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dx dh.

(44)

Using (6), the first integral on the right-hand side of
(44) can be rewritten as

t∗∫
0

∫
Ω

p(v∗)
∂

∂t
(y(v) − y(v∗)) dx dt

= −
t∗∫

0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dx dt

−
t∗∫

0

∫
Ω

p(x, t; v∗)

( b∫
a

c(x, t)

×(y(x, t − h; v) − y(x, t − h; v∗))dh

)
dx dt

= −
t∗∫

0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dx dt

−
t∗∫

0

∫
Ω

b∫
a

p(x, t; v∗)c(x, t)

× (y(x, t − h; v) − y(x, t − h; v∗)) dh dx dt

= −
t∗∫

0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dx dt

−
b∫

a

∫
Ω

t∗∫
0

p(x, t; v∗)c(x, t)
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× (y(x, t − h; v) − y(x, t − h; v∗)) dt dx dh

= −
t∗∫

0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dxdt

−
b∫

a

∫
Ω

t∗−h∫
−h

p(x, t′ + h; v∗)c(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dxdh

= −
t∗∫

0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dx dt

−
b∫

a

∫
Ω

0∫
−h

p(x, t′ + h; v∗)c(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dx dh

−
b∫

a

∫
Ω

t∗−b∫
0

p(x, t′ + h; v∗)c(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dx dh

−
b∫

a

∫
Ω

t∗−h∫
t∗−b

p(x, t′ + h; v∗)c(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dx dh

= −
t∗∫

0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dx dt

−
b∫

a

∫
Ω

0∫
−h

p(x, t′ + h; v∗)c(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dx dh

−
b∫

a

∫
Ω

t∗−b∫
0

p(x, t′ + h; v∗)c(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dxdh

−
t∗−t∫
a

∫
Ω

t∗−a∫
t∗−b

p(x, t′ + h; v∗)c(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dx dh.

(45)

The second integral on the right-hand side of (44), in
view of Green’s formula, can be expressed as

t∗∫
0

∫
Ω

A∗p(v∗)(y(v) − y(v∗)) dxdt

=

t∗∫
0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dxdt

+

t∗∫
0

∫
Γ

p(v∗)

(
∂y(v)
∂ηA

− ∂y(v∗)
∂ηA

)
dΓ dt

−
t∗∫

0

∫
Γ

∂p(v∗)
∂ηA∗

(y(v) − y(v∗)) dΓ dt.

(46)

Using the boundary condition (9), the second component
on the right-hand side of (46) can be written as

t∗∫
0

∫
Γ

p(v∗)
[
∂y(v)
∂ηA

− ∂y(v∗)
∂ηA

]
dΓ dt

=

t∗∫
0

∫
Γ

p(x, t; v∗)

( b∫
a

d(x, t)

× (y(x, t − h; v) − y(x, t − h; v∗)) dh

)
dΓ dt

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

t∗∫
0

∫
Γ

b∫
a

p(x, t; v∗)d(x, t)

× (y(x, t − h; v) − y(x, t − h; v∗)) dh dΓ dt

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

t∗∫
0

p(x, t; v∗)d(x, t)

× (y(x, t − h; v) − y(x, t − h; v∗))dt dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

t∗−h∫
−h

p(x, t′ + h; v∗)d(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

0∫
−h

p(x, t′ + h; v∗)d(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dΓ dh
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+

b∫
a

∫
Γ

t∗−b∫
0

p(x, t′ + h; v∗)d(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dΓdh

+

b∫
a

∫
Γ

t∗−h∫
t∗−b

p(x, t′ + h; v∗)d(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

=

b∫
a

∫
Γ

0∫
−h

p(x, t′ + h; v∗)d(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dΓ dh

+

b∫
a

∫
Γ

t∗−b∫
0

p(x, t′ + h; v∗)d(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dΓdh

+

t∗−t∫
a

∫
Γ

t∗−a∫
t∗−b

p(x, t′ + h; v∗)d(x, t′ + h)

× (y(x, t′; v) − y(x, t′; v∗)) dt′ dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt.

(47)

The last component in (46) can be rewritten as

t∗∫
0

∫
Γ

∂p(v∗)
∂ηA∗

(y(v) − y(v∗)) dΓ dt

=

t∗−b∫
0

∫
Γ

∂p(v∗)
∂ηA∗

(y(v) − y(v∗)) dΓ dt

+

t∗−a∫
t∗−b

∫
Γ

∂p(v∗)
∂ηA∗

(y(v) − y(v∗)) dΓ dt

+

t∗∫
t∗−a

∫
Γ

∂p(v∗)
∂ηA∗

(y(v) − y(v∗)) dΓ dt.

(48)

Substituting (47) and (48) into (46) and then (45) and
(46) into (44), we obtain∫

Ω

(zd − y(t∗; v∗))(y(t∗; v) − y(t∗; v∗)) dx

= −
t∗∫

0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dxdt

−
b∫

a

∫
Ω

0∫
−h

c(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dx dh

−
b∫

a

∫
Ω

t∗−b∫
0

c(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dx dh

−
t∗−t∫
a

∫
Ω

t∗−a∫
t∗−b

c(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dx dh

+

t∗∫
0

∫
Ω

p(v∗)A(y(v) − y(v∗)) dx dt

+

b∫
a

∫
Γ

0∫
−h

d(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dΓ dh

+

b∫
a

∫
Γ

t∗−b∫
0

d(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dΓ dh

+

t∗−t∫
a

∫
Γ

t∗−a∫
t∗−b

d(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dΓ dh

+

t∗∫
0

∫
Γ

p(x, t; v∗)(v − v∗) dΓ dt

−
t∗−b∫
0

∫
Γ

∂p(v∗)
∂ηA∗

(y(x, t; v) − y(x, t; v∗)) dΓ dt

−
t∗−a∫

t∗−b

∫
Γ

∂p(v∗)
∂ηA∗

(y(x, t; v) − y(x, t; v∗)) dΓdt

−
t∗∫

t∗−a

∫
Γ

∂p(v∗)
∂ηA∗

(y(x, t; v) − y(x, t; v∗)) dΓ dt

+

b∫
a

∫
Ω

t∗−b∫
0

c(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dx dh

+

t∗−t∫
a

∫
Ω

t∗−a∫
t∗−b

c(x, t + h)p(x, t + h; v∗)

× (y(x, t; v) − y(x, t; v∗)) dt dx dh.

(49)
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Then, using the fact that y(x, t; v) = y(x, t; v∗) =
Φ0(x, t) for x ∈ Ω and t ∈ [−b, 0) and y(x, t; v) =
y(x, t; v∗) = Ψ0(x, t) for x ∈ Γ and t ∈ [−b, 0), we
obtain∫

Ω

(zd − y(t∗; v∗))(y(t∗; v) − y(t∗; v∗)) dx

=

t∗∫
0

∫
Γ

p(v∗)(v − v∗) dΓ dt.

(50)

Substituting (50) into (24) gives

t∗∫
0

∫
Γ

p(v∗)(v − v∗) dΓ dt ≤ 0, ∀v ∈ U. (51)

The foregoing result is now summarized.

Theorem 4. The optimal control v∗ is characterized by
the condition (51). Moreover, in a particular case we have

v∗(x, t) = sign (p(x, t; v∗)), x ∈ Γ, t ∈ (0, t∗)
(52)

whenever p(v∗) is nonzero.

This property leads to the following result:

Theorem 5. If the functions c(x, t) and d(x, t) are ana-
lytic and Ω has an analytic boundary Γ, then there exists
a unique optimal control for the mixed initial-boundary
value problem (6)–(10). Moreover, the optimal control is
bang-bang, i.e., |v∗(x, t)|≡ 1 , almost everywhere and the
unique solution of (6)–(10), (35)–(41), (52).

The idea of the proof of Theorem 5 is the same as in
the case of Theorem 3.4 in (Kowalewski and Krakowiak,
2000).

6. Conclusions and perspectives

The results presented in the paper can be treated as a gene-
ralization of the results obtained by (Knowles, 1978; Ko-
walewski and Krakowiak, 1994; Kowalewski and Krako-
wiak, 2000; Kowalewski and Krakowiak, 2006) onto the
case of the time-optimal boundary control of infinite order
parabolic systems with deviating arguments appearing in
the integral form both in state equations and in boundary
conditions. Such parabolic systems constitute a genera-
lization of the mathematical model for a plasma control
process.

We considered a different type of control, namely,
the control function defined at the boundary of a system
spatial domain. Sufficient conditions for the existence of
a unique solution of such parabolic equations with Neu-
mann boundary conditions are proved (Lemma 1 and The-
orem 1). The optimal control is characterized by using

the adjoint equation (Theorems 2 and 3). The uniqueness
and bang-bang properties of the optimal control are pro-
ved (Theorems 4 and 5).

The condition (23) plays a fundamental role in con-
trollability problems for time-delay infinite order parabo-
lic systems. With regard to the controllability assumption
(23) we can investigate the exact controllability problem
for the infinite order parabolic system (6)–(10).

In this paper we considered the time-optimal bo-
undary control problem for infinite order parabolic sys-
tems with nonhomogeneous Neumann boundary condi-
tions. We can also consider the analogous minimum time
problem for such systems with non-homogeneous Diri-
chlet boundary conditions.

Finally, we can consider a time-optimal control pro-
blem for discrete time delay distributed parameter sys-
tems. The ideas mentioned above will be developed in
forthcoming papers.
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